Tenderness of PGI “Ternera de Navarra” Beef Samples Determined by FTIR-MIR Spectroscopy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Animal Material and Sample Maturing
2.3. Sample Analysis
2.3.1. Proximate Composition
2.3.2. Texture Properties
2.3.3. Spectra Acquisition (Mid-Infrared Analysis)
2.4. Statistical/Chemometric Treatment
Data Preprocessing
3. Results and Discussion
3.1. Proximate Composition of the Samples
3.2. Tenderness by Multiple Compression Test
3.3. Assignment of the Representative Bands of the Beef FTIR Spectra
3.4. Prediction Models
3.5. Classification of the Sample by Ageing
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
Wavelengths (cm−1) | Functional Group | References |
---|---|---|
3288 | N-H stretching | [18,47] |
2925 | C-H asymmetric stretching of CH2 and CH3; aliphatic groups | [18,21,48,49,50] |
2854 | C-H symmetric stretching of CH2 and CH3; aliphatic groups | [18,21,48,49,50] |
1657 | N-H stretching vibration: proteins | [50] |
C=C stretching vibration; cis-olefins | [21,50] | |
C=O stretching (Amide I) of proteins | [18,46,47,51,52] | |
1542 | N-H bending and C-N stretching (Amide II) of proteins | [18,42,46,50] |
1465 | C-H scissoring vibration | [18,21,42,46,48,50] |
1379 | COO− stretching vibration of fatty acids and amino side chains | [18,21,46] |
1239 | CN stretching vibration; NH bending vibration | [18,47,51] |
1162 | C-O stretching vibration y C-H bending | [18,46,48] |
1117 | -CH bending and -CH deformation vibrations of fatty acids | [21] |
References
- Karoui, R.; Downey, G.; Blecker, C. Mid-Infrared Spectroscopy Coupled with Chemometrics: A Tool for the Analysis of Intact Food Systems and the Exploration of Their Molecular Structure−Quality Relationships—A Review. Chem. Rev. 2010, 110, 6144–6168. [Google Scholar] [CrossRef] [PubMed]
- Panea, B.; Olleta, J.L.; Sañudo, C.; del Mar Campo, M.; Oliver, M.A.; Gispert, M.; Serra, X.; Renand, G.; del Carmen Oliván, M.; Jabet, S.; et al. Effects of Breed-Production System on Collagen, Textural, and Sensory Traits of 10 European Beef Cattle Breeds. J. Texture Stud. 2018, 49, 528–535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panea, B.; Sañudo Astiz, C.; Olleta, J.L.; Civit, D. Effect of Ageing Method, Ageing Period, Cooking Method and Sample Thickness on Beef Textural Characteristics. Span. J. Agric. Res. 2008, 6, 25. [Google Scholar] [CrossRef] [Green Version]
- Dransfield, E. Optimisation of Tenderisation, Ageing and Tenderness. Meat Sci. 1994, 36, 105–121. [Google Scholar] [CrossRef]
- Li, X.; Ha, M.; Warner, R.D.; Dunshea, F.R. Meta-Analysis of the Relationship between Collagen Characteristics and Meat Tenderness. Meat Sci. 2022, 185, 108717. [Google Scholar] [CrossRef]
- Campo, M.M.; Santolaria, P.; Panea, B.; AlbertõÂ, P. Assessment of Breed Type and Ageing Time Effects on Beef Meat Quality Using Two Different Texture Devices. Meat Sci. 2000, 55, 371–378. [Google Scholar] [CrossRef]
- Panea, B.; Catalán, A.; Olleta, J.L. Efecto de la raza y temperatura interna de cocinado sobre algunas características de la textura de la carne bovina. ITEA 2010, 106, 77–88. [Google Scholar]
- Rahim, H.A.; Ghazali, R.; Sahlan, S.; Maidin, M.S. Prediction of Texture of Raw Poultry Meat by Visible and Near Infrared Reflectance Spetroscopy. J. Teknol. 2013, 64, 59–62. [Google Scholar] [CrossRef] [Green Version]
- Cozzolino, D. Advantages, Opportunities, and Challenges of Vibrational Spectroscopy as Tool to Monitor Sustainable Food Systems. Food Anal. Methods 2022, 15, 1390–1396. [Google Scholar] [CrossRef]
- Sun, D.-W. Infrared Spectroscopy for Food Quality Analysis and Control; Academic Press: Cambridge, MA, USA, 2009; ISBN 978-0-08-092087-0. [Google Scholar]
- Nunes, K.M.; Andrade, M.V.O.; Santos Filho, A.M.P.; Lasmar, M.C.; Sena, M.M. Detection and Characterisation of Frauds in Bovine Meat in Natura by Non-Meat Ingredient Additions Using Data Fusion of Chemical Parameters and ATR-FTIR Spectroscopy. Food Chem. 2016, 205, 14–22. [Google Scholar] [CrossRef]
- Lemos, A.M.; Machado, N.; Egea-Cortines, M.; Barros, A.I. ATR-MIR Spectroscopy as a Tool to Assist ‘Tempranillo’ Clonal Selection Process: Geographical Origin and Year of Harvest Discrimination and Oenological Parameters Prediction. Food Chem. 2020, 325, 126938. [Google Scholar] [CrossRef] [PubMed]
- Zaroual, H.; Chèné, C.; Mestafa El Hadrami, E.; Karoui, R. Comparison of Four Classification Statistical Methods for Characterising Virgin Olive Oil Quality during Storage up to 18 Months. Food Chem. 2022, 370, 131009. [Google Scholar] [CrossRef] [PubMed]
- Tewari, J.; Irudayaraj, J. Quantification of Saccharides in Multiple Floral Honeys Using Fourier Transform Infrared Microattenuated Total Reflectance Spectroscopy. J. Agric. Food Chem. 2004, 52, 3237–3243. [Google Scholar] [CrossRef] [PubMed]
- Ścibisz, I.; Reich, M.; Bureau, S.; Gouble, B.; Causse, M.; Bertrand, D.; Renard, C.M.G.C. Mid-Infrared Spectroscopy as a Tool for Rapid Determination of Internal Quality Parameters in Tomato. Food Chem. 2011, 125, 1390–1397. [Google Scholar] [CrossRef]
- Liu, J.; Chen, J.; Dong, N.; Ming, J.; Zhao, G. Determination of Degree of Substitution of Carboxymethyl Starch by Fourier Transform Mid-Infrared Spectroscopy Coupled with Partial Least Squares. Food Chem. 2012, 132, 2224–2230. [Google Scholar] [CrossRef]
- Wu, D.; Feng, S.; He, C.; He, Y. NIRS and MIRS Technique for the Determination of Protein and Fat Content in Milk Powder. In Proceedings of the International Symposium on Photoelectronic Detection and Imaging 2007: Related Technologies and Applications, Beijing, China, 19 February 2008; SPIE: Washington, DC, USA, 2008; Volume 6625, pp. 527–534. [Google Scholar]
- Hernández-Martínez, M.; Gallardo-Velázquez, T.; Osorio-Revilla, G.; Almaraz-Abarca, N.; Ponce-Mendoza, A.; Vásquez-Murrieta, M.S. Prediction of Total Fat, Fatty Acid Composition and Nutritional Parameters in Fish Fillets Using MID-FTIR Spectroscopy and Chemometrics. LWT—Food Sci. Technol. 2013, 52, 12–20. [Google Scholar] [CrossRef]
- Al-Jowder, O.; Defernez, M.; Kemsley, E.K.; Wilson, R.H. Mid-Infrared Spectroscopy and Chemometrics for the Authentication of Meat Products. J. Agric. Food Chem. 1999, 47, 3210–3218. [Google Scholar] [CrossRef]
- Al-Jowder, O.; Kemsley, E.K.; Wilson, R.H. Detection of Adulteration in Cooked Meat Products by Mid-Infrared Spectroscopy. J. Agric. Food Chem. 2002, 50, 1325–1329. [Google Scholar] [CrossRef]
- Rohman, A.; Sismindari; Erwanto, Y.; Man, C.Y.B. Analysis of Pork Adulteration in Beef Meatball Using Fourier Transform Infrared (FTIR) Spectroscopy. Meat Sci. 2011, 88, 91–95. [Google Scholar] [CrossRef]
- Sinelli, N.; Limbo, S.; Torri, L.; Di Egidio, V.; Casiraghi, E. Evaluation of Freshness Decay of Minced Beef Stored in High-Oxygen Modified Atmosphere Packaged at Different Temperatures Using NIR and MIR Spectroscopy. Meat Sci. 2010, 86, 748–752. [Google Scholar] [CrossRef]
- Lozano, M.; Rodríguez-Ulibarri, P.; Echeverría, J.C.; Beruete, M.; Sorolla, M.; Beriain, M.J. Mid-Infrared Spectroscopy (MIR) for Simultaneous Determination of Fat and Protein Content in Meat of Several Animal Species. Food Anal. Methods 2017, 10, 3462–3470. [Google Scholar] [CrossRef]
- Ministerio de Agricultura, Pesca y Alimentación. Orden de 26 de diciembre de 2001 por la que se ratifica el Reglamento de la Indicación Geográfica Protegida “Ternera de Navarra o Nafarroako Aratxea” y de su Consejo Regulador. Bol. Of. Estado 2002, 13, 1755–1763. [Google Scholar]
- Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the Protection of Animals Used for Scientific Purposes Text with EEA Relevance. 47. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2010:276:0033:0079:en:PDF (accessed on 28 October 2022).
- Council Regulation (EC) No 1099/2009 of 24 September 2009 on the Protection of Animals at the Time of KillingText with EEA Relevance. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2009:303:0001:0030:EN:PDF (accessed on 28 October 2022).
- European Commission. Commission Regulation (EC) No 1249/2008 of 10 December 2008 laying down detailed rules on the implementation of the Community scales for the classification of beef, pig and sheep carcasses and the reporting of prices thereof. Off. J. Eur. Union 2008, 337, 3. [Google Scholar]
- ISO 1443:1973; Meat and Meat Products—Determination of Total Fat Content. ISO: Geneva, Switzerland, 1973.
- ISO 937:1978; Meat and Meat Products—Determination of Nitrogen Content (Reference Method). ISO: Geneva, Switzerland, 1978.
- ISO 1442:1997; Meat and Meat Products—Determination of Moisture Content (Reference Method). ISO: Geneva, Switzerland, 1997.
- Lepetit, J.; Culioli, J. Mechanical Properties of Meat. Meat Sci. 1994, 36, 203–237. [Google Scholar] [CrossRef]
- Sarriés, M.V.; Beriain, M.J. Colour and Texture Characteristics in Meat of Male and Female Foals. Meat Sci. 2006, 74, 738–745. [Google Scholar] [CrossRef]
- ISO 14644-1:2016; Cleanrooms and Associated Controlled Environments—Part 1: Classification of Air Cleanliness by Particle Concentration. ISO: Geneva, Switzerland, 2016.
- Beriain, M.J.; Murillo-Arbizu, M.T.; Insausti, K.; Ibañez, F.C.; Cord, C.L.; Carr, T.R. Physicochemical and Sensory Assessments in Spain and United States of PGI-Certified Ternera de Navarra vs. Certified Angus Beef. Foods 2021, 10, 1474. [Google Scholar] [CrossRef] [PubMed]
- Ripoll, G.; Blanco, M.; Albertí, P.; Panea, B.; Joy, M.; Casasús, I. Effect of Two Spanish Breeds and Diet on Beef Quality Including Consumer Preferences: Breed and Finishing Diet Effects on Beef Quality and Consumer Preference. J. Sci. Food Agric. 2014, 94, 983–992. [Google Scholar] [CrossRef]
- Bekhit, A.E.-D.A.; Carne, A.; Ha, M.; Franks, P. Physical Interventions to Manipulate Texture and Tenderness of Fresh Meat: A Review. Int. J. Food Prop. 2014, 17, 433–453. [Google Scholar] [CrossRef] [Green Version]
- Koohmaraie, M.; Geesink, G.H. Contribution of Postmortem Muscle Biochemistry to the Delivery of Consistent Meat Quality with Particular Focus on the Calpain System. Meat Sci. 2006, 74, 34–43. [Google Scholar] [CrossRef] [Green Version]
- Novakofski, J.; Brewer, S. The Paradox of Toughening During the Aging of Tender Steaks. J. Food Sci. 2006, 71, S473–S479. [Google Scholar] [CrossRef]
- Dubost, A.; Micol, D.; Meunier, B.; Lethias, C.; Listrat, A. Relationships between Structural Characteristics of Bovine Intramuscular Connective Tissue Assessed by Image Analysis and Collagen and Proteoglycan Content. Meat Sci. 2013, 93, 378–386. [Google Scholar] [CrossRef]
- Nishimura, T. The Role of Intramuscular Connective Tissue in Meat Texture. Anim. Sci. J. 2010, 81, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Ripoll, G.; Albertí, P.; Panea, B.; Olleta, J.L.; Sañudo, C. Near-Infrared Reflectance Spectroscopy for Predicting Chemical, Instrumental and Sensory Quality of Beef. Meat Sci. 2008, 80, 697–702. [Google Scholar] [CrossRef] [PubMed]
- Alamprese, C.; Casale, M.; Sinelli, N.; Lanteri, S.; Casiraghi, E. Detection of Minced Beef Adulteration with Turkey Meat by UV–Vis, NIR and MIR Spectroscopy. LWT—Food Sci. Technol. 2013, 53, 225–232. [Google Scholar] [CrossRef]
- Pretsch, E.; Bühlmann, P.; Affolter, C. Structure Determination of Organic Compounds; Springer: Berlin, Heidelberg, 2000; ISBN 978-3-540-67815-1. [Google Scholar]
- Prieto, N.; Roehe, R.; Lavín, P.; Batten, G.; Andrés, S. Application of near Infrared Reflectance Spectroscopy to Predict Meat and Meat Products Quality: A Review. Meat Sci. 2009, 83, 175–186. [Google Scholar] [CrossRef]
- Qiao, T.; Ren, J.; Craigie, C.; Zabalza, J.; Maltin, C.; Marshall, S. Quantitative Prediction of Beef Quality Using Visible and NIR Spectroscopy with Large Data Samples Under Industry Conditions. J. Appl. Spectrosc. 2015, 82, 137–144. [Google Scholar] [CrossRef] [Green Version]
- Meza-Márquez, O.G.; Gallardo-Velázquez, T.; Osorio-Revilla, G. Application of Mid-Infrared Spectroscopy with Multivariate Analysis and Soft Independent Modeling of Class Analogies (SIMCA) for the Detection of Adulterants in Minced Beef. Meat Sci. 2010, 86, 511–519. [Google Scholar] [CrossRef]
- Carbonaro, M.; Nucara, A. Secondary Structure of Food Proteins by Fourier Transform Spectroscopy in the Mid-Infrared Region. Amino Acids 2010, 38, 679–690. [Google Scholar] [CrossRef]
- Arce, L.; Domínguez-Vidal, A.; Rodríguez-Estévez, V.; López-Vidal, S.; Ayora-Cañada, M.J.; Valcárcel, M. Feasibility Study on the Use of Infrared Spectroscopy for the Direct Authentication of Iberian Pig Fattening Diet. Anal. Chim. Acta 2009, 636, 183–189. [Google Scholar] [CrossRef]
- Ordoudi, S.A.; de los Mozos Pascual, M.; Tsimidou, M.Z. On the Quality Control of Traded Saffron by Means of Transmission Fourier-Transform Mid-Infrared (FT-MIR) Spectroscopy and Chemometrics. Food Chem. 2014, 150, 414–421. [Google Scholar] [CrossRef]
- Shiroma, C.; Rodriguez-Saona, L. Application of NIR and MIR Spectroscopy in Quality Control of Potato Chips. J. Food Compos. Anal. 2009, 22, 596–605. [Google Scholar] [CrossRef]
- Papadopoulou, O.; Panagou, E.Z.; Tassou, C.C.; Nychas, G.-J.E. Contribution of Fourier Transform Infrared (FTIR) Spectroscopy Data on the Quantitative Determination of Minced Pork Meat Spoilage. Food Res. Int. 2011, 44, 3264–3271. [Google Scholar] [CrossRef]
- Wu, D.; He, Y.; Shi, J.; Feng, S. Exploring Near and Midinfrared Spectroscopy to Predict Trace Iron and Zinc Contents in Powdered Milk. J. Agric. Food Chem. 2009, 57, 1697–1704. [Google Scholar] [CrossRef] [PubMed]
Compress Percentage | Ageing (Days) | p-Value | |||
---|---|---|---|---|---|
4 | 6 | 11 | 18 | ||
C20 (kg/cm2) | 0.41 ± 0.16 a | 0.37 ± 0.14 b | 0.33 ± 0.10 c | 0.31 ± 0.08 c | ** |
C80 (kg/cm2) | 3.45 ± 1.04 ab | 3.30 ± 1.10 ab | 3.29 ± 1.00 b | 3.61 ± 1.09 a | * |
C100 (kg/cm2) | 9.42 ± 2.56 a | 8.55 ± 2.79 b | 8.71 ± 3.45 ab | 8.36 ± 2.66 b | ** |
Variables | Prediction | Validation | ||||
---|---|---|---|---|---|---|
R2 (%) | RMSE | R2 (%) | RMSE | Factors | Data Pre-Treatment (Wavelengths Selected) | |
C20 | 52.27 | 0.052 | 38.54 | 0.059 | 9 | First derivate (1951–1540 cm−1) |
C80 | 35.00 | 0.667 | 18.24 | 0.724 | 7 | First derivate (3200–2500; 2300–980 cm−1) |
C100 | 14.77 | 2.030 | 7.71 | 2.110 | 3 | Straight line subtraction (3200–2500; 1950–1540 cm−1) |
Predicted Group | ||||||
---|---|---|---|---|---|---|
Ageing (Days) | 4 | 6 | 11 | 18 | Number of Spectra | |
Original results (%) | 4 | 45.8 | 22.5 | 15.0 | 16.7 | 120 |
6 | 32.5 | 25.0 | 14.2 | 28.3 | 120 | |
11 | 18.3 | 20.0 | 17.5 | 44.2 | 120 | |
18 | 15.8 | 14.2 | 15.8 | 54.2 | 120 | |
Cross validation results (%) | 4 | 44.2 | 24.2 | 15.0 | 16.7 | 120 |
6 | 33.3 | 24.2 | 14.2 | 28.3 | 120 | |
11 | 19.2 | 20.0 | 15.0 | 45.8 | 120 | |
18 | 15.8 | 14.2 | 16.7 | 53.3 | 120 |
Predicted Group | ||||
---|---|---|---|---|
Ageing (Days) | 4 | 18 | Number of Spectra | |
Original results (%) | 4 | 71.7 | 28.3 | 120 |
18 | 30.0 | 70.0 | 120 | |
Cross validation results (%) | 4 | 69.2 | 30.8 | 120 |
18 | 30.0 | 70.0 | 120 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beriain, M.J.; Lozano, M.; Echeverría, J.; Murillo-Arbizu, M.T.; Insausti, K.; Beruete, M. Tenderness of PGI “Ternera de Navarra” Beef Samples Determined by FTIR-MIR Spectroscopy. Foods 2022, 11, 3426. https://doi.org/10.3390/foods11213426
Beriain MJ, Lozano M, Echeverría J, Murillo-Arbizu MT, Insausti K, Beruete M. Tenderness of PGI “Ternera de Navarra” Beef Samples Determined by FTIR-MIR Spectroscopy. Foods. 2022; 11(21):3426. https://doi.org/10.3390/foods11213426
Chicago/Turabian StyleBeriain, María José, María Lozano, Jesús Echeverría, María Teresa Murillo-Arbizu, Kizkitza Insausti, and Miguel Beruete. 2022. "Tenderness of PGI “Ternera de Navarra” Beef Samples Determined by FTIR-MIR Spectroscopy" Foods 11, no. 21: 3426. https://doi.org/10.3390/foods11213426
APA StyleBeriain, M. J., Lozano, M., Echeverría, J., Murillo-Arbizu, M. T., Insausti, K., & Beruete, M. (2022). Tenderness of PGI “Ternera de Navarra” Beef Samples Determined by FTIR-MIR Spectroscopy. Foods, 11(21), 3426. https://doi.org/10.3390/foods11213426