Prediction of Anthocyanin Color Stability against Iron Co-Pigmentation by Surface-Enhanced Raman Spectroscopy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Material and Chemical Reagents
2.2. Sample Preparation
2.3. Anthocyanin Quantitation (pH Differential Method)
2.4. Iron Stabilization Index Acquisition
2.5. Silver Colloid Synthesis
2.6. Anthocyanin SERS Reference Spectra Acquisition
2.7. Data Analysis
3. Results and Discussion
3.1. Stabilization Index Analysis of Anthocyanin Extracts against Iron Incorporation
3.2. SERS Characteristics of Anthocyanin Extracts
3.3. PCA Analysis of Anthocyanin SERS Spectra
3.4. PLSR Analysis between SERS Spectra and Stabilization Index of Each Anthocyanin Extract
3.5. Study of Anthocyanin’s Iron Stability on SERS Signal
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kobylewski, S.; Jacobson, M.F. Toxicology of food dyes. Int. J. Occup. Environ. Health 2012, 18, 220–246. [Google Scholar] [CrossRef] [PubMed]
- Chung, K.T. The significance of azo-reduction in the mutagenesis and carcinogenesis of azo dyes. Mutat. Res. Rev. Genet. Toxicol. 1983, 114, 269–281. [Google Scholar] [CrossRef]
- McCann, D.; Barrett, A.; Cooper, A.; Crumpler, D.; Dalen, L.; Grimshaw, K.; Kitchin, E.; Lok, K.; Porteous, L.; Prince, E.; et al. Food additives and hyperactive behaviour in 3-year-old and 8/9-year-old children in the community: A randomised, double-blinded, placebo-controlled trial. Lancet 2007, 370, 1560–1567. [Google Scholar] [CrossRef]
- Sasaki, Y.F.; Kawaguchi, S.; Kamaya, A.; Ohshita, M.; Kabasawa, K.; Iwama, K.; Taniguchi, K.; Tsuda, S. The comet assay with 8 mouse organs: Results with 39 currently used food additives. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2002, 519, 103–119. [Google Scholar] [CrossRef]
- Ishidate Jr, M.; Sofuni, T.; Yoshikawa, K.; Hayashi, M.; Nohmi, T.; Sawada, M.; Matsuoka, A. Primary mutagenicity screening of food additives currently used in Japan. Food Chem. Toxicol. 1984, 22, 623–636. [Google Scholar] [CrossRef]
- Melo, M.J.; Pina, F.; Andary, C. Anthocyanins: Nature’s Glamorous Palette; Wiley: Chichester, UK, 2009; pp. 134–150. [Google Scholar]
- Seitz, H.U.; Hinderer, W. Anthocyanins. In Phytochemicals in Plant Cell Cultures; Elsevier: Amsterdam, The Netherlands, 1988; pp. 49–76. [Google Scholar]
- Bueno, J.M.; Sáez-Plaza, P.; Ramos-Escudero, F.; Jiménez, A.M.; Fett, R.; Asuero, A.G. Analysis and antioxidant capacity of anthocyanin pigments. Part II: Chemical structure, color, and intake of anthocyanins. Crit. Rev. Anal. Chem. 2012, 42, 126–151. [Google Scholar] [CrossRef]
- McCallum, J.L.; Yang, R.; Young, J.C.; Strommer, J.N.; Tsao, R. Improved high performance liquid chromatographic separation of anthocyanin compounds from grapes using a novel mixed-mode ion-exchange reversed-phase column. J. Chromatogr. A 2007, 1148, 38–45. [Google Scholar] [CrossRef]
- Clifford, M.N. Anthocyanins–nature, occurrence and dietary burden. J. Sci. Food Agric. 2000, 80, 1063–1072. [Google Scholar] [CrossRef]
- Manach, C.; Scalbert, A.; Morand, C.; Rémésy, C.; Jimenez, C. Polyphenols: Food Source and Bioavailability. Am. J. Clin. Nutr. 2004, 79, 727–747. [Google Scholar] [CrossRef] [Green Version]
- Krenn, L.; Steitz, M.; Schlicht, C.; Kurth, H.; Gaedcke, F. Anthocyanin-and proanthocyanidin-rich extracts of berries in food supplements–analysis with problems. Pharmazie 2007, 62, 803–812. [Google Scholar]
- Charron, C.S.; Kurilich, A.C.; Clevidence, B.A.; Simon, P.W.; Harrison, D.J.; Britz, S.J.; Baer, D.J.; Novotny, J.A. Bioavailability of anthocyanins from purple carrot juice: Effects of acylation and plant matrix. J. Agric. Food Chem. 2009, 57, 1226–1230. [Google Scholar] [CrossRef] [PubMed]
- Giusti, M.M.; Wrolstad, R.E. Characterization of red radish anthocyanins. J. Food Sci. 1996, 61, 322–326. [Google Scholar] [CrossRef]
- Pyysalo, H.; Kuusi, T. The role of iron and tin in discoloration of berry and red beet juices. Z. Lebensm.-Unters. Forsch. 1973, 153, 224–233. [Google Scholar] [CrossRef]
- Camaschella, C. Iron deficiency. Blood J. Am. Soc. Hematol. 2019, 133, 30–39. [Google Scholar] [CrossRef] [Green Version]
- Rustandi, A.; Soedarsono, J.W.; Priadi, D.; Suprapta, D.N.; Priyotomo, G.; Bakri, R. Interaction of purple sweet potato extract with ascorbic acid in FeCl3 solution. In Applied Mechanics and Materials; Trans Tech Publications Ltd.: Stafa-Zurich, Switzerland, 2014; Volume 680, pp. 32–37. [Google Scholar]
- Cheng, G.W.; Crisosto, C.H. Iron–Polyphenol complex formation and skin discoloration in peaches and nectarines. J. Am. Soc. Hortic. Sci. 1997, 122, 95–99. [Google Scholar] [CrossRef] [Green Version]
- McGee, E.J.T.; Diosady, L.L. Development of Spectrophotometric Quantification Method of Iron-Polyphenol Complex in Iron-Fortified Black Tea at Relevant pH Levels. Food Anal. Methods 2018, 11, 1645–1655. [Google Scholar] [CrossRef]
- Martınez-Navarrete, N.; Camacho, M.M.; Martınez-Lahuerta, J.; Martınez-Monzó, J.; Fito, P. Iron deficiency and iron fortified foods—A review. Food Res. Int. 2002, 35, 225–231. [Google Scholar] [CrossRef]
- Adams, J.B.; Brown, H.M. Discoloration in raw and processed fruits and vegetables. Crit. Rev. Food Sci. Nutr. 2007, 47, 319–333. [Google Scholar] [CrossRef]
- Chandler, B.V.; Mary Clegg, K. Pink discoloration in canned pears I.—Role of tin in pigment formation. J. Sci. Food Agric. 1970, 21, 315–319. [Google Scholar] [CrossRef]
- Lambert, S.G.; Asenstorfer, R.E.; Williamson, N.M.; Iland, P.G.; Graham, P. Copigmentation between Malvidin-3-Glucoside and Some Wine Constituents and Its Importance to Colour Expression in Red Wine. Food Chem. 2011, 125, 106–115. [Google Scholar] [CrossRef]
- Giusti, M.M.; Wrolstad, R.E. Acylated anthocyanins from edible sources and their applications in food systems. Biochem. Eng. J. 2003, 14, 217–225. [Google Scholar] [CrossRef]
- Malien-Aubert, C.; Dangles, O.; Amiot, M.J. Color stability of commercial anthocyanin-based extracts in relation to the phenolic composition. Protective effects by intra-and intermolecular copigmentation. J. Agric. Food Chem. 2001, 49, 170–176. [Google Scholar] [CrossRef]
- Fenger, J.A.; Moloney, M.; Robbins, R.J.; Collins, T.M.; Dangles, O. The influence of acylation, metal binding and natural antioxidants on the thermal stability of red cabbage anthocyanins in neutral solution. Food Function 2019, 10, 6740–6751. [Google Scholar] [CrossRef] [PubMed]
- Bakowska-Barczak, A. Acylated anthocyanins as stable, natural food colorants—A review. Pol. J. Food Nutr. Sci. 2005, 14, 55. [Google Scholar]
- Sigurdson, G.T.; Robbins, R.J.; Collins, T.M.; Giusti, M.M. Evaluating the role of metal ions in the bathochromic and hyperchromic responses of cyanidin derivatives in acidic and alkaline pH. Food Chem. 2016, 208, 26–34. [Google Scholar] [CrossRef] [PubMed]
- Li, X.D.; Li, J.; Wang, M.; Jiang, H. Copigmentation effects and thermal degradation kinetics of purple sweet potato anthocyanins with metal ions and sugars. Appl. Biol. Chem. 2016, 59, 15–24. [Google Scholar] [CrossRef]
- Fedenko, V.S.; Shemet, S.A.; Landi, M. UV–vis spectroscopy and colorimetric models for detecting anthocyanin-metal complexes in plants: An overview of in vitro and in vivo techniques. J. Plant Physiol. 2017, 212, 13–28. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, S.; Zheng, J.; He, L. Surface-enhanced Raman spectroscopy (SERS) combined techniques for high-performance detection and characterization. Trends Anal. Chem. 2017, 90, 1–13. [Google Scholar] [CrossRef]
- Buchweitz, M.; Nagel, A.; Carle, R.; Kammerer, D.R. Characterisation of sugar beet pectin fractions providing enhanced stability of anthocyanin-based natural blue food colourants. Food Chem. 2012, 132, 1971–1979. [Google Scholar] [CrossRef]
- Zaffino, C.; Bruni, S.; Russo, B.; Pilu, R.; Lago, C.; Colonna, G.M. Identification of anthocyanins in plant sources and textiles by surface-enhanced Raman spectroscopy (SERS). J. Raman Spectrosc. 2016, 47, 269–276. [Google Scholar] [CrossRef]
- Lee, J.; Durst, R.W.; Wrolstad, R.E.; Collaborators: Giusti, E.T.; Hach, M.M.; Hofsommer, J.; Koswig, H.; Krueger, S.; Kupina, D.A.; Martin, S.; et al. Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the pH differential method: Collaborative study. J. AOAC Int. 2005, 88, 1269–1278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, S.; Erol, M.; Attygalle, A.; Du, H.; Sukhishvili, S. Synthesis of positively charged silver nanoparticles via photoreduction of AgNO3 in branched polyethyleneimine/HEPES solutions. Langmuir 2007, 23, 9836–9843. [Google Scholar] [CrossRef]
- Šileikaitė, A.; Puišo, J.; Prosyčevas, I.; Tamulevičius, S. Investigation of silver nanoparticles formation kinetics during reduction of silver nitrate with sodium citrate. Mater. Sci. 2009, 15, 21–27. [Google Scholar]
- Del Pozo-Insfran, D.; Brenes, C.H.; Talcott, S.T. Phytochemical composition and pigment stability of Açai (Euterpe oleracea Mart.). J. Agric. Food Chem. 2004, 52, 1539–1545. [Google Scholar] [CrossRef] [PubMed]
- Bitsch, R.; Netzel, M.; Frank, T.; Strass, G.; Bitsch, I. Bioavailability and biokinetics of anthocyanins from red grape juice and red wine. J. Biomed. Biotechnol. 2004, 2004, 293. [Google Scholar] [CrossRef] [Green Version]
- Oh, Y.S.; Lee, J.H.; Yoon, S.H.; Oh, C.H.; Choi, D.S.; Choe, E.; Jung, M.Y. Characterization and quantification of anthocyanins in grape juices obtained from the grapes cultivated in Korea by HPLC/DAD, HPLC/MS, and HPLC/MS/MS. J. Food Sci. 2008, 73, C378–C389. [Google Scholar] [CrossRef] [PubMed]
- Rubinskiene, M.; Viskelis, P.; Jasutiene, I.; Viskeliene, R.; Bobinas, C. Impact of various factors on the composition and stability of black currant anthocyanins. Food Res. Int. 2005, 38, 867–871. [Google Scholar] [CrossRef]
- Tiwari, B.K.; Patras, A.; Brunton, N.; Cullen, P.J.; O’donnell, C.P. Effect of ultrasound processing on anthocyanins and color of red grape juice. Ultrason. Sonochemistry 2010, 17, 598–604. [Google Scholar] [CrossRef]
- Buchweitz, M.; Gudi, G.; Carle, R.; Kammerer, D.R.; Schulz, H. Systematic investigations of anthocyanin–metal interactions by Raman spectroscopy. J. Raman Spectrosc. 2012, 43, 2001–2007. [Google Scholar] [CrossRef]
- Zaffino, C.; Russo, B.; Bruni, S. Surface-enhanced Raman scattering (SERS) study of anthocyanidins. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015, 149, 41–47. [Google Scholar] [CrossRef]
- Burns, A.E.; Mazauric, J.P.; Cheynier, V. Resonance raman study on the pH dependence on grape anthocyanins. In Physical Methods in Food Analysis; American Chemical Society: Washington, DC, USA, 2013; pp. 127–135. [Google Scholar]
- Pérez-Álvarez, E.P.; Martínez-Vidaurre, J.M.; Garde-Cerdán, T. Anthocyanin composition of grapes from three different soil types in cv. Tempranillo AOC Rioja vineyards. J. Sci. Food Agric. 2019, 99, 4833–4841. [Google Scholar] [CrossRef] [PubMed]
- Assous, M.T.M.; Abdel-Hady, M.M.; Medany, G.M. Evaluation of red pigment extracted from purple carrots and its utilization as antioxidant and natural food colorants. Ann. Agric. Sci. 2014, 59, 1–7. [Google Scholar] [CrossRef]
Anthocyanin | Abbrev. | R1 | R2 | Plant Sources | References |
---|---|---|---|---|---|
Cyanidin | CYN/Cy | OH | H | Acai, black currant, elderberry, purple carrot, purple sweet potato | [8,11,12,13] |
Delphinidin | DEL/Dp | OH | OH | Black currant, blood orange, purple carrot, red cabbage | [8,10,11,13] |
Petunidin | PET/Pt | OH | OCH3 | Bilberry, grape | [9,11] |
Pelargonidin | PEL/Pg | H | H | Acai, red radish, strawberry | [8,14] |
Peonidin | PEO/Pn | OCH3 | H | Grape, purple sweet potato | [9,11] |
Malvidin | MAL/Mv | OCH3 | OCH3 | Bilberry, grape | [8,9,11] |
Anthocyanin Extracts | Stabilization Indexes (Mean ± SD) | |||||
---|---|---|---|---|---|---|
Index 1 | Index 2 | Index 3 | Index 4 | Index 5 | Index 6 | |
Purple sweet potato (S1) | 2.64 ± 1.54 | 11.64 ± 0.06 | −0.242 ± 0.054 | 0.196 ± 0.062 | 8.47 ± 0.28 | 0.220 ± 0.057 |
Purple carrot (S1) | 24.59 ± 1.22 | 41.26 ± 0.49 | 0.048 ± 0.004 | 0.349 ± 0.031 | 33.97 ± 0.14 | 0.249 ± 0.022 |
Purple sweet potato (S2) | 2.43 ± 1.13 | 7.37 ± 1.18 | −0.149 ± 0.041 | 0.144 ± 0.003 | 5.50 ± 1.04 | 0.147 ± 0.022 |
Purple carrot (S2) | 26.70 ± 0.06 | 32.75 ± 0.16 | −0.0395 ± 0.013 | 0.236 ± 0.018 | 29.88 ± 0.06 | 0.169 ± 0.014 |
Grape juice color (S2) | −3.48 ± 0.13 | 23.73 ± 0.28 | 0.099 ± 0.015 | 0.558 ± 0.003 | 16.96 ± 0.21 | 0.401 ± 0.001 |
Red radish (S2) | −1.26 ± 0.25 | 1.31 ± 0.01 | −0.111 ± 0.083 | 0.113 ± 0.016 | 1.29 ± 0.13 | 0.112 ± 0.031 |
Elderberry (S3) | 22.57 ± 0.35 | 44.72 ± 1.23 | 0.089 ± 0.004 | 0.413 ± 0.015 | 35.42 ± 0.67 | 0.298 ± 0.010 |
Acai (S3) | 5.35 ± 0.24 | 51.38 ± 2.12 | 0.085 ± 0.025 | 0.261 ± 0.181 | 36.53 ± 1.47 | 0.199 ± 0.113 |
Black currant (S3) | 13.75 ± 1.39 | 47.71 ± 0.39 | 0.098 ± 0.006 | 0.450 ± 0.013 | 35.11 ± 0.54 | 0.326 ± 0.008 |
Purple Sweet Potato (S1) | Purple Carrot (S1) | Purple Sweet Potato (S2) | Purple Carrot (S2) | Grape Juice Color (S2) | Red Radish (S2) | Elderberry (S3) | Acai (S3) | Black Currant (S3) | Blank (AgNPs) | Tentative Assignment |
---|---|---|---|---|---|---|---|---|---|---|
1633 (sh) | 1628 (sh) | 1633 (sh) | 1628 (sh) | ν (ring A + B) | ||||||
1604 (s) | 1607 (s) | 1603 (s) | 1606 (s) | 1600 (s) | 1606 (s) | 1607 (s) | 1605 (s) | 1608 (s) | ν (ring A + B) | |
1566 (sh) | 1562 (sh) | 1568 (sh) | 1564 (sh) | 1564 (s) | 1570 (sh) | 1568 (m) | 1572 (sh) | 1564 (m) | 1570 (w) | ν (ring B) |
1531 (w) | 1525 (s) | 1523 (m) | 1528 (m) | 1527 (m) | 1519 (s) | 1529 (m) | 1528 (w) | 1540 (sh) | ν (ring A + B) | |
1459 (s) | 1460 (s) | 1454 (s) | 1453 (s) | 1454 (s) | 1454 (s) | 1459 (s) | 1451 (s) | 1459 (s) | 1452 (s) | |
1379 (sh) | 1371 (sh) | 1387 (w) | 1371 (sh) | 1375 (sh) | 1372 (sh) | 1366 (sh) | 1367 (sh) | ν (cc) | ||
1335 (s) | 1329 (s) | 1336 (s) | 1328 (s) | 1343 (s) | 1339 (s) | 1329 (s) | 1335 (s) | 1329 (s) | 1330 (w) | ν (ring B); δ (ch) |
ν inter-ring coupled | ||||||||||
with a vibration of | ||||||||||
γ-pyrone | ||||||||||
1305 (sh) | 1308 (sh) | 1311 (sh) | 1298 (s) | 1310 (sh) | ||||||
1274 (sh) | 1270 (w) | |||||||||
1245 (m) | 1239 (s) | 1244 (m) | 1239 (sh) | 1244 (m) | 1244 (m) | 1251 (sh) | 1259 (sh) | 1251 (m) | ν (co) | |
1199 (w) | 1195 (w) | 1193 (sh) | 1188 (sh) | δ (oh) | ||||||
1169 (w) | 1168 (vw) | 1178 (s) | 1178 (m) | 1179 (w) | δ (ch) | |||||
1050 (w) | ||||||||||
1143 (w) | 1143 (vw) | |||||||||
1135 (w) | 1131 (w) | 1130 (m) | 1127 (w) | |||||||
1112 (m) | ||||||||||
1063 (vw) | 1082 (vw) | 1073 (vw) | 1080 (vw) | 1075 (vw) | 1078 (vw) | 1084 (vw) | 1082 (vw) | Δ(cc),v (co) | ||
1030 (vw) | 1030 (vw) | 1030 (vw) | 1042 (vw) | 1030 (vw) | 1030 (vw) | 1042 (vw) | 1030 (vw) | ν (ring B), γ CH | ||
1002 (vw) | 1008 (vw) | 1008 (vw) | 1008 (vw) | 1011 (vw) | 1008 (w) | 1006 (vw) | 1008 (vw) | 1008 (vw) | ν (ring B), γ CH | |
981 (w) | ||||||||||
948 (w) | ||||||||||
869 (m) | 876 (w) | 869 (w) | 876 (w) | 863 (m) | 882 (w) | 876 (w) | 869 (w) | γ (ch) | ||
861 (w) | ||||||||||
838 (m) | ||||||||||
801 (m) | 792 (m) | 800 (w) | 791 (m) | 794 (m) | 788 (m) | 789 (w) | ||||
737 (s) | 737 (m) | 733 (m) | 735 (m) | 730 (s) | 731 (m) | 729 (s) | aromatic system | |||
715 (s) | 715 (s) | 707 (w) | ||||||||
669 (w) | 678 (vw) | 669 (sh) | 677 (w) | 673 (w) | 679 (m) | |||||
640 (s) | 639 (s) | 647 (sh) | 636 (sh) | 648 (sh) | 648 (sh) | 648 (w) | Δ(cc) | |||
630 (s) | 632 (s) | 633 (s) | Γ (cc) | |||||||
620 (s) | 617 (sh) | 620 (s) | 614 (sh) | 623 (s) | 618 (s) | |||||
573 (w) | ||||||||||
539 (m) | 546 (s) | 537 (m) | 546 (s) | 542 (m) | 539 (w) | 540 (s) | 541 (m) | 542 (s) | δ (cc) | |
492 (sh) | 512 (w) | 507 (m) | ||||||||
479 (w) | 471 (m) | 476 (m) | 478 (w) | 479 (m) | Γ (cc) | |||||
461 (m) | 462 (m) | 463 (w) | 462 (m) | |||||||
428 (sh) | 421 (w) | 437 (w) | 418 (m) | 413 (w) | Γ (cc) |
Leave-One-Out Cross Validation | Internal Validation | ||||
---|---|---|---|---|---|
Factors | Corr. Coeff. | RMSECV | Corr. Coeff | RMSEP | |
Index 1 | 2 | 0.91 | 4.60 | 0.98 | 2.16 |
Index 2 | 2 | 0.86 | 9.26 | 0.94 | 6.30 |
Index 3 | 2 | 0.52 | 0.10 | 0.88 | 0.06 |
Index 4 | 1 | 0.17 | 0.15 | 0.64 | 0.11 |
Index 5 | 2 | 0.91 | 5.94 | 0.96 | 4.03 |
Index 6 | 2 | 0.13 | 0.10 | 0.79 | 0.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, H.; Forbes, A.; Guo, X.; He, L. Prediction of Anthocyanin Color Stability against Iron Co-Pigmentation by Surface-Enhanced Raman Spectroscopy. Foods 2022, 11, 3436. https://doi.org/10.3390/foods11213436
Dai H, Forbes A, Guo X, He L. Prediction of Anthocyanin Color Stability against Iron Co-Pigmentation by Surface-Enhanced Raman Spectroscopy. Foods. 2022; 11(21):3436. https://doi.org/10.3390/foods11213436
Chicago/Turabian StyleDai, Haochen, Adam Forbes, Xin Guo, and Lili He. 2022. "Prediction of Anthocyanin Color Stability against Iron Co-Pigmentation by Surface-Enhanced Raman Spectroscopy" Foods 11, no. 21: 3436. https://doi.org/10.3390/foods11213436
APA StyleDai, H., Forbes, A., Guo, X., & He, L. (2022). Prediction of Anthocyanin Color Stability against Iron Co-Pigmentation by Surface-Enhanced Raman Spectroscopy. Foods, 11(21), 3436. https://doi.org/10.3390/foods11213436