Impact of Thermal Processing on the Composition of Secondary Metabolites of Ginger Rhizome—A Review
Abstract
:1. Introduction
1.1. Ginger (Zingiber officinale Rosc.)
1.2. Application in Food
2. Materials and Methods
3. Food Processing of Ginger Rhizomes
3.1. Cooking/Thermal Processing
3.2. Roasting
3.3. Blanching
3.4. Steam Cooking and Steam Heating
3.5. Stir-Frying
3.6. Drying
3.6.1. Air-Drying
3.6.2. Drying
3.6.3. Hot-Air-Drying, Convection Drying, Oven Drying, and Vacuum-Drying Oven
3.6.4. Drying in a Drying Chamber—Blanching as Pretreatment
3.7. Heating in a Thermostatic Bath/Heating in the Oven/Heating
3.8. Microwave Processing
Intermittent Microwave-Convection Drying
3.9. Carbonization
Lp | Type of Processing | Fresh Rhizome Processing Conditions | Tested Compounds | Changes in the Content | References |
---|---|---|---|---|---|
1 | Roasting | 13 min, 200 °C, Teflon-coated pan followed by freezing in liquid nitrogen | Volatile components | ↓ (S)-linalool, (E)-2-octenal ↑ (S)-citronellal, geraniol, 3-hydroxy-4,5-dimethyl-2(5H)-furanone, 4-hydroxy-2,5-dimethyl 3(2H)-furanone, vanillin, 3-(methylthio)propanal, neral, (E)-2-octanal | [39,40] |
2 | Blanching | Air-drying at 25± 2 °C (1–2 h), peeling, slicing and blanching in boiling water with 2% citric acid (10 min), followed by 60 min drying at 50 °C | Total phenolic content (TPC) | ↑ total phenolic content | [41] |
3 | 10 min, 100 °C, blanching, followed by freeze-drying for 1.5 h at −30 °C in 100 mbar, then for 8.5 h at 20 °C in 45 mbar, for 5 h at 35 °C in 35 mbar, and 35 °C in 15 mbar for 55 h | Essential oil content | ↑ essential oil content in processed rhizome | [32] | |
4 | 5, 15 and 30 min, 70 °C blanching and drying at 40 °C (rel. humidity 9–12%) | 6-gingerol | ↓ 6-gingerol | [43] | |
5 | Steam cooking | 120 min, 97 °C, 3 kgf/cm3 steaming and oven drying for 40 h at 45 °C | 1-dehydro-6-gingerdione | ↑ 1-dehydro-6-gingerdione | [44] |
6 | 18 h steaming and freeze-drying for 7 days at −70 °C; microwave extraction | Total soluble solid yield (TSSY), 6-gingerol and 6-shogaol | ↓ TSSY and 6-gingerol ↑6-shogaol | [45] | |
7 | Steam heating | 2 h steam heating and drying | Essential oil components | ↓ citral, 1,8-cineole, sabinene ↑ β-sesquiphellandrene, farnesene, zingiberene, ar-curcumene, β-bisabolene, geranyl acetate, camphene | [49] |
8 | 2 h steam heating and drying; ethyl acetate extraction | Volatile components | ↓ camphene, citral, 1,8-cineole, sabinene ↑ β-sesquiphellandrene, farnesene, zingiberene, ar-curcumene, β-bisabolene, geranyl acetate | [49] | |
9 | Stir-frying | Dried rhizome (40 °C), stir-frying for 7 min at 220 °C; methanol extraction | Phenolic components | ↑ zingerone, 6-gingerol, 8-gingerol, 6-shogaol, 10-gingerol | [52] |
10 | Air-drying | 1-week-long drying | Essential oil components | ↓ majority of volatiles in the essential oil ↑ citral | [49] |
11 | Air-drying in the sun | Phenolic compounds | ↑ sum of phenolic compounds ((+)-catechin + (−)-epicatechin + rutin + myricetin + trans-resveratrol + quercetin + naringenin + kaempferol) ↑ TPC | [54] | |
12 | 3-day-long air-drying in the sun (at 25–30 °C) | Glutathione, cysteine, ascorbic acid and TPC | ↓ glutathione, cysteine, ascorbic acid and TPC | [55] | |
13 | Drying | Drying at 30–60 °C in relative humidity of 10–30% | 6-gingerol | ↓ 6-gingerol Increase in temperature and stable drying conditions decreased its content faster | [43] |
14 | Dried ginger powder | Phenolic components | ↓ 6-, 8-, 10-gingerol ↑ 6-shogaol | [56] | |
15 | Drying at 40 °C, followed by methanol extraction | Phenolic components | ↑ zingerone, 6-, 8-, 10-gingerol, 6-shogaol | [52] | |
16 | Hot-air-drying | Drying at 60 °C in an electric thermostatic oven | Essential oil, phenolic components | ↓ 6-, 8-, 10-gingerol, TPC, TFC (total flavonoid content) ↑6-shogaol | [57] |
17 | Drying at 50, 60 or 70 °C in an electric-heating air blast dryer (air flow velocity of 0.75 ± 0.03 m/s) | Essential oil components | ↓ 2,6-octadienal, 3,7-dimethyl-, (Z), 2,6-octadienal, 3,7-dimethyl- ↑ benzene, 1-(1,5-dimethyl-4-hexenyl)-4-methyl-, 1,3-cyclohexadiene, 5-(1,5-dimethyl-4-hexenyl)-2-methyl-[S-(R*,S*)], α-farnesene, cyclohexene, 3-(1,5-dimethyl-4-hexenyl)-6-methylene-,[S-(R*,S*)] | [58] | |
18 | Convection drying | 12 h, 50 ± 4 °C with hourly agitation | Volatile components | ↓ zingiberene, γ-muurolene, α-farnesene, β-sesquiphellandrene ↑ β-phellandrene, camphene, neral, geranial, ar-curcumene | [59] |
19 | Oven drying | Drying at 40, 50, 60 and 70 °C | Phenolic compounds | ↑ sum of phenolic compounds ((+)-catechin + (−)-epicatechin + rutin + myricetin + trans-resveratrol + quercetin + naringenin + kaempferol) ↑ TPC | [54] |
20 | 36 h, 60 °C | Glutathione, cysteine, ascorbic acid and TPC | ↓ glutathione, cysteine, ascorbic acid and TPC | [55] | |
21 | 36 h, 60 °C, then 48 h at 80 °C | Ginger components | ↓ 6-, 8-, 10-gingerol, methyl-6-gingerol, methyl-8-gingerol, methyl-10-gingerol, 5-acetocy-6-gingerdiol, acetoxy-6-gingerol, diacetoxy-6-gingerdiol, gingerenone A and B, hexahydrocurcumin, 6-gingerdiol 5-glucopyranoside, 6- and 8-paradol, methyl-8-paradol ↑ phenylalanine, cinnamic acid, 6-shogaol, =6-gingerdiol | [60] | |
22 | 1 h, 80 °C in an oven (1000 W) | Essential oil components | ↓β-phellandrene, zingiberene, β-bisabolene, β-sesquiphellandrene ↑camphene, α-curcumene =geranial | [66] | |
23 | Vacuum-drying oven | 36 h, 60 °C at 0.025 mbar | Glutathione, cysteine, ascorbic acid and TPC | ↓ glutathione, cysteine, ascorbic acid and TPC | [55] |
24 | 490 min, 60 °C, at 13.3 kPa | Essential oil components | ↓ 2,6-octadienal, 3,7-dimethyl-, (Z), 2,6-octadienal, 3,7-dimethyl- ↑ benzene, 1-(1,5-dimethyl-4-hexenyl)-4-methyl-, 1,3-cyclohexadiene, 5-(1,5-dimethyl-4-hexenyl)-2-methyl-[S-(R*, S*)], α-farnesene, cyclohexene, 3-(1,5-dimethyl-4-hexenyl)-6-methylene-,[S-(R*,S*)] | [58] | |
25 | Blanching as pretreatment and drying in a heater | Slices blanched 2 min at 95 ± 1 °C and dried at 60, 70 or 80 °C at a superficial air velocity of 0.3 m/s in the drying chamber | TPC | ↓ TPC | [62] |
26 | Heating | 10 min, 100 °C water bath, followed by ice-water-bath cooling | Volatile components in diethyl ether extract | ↑ most of the volatile components ↓ citronellal, β-bisabolene, β-sesquiphellandrene, α-farnesene | [63] |
27 | Heating in a hermetically sealed 3 L pilot-scale reaction vessel at 80 °C for 10 min, 90 °C for 5 and 10 min, and 100 °C for 1 and 10 min, followed by freeze-drying for 1.5 h at −30 °C in 100 mbar, then for 8.5 h at 20 °C in 45 mbar, for 5 h at 35 °C in 35 mbar, and 35 °C in 15 mbar for 55 h | Essential oil components | The essential oil content changed depending on the heating conditions | [42] | |
28 | 1, 3 or 6 h heating at 100 °C in the oven (1 g of ginger in 20% ethanol) | TPC | ↓ phenolic content | [64] | |
29 | Microwave drying | 25–48 min, 2450 MHz (230 V, 50 Hz, 1350 W ± 10%) | Volatile components | ↓ monoterpenes, sesquiterpenes ↑eudesmol, cubenol and cedrene derivatives, ar-curcumene, epiglobulol, nerolidol | [59] |
30 | Energy density of 5 W/g until moisture content reached 1.0 g H2O/g DW, then with 1 W/g to the terminal point | Essential oil and phenolics | ↓ phenolics and flavonoids ↓volatiles ↑ 6-shogaol, cycloisosativene, copaene, gamma-elemene | [57] | |
31 | 320 min, 2455 MHz, 60 W | Volatile components | ↓ volatiles, (2,6-octadienal, 3,7-dimethyl-, (Z), 2,6-octadienal, 3,7-dimethyl-) ↑benzene, 1-(1,5-dimethyl-4-hexenyl)-4-methyl-, 1,3-cyclohexadiene, 5-(1,5-dimethyl-4-hexenyl)-2-methyl-[S-(R*,S*)],α-farnesene, cyclohexene, 3-(1,5-dimethyl-4-hexenyl)-6-methylene-,[S-(R*,S*)] | [58] | |
32 | 2 min, 220 V, 50 Hz, 700 W | Essential oil components | ↓ camphene, β-phellandrene, geranial ↑ α-curcumene, zingiberene, β-bisabolene, β-sesquiphellandrene | [66] | |
33 | Intermittent microwave-convection drying | Drying at 60 °C in a laboratory 700 W microwave oven, 5 s on, 5 s off to 50% water content, then in 5 s on, 25 s off mode; supported by hot-air adjustment of the microwave pulse rate | Essential oil and phenolic content | ↓ 6-, 8-gingerol ↑ 6-shogaol, TFC =10-gingerol, TPC | [57] |
34 | Carbonization | Drying at 40 °C, followed by heating and frying; extraction with methanol | Ginger components | ↑ zingerone, 6-gingerol, 8-gingerol, 6-shogaol, 10-gingerol | [52] |
3.10. Other
3.10.1. Lyophilization (Freeze-Drying)
3.10.2. Infrared Drying
4. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schlaeppi, K.; Gross, J.J.; Hapfelmeier, S.; Erb, M. Plant Chemistry and Food Web Health. New Phytol. 2021, 231, 957–962. [Google Scholar] [CrossRef] [PubMed]
- Bhatta, S.; Stevanovic Janezic, T.; Ratti, C. Freeze-Drying of Plant-Based Foods. Foods 2020, 9, 87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moreno, D.A.; Carvajal, M.; López-Berenguer, C.; García-Viguera, C. Chemical and Biological Characterisation of Nutraceutical Compounds of Broccoli. J. Pharm. Biomed. Anal. 2006, 41, 1508–1522. [Google Scholar] [CrossRef] [PubMed]
- Nayak, B.; Liu, R.H.; Tang, J. Effect of Processing on Phenolic Antioxidants of Fruits, Vegetables, and Grains—A Review. Crit. Rev. Food Sci. Nutr. 2015, 55, 887–919. [Google Scholar] [CrossRef] [PubMed]
- Ribas-Agustí, A.; Martín-Belloso, O.; Soliva-Fortuny, R.; Elez-Martínez, P. Food Processing Strategies to Enhance Phenolic Compounds Bioaccessibility and Bioavailability in Plant-Based Foods. Crit. Rev. Food Sci. Nutr. 2018, 58, 2531–2548. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Wang, Y.; Pang, X.; Tian, S.; Hu, Q.; Li, X.; Liu, J.; Wang, J.; Lu, Y. The Effect of Processing and Cooking on Glucoraphanin and Sulforaphane in Brassica Vegetables. Food Chem. 2021, 360, 130007. [Google Scholar] [CrossRef]
- Kiyama, R. Nutritional Implications of Ginger: Chemistry, Biological Activities and Signaling Pathways. J. Nutr. Biochem. 2020, 86, 108486. [Google Scholar] [CrossRef]
- Talebi, M.; İlgün, S.; Ebrahimi, V.; Talebi, M.; Farkhondeh, T.; Ebrahimi, H.; Samarghandian, S. Zingiber Officinale Ameliorates Alzheimer’s Disease and Cognitive Impairments: Lessons from Preclinical Studies. Biomed. Pharmacother. 2021, 133, 111088. [Google Scholar] [CrossRef]
- Ali, B.H.; Blunden, G.; Tanira, M.O.; Nemmar, A. Some Phytochemical, Pharmacological and Toxicological Properties of Ginger (Zingiber Officinale Roscoe): A Review of Recent Research. Food Chem. Toxicol. 2008, 46, 409–420. [Google Scholar] [CrossRef]
- Zhang, M.; Zhao, R.; Wang, D.; Wang, L.; Zhang, Q.; Wei, S.; Lu, F.; Peng, W.; Wu, C. Ginger (Zingiber Officinale Rosc.) and Its Bioactive Components Are Potential Resources for Health Beneficial Agents. Phytother. Res. 2021, 35, 711–742. [Google Scholar] [CrossRef]
- Schwertner, H.A.; Rios, D.C.; Pascoe, J.E. Variation in Concentration and Labeling of Ginger Root Dietary Supplements. Obstet. Gynecol. 2006, 107, 1337–1343. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Liu, J.; Zhang, Y. Research Progress on Chemical Constituents of Zingiber Officinale Roscoe. Biomed. Res. Int. 2019, 2019, 5370823. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bischoff-Kont, I.; Fürst, R. Benefits of Ginger and Its Constituent 6-Shogaol in Inhibiting Inflammatory Processes. Pharmaceuticals 2021, 14, 571. [Google Scholar] [CrossRef]
- Arcusa, R.; Villaño, D.; Marhuenda, J.; Cano, M.; Cerdà, B.; Zafrilla, P. Potential Role of Ginger (Zingiber Officinale Roscoe) in the Prevention of Neurodegenerative Diseases. Front. Nutr. 2022, 9, 809621. [Google Scholar] [CrossRef]
- Chrubasik, S.; Pittler, M.H.; Roufogalis, B.D. Zingiberis Rhizoma: A Comprehensive Review on the Ginger Effect and Efficacy Profiles. Phytomedicine 2005, 12, 684–701. [Google Scholar] [CrossRef] [PubMed]
- Ghasemzadeh, A.; Jaafar, H.Z.E.; Baghdadi, A.; Tayebi-Meigooni, A. Formation of 6-, 8- and 10-Shogaol in Ginger through Application of Different Drying Methods: Altered Antioxidant and Antimicrobial Activity. Molecules 2018, 23, 1646. [Google Scholar] [CrossRef] [Green Version]
- Si, W.; Chen, Y.P.; Zhang, J.; Chen, Z.-Y.; Chung, H.Y. Antioxidant Activities of Ginger Extract and Its Constituents toward Lipids. Food Chem. 2018, 239, 1117–1125. [Google Scholar] [CrossRef]
- Abd El-Hack, M.E.; Alagawany, M.; Shaheen, H.; Samak, D.; Othman, S.I.; Allam, A.A.; Taha, A.E.; Khafaga, A.F.; Arif, M.; Osman, A.; et al. Ginger and Its Derivatives as Promising Alternatives to Antibiotics in Poultry Feed. Animals 2020, 10, 452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Babaeekhou, L.; Ghane, M. Antimicrobial Activity of Ginger on Cariogenic Bacteria: Molecular Networking and Molecular Docking Analyses. J. Biomol. Struct. Dyn. 2021, 39, 2164–2175. [Google Scholar] [CrossRef]
- Wang, X.; Shen, Y.; Thakur, K.; Han, J.; Zhang, J.-G.; Hu, F.; Wei, Z.-J. Antibacterial Activity and Mechanism of Ginger Essential Oil against Escherichia Coli and Staphylococcus Aureus. Molecules 2020, 25, 3955. [Google Scholar] [CrossRef]
- Fu, Y.-W.; Wang, B.; Zhang, Q.-Z.; Xu, D.-H.; Liu, Y.-M.; Hou, T.-L.; Guo, S.-Q. Efficacy and Antiparasitic Mechanism of 10-Gingerol Isolated from Ginger Zingiber Officinale against Ichthyophthirius Multifiliis in Grass Carp. Vet. Parasitol. 2019, 265, 74–84. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, M.; Zaki, L.; KarimiPourSaryazdi, A.; Tavakoli, P.; Tavajjohi, A.; Poursalehi, R.; Delavari, H.; Ghaffarifar, F. Efficacy of Green Synthesized Silver Nanoparticles via Ginger Rhizome Extract against Leishmania Major in Vitro. PLoS ONE 2021, 16, e0255571. [Google Scholar] [CrossRef]
- Rizk, M.A.; El-Sayed, S.A.E.-S.; Igarashi, I. Evaluation of the Inhibitory Effect of Zingiber Officinale Rhizome on Babesia and Theileria Parasites. Parasitol. Int. 2021, 85, 102431. [Google Scholar] [CrossRef] [PubMed]
- Rondanelli, M.; Fossari, F.; Vecchio, V.; Gasparri, C.; Peroni, G.; Spadaccini, D.; Riva, A.; Petrangolini, G.; Iannello, G.; Nichetti, M.; et al. Clinical Trials on Pain Lowering Effect of Ginger: A Narrative Review. Phytother. Res. 2020, 34, 2843–2856. [Google Scholar] [CrossRef] [PubMed]
- Tramontin, N.D.S.; Luciano, T.F.; de Marques, S.O.; de Souza, C.T.; Muller, A.P. Ginger and Avocado as Nutraceuticals for Obesity and Its Comorbidities. Phytother. Res. 2020, 34, 1282–1290. [Google Scholar] [CrossRef]
- Ebrahimzadeh Attari, V.; Malek Mahdavi, A.; Javadivala, Z.; Mahluji, S.; Zununi Vahed, S.; Ostadrahimi, A. A Systematic Review of the Anti-Obesity and Weight Lowering Effect of Ginger (Zingiber Officinale Roscoe) and Its Mechanisms of Action. Phytother. Res. 2018, 32, 577–585. [Google Scholar] [CrossRef]
- Huang, F.-Y.; Deng, T.; Meng, L.-X.; Ma, X.-L. Dietary Ginger as a Traditional Therapy for Blood Sugar Control in Patients with Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis. Medicine 2019, 98, e15054. [Google Scholar] [CrossRef]
- Nikkhah Bodagh, M.; Maleki, I.; Hekmatdoost, A. Ginger in Gastrointestinal Disorders: A Systematic Review of Clinical Trials. Food Sci. Nutr. 2019, 7, 96–108. [Google Scholar] [CrossRef]
- Mao, Q.-Q.; Xu, X.-Y.; Cao, S.-Y.; Gan, R.-Y.; Corke, H.; Beta, T.; Li, H.-B. Bioactive Compounds and Bioactivities of Ginger (Zingiber Officinale Roscoe). Foods 2019, 8, 185. [Google Scholar] [CrossRef] [Green Version]
- Fitriyanti, D.; Sulung, R. Effectiveness of Ginger to Overcome Nausea and Vomiting Caused by Chemotherapy in Breast Cancer Patients. Can. Oncol. Nurs. J. 2020, 30, 3–5. [Google Scholar] [CrossRef]
- Stanisiere, J.; Mousset, P.-Y.; Lafay, S. How Safe Is Ginger Rhizome for Decreasing Nausea and Vomiting in Women during Early Pregnancy? Foods 2018, 7, 50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Lima, R.M.T.; Dos Reis, A.C.; de Menezes, A.-A.P.M.; de Santos, J.V.O.; de Filho, J.W.G.O.; de Ferreira, J.R.O.; de Alencar, M.V.O.B.; da Mata, A.M.O.F.; Khan, I.N.; Islam, A.; et al. Protective and Therapeutic Potential of Ginger (Zingiber Officinale) Extract and [6]-Gingerol in Cancer: A Comprehensive Review. Phytother. Res. 2018, 32, 1885–1907. [Google Scholar] [CrossRef] [PubMed]
- Mahomoodally, M.F.; Aumeeruddy, M.Z.; Rengasamy, K.R.R.; Roshan, S.; Hammad, S.; Pandohee, J.; Hu, X.; Zengin, G. Ginger and Its Active Compounds in Cancer Therapy: From Folk Uses to Nano-Therapeutic Applications. Semin. Cancer Biol. 2021, 69, 140–149. [Google Scholar] [CrossRef]
- Zadorozhna, M.; Mangieri, D. Mechanisms of Chemopreventive and Therapeutic Proprieties of Ginger Extracts in Cancer. Int. J. Mol. Sci. 2021, 22, 6599. [Google Scholar] [CrossRef] [PubMed]
- Kukula-Koch, W.; Koch, W.; Czernicka, L.; Głowniak, K.; Asakawa, Y.; Umeyama, A.; Marzec, Z.; Kuzuhara, T. MAO-A Inhibitory Potential of Terpene Constituents from Ginger Rhizomes-A Bioactivity Guided Fractionation. Molecules 2018, 23, 1301. [Google Scholar] [CrossRef] [Green Version]
- Aguilera, J.M. The Food Matrix: Implications in Processing, Nutrition and Health. Crit. Rev. Food Sci. Nutr. 2019, 59, 3612–3629. [Google Scholar] [CrossRef]
- Boone, S.A.; Shields, K.M. Treating Pregnancy-Related Nausea and Vomiting with Ginger. Ann. Pharmacother. 2005, 39, 1710–1713. [Google Scholar] [CrossRef]
- Gregory, P.J.; Sperry, M.; Wilson, A.F. Dietary Supplements for Osteoarthritis. Am. Fam. Physician 2008, 77, 177–184. [Google Scholar]
- Schaller, T.; Schieberle, P. Quantitation of Key Aroma Compounds in Fresh, Raw Ginger (Zingiber Officinale Roscoe) from China and Roasted Ginger by Stable Isotope Dilution Assays and Aroma Profiling by Recombination Experiments. J. Agric. Food Chem. 2020, 68, 15284–15291. [Google Scholar] [CrossRef]
- Schaller, T.; Schieberle, P. Comparison of the Key Aroma Compounds in Fresh, Raw Ginger (Zingiber Officinale Roscoe) from China and Roasted Ginger by Application of Aroma Extract Dilution Analysis. J. Agric. Food Chem. 2020, 68, 15292–15300. [Google Scholar] [CrossRef]
- Kumar, V.; Kushwaha, R.; Goyal, A.; Tanwar, B.; Kaur, J. Process Optimization for the Preparation of Antioxidant Rich Ginger Candy Using Beetroot Pomace Extract. Food Chem. 2018, 245, 168–177. [Google Scholar] [CrossRef] [PubMed]
- Schweiggert, U.; Mix, K.; Schieber, A.; Carle, R. An Innovative Process for the Production of Spices through Immediate Thermal Treatment of the Plant Material. Innov. Food Sci. Emerg. Technol. 2005, 6, 143–153. [Google Scholar] [CrossRef]
- Gan, H.; Charters, E.; Driscoll, R.; Srzednicki, G. Effects of Drying and Blanching on the Retention of Bioactive Compounds in Ginger and Turmeric. Horticulturae 2017, 3, 13. [Google Scholar] [CrossRef] [Green Version]
- Nam, Y.H.; Hong, B.N.; Rodriguez, I.; Park, M.S.; Jeong, S.Y.; Lee, Y.-G.; Shim, J.H.; Yasmin, T.; Kim, N.W.; Koo, Y.T.; et al. Steamed Ginger May Enhance Insulin Secretion through KATP Channel Closure in Pancreatic β-Cells Potentially by Increasing 1-Dehydro-6-Gingerdione Content. Nutrients 2020, 12, 324. [Google Scholar] [CrossRef] [Green Version]
- Teng, H.; Seuseu, K.T.; Lee, W.-Y.; Chen, L. Comparing the Effects of Microwave Radiation on 6-Gingerol and 6-Shogaol from Ginger Rhizomes (Zingiber Officinale Rosc). PLoS ONE 2019, 14, e0214893. [Google Scholar] [CrossRef]
- Bailey-Shaw, Y.A.; Williams, L.A.D.; Junor, G.-A.O.; Green, C.E.; Hibbert, S.L.; Salmon, C.N.A.; Smith, A.M. Changes in the Contents of Oleoresin and Pungent Bioactive Principles of Jamaican Ginger (Zingiber Officinale Roscoe.) during Maturation. J. Agric. Food Chem. 2008, 56, 5564–5571. [Google Scholar] [CrossRef]
- Bhattarai, S.; Tran, V.H.; Duke, C.C. The Stability of Gingerol and Shogaol in Aqueous Solutions. J. Pharm. Sci. 2001, 90, 1658–1664. [Google Scholar] [CrossRef]
- He, X.; Bernart, M.W.; Lian, L.; Lin, L. High-Performance Liquid Chromatography–Electrospray Mass Spectrometric Analysis of Pungent Constituents of Ginger. J. Chromatogr. A 1998, 796, 327–334. [Google Scholar] [CrossRef]
- Takahashi, M.; Inouye, S.; Abe, S. Anti-Candida and Radical Scavenging Activities of Essential Oils and Oleoresins of Zingiber Officinale Roscoe and Essential Oils of Other Plants Belonging to the Family Zingiberaceae. Drug. Discov. Ther. 2011, 5, 238–245. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.-C.; Ho, C.-T. Volatile Compounds in Ginger Oil Generated by Thermal Treatment. In Thermal Generation of Aromas; ACS Symposium Series; American Chemical Society: Washington, DC, USA, 1989; Volume 409, pp. 366–375. ISBN 978-0-8412-1682-2. [Google Scholar]
- Nugrahedi, P.Y.; Oliviero, T.; Heising, J.K.; Dekker, M.; Verkerk, R. Stir-Frying of Chinese Cabbage and Pakchoi Retains Health-Promoting Glucosinolates. Plant Foods Hum. Nutr. 2017, 72, 439–444. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Hong, Y.; Han, Y.; Wang, Y.; Xia, L. Chemical Characterization and Antioxidant Activities Comparison in Fresh, Dried, Stir-Frying and Carbonized Ginger. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2016, 1011, 223–232. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Liu, Z.; Wang, S. Microwave Processing: Effects and Impacts on Food Components. Crit. Rev. Food Sci. Nutr. 2018, 58, 2476–2489. [Google Scholar] [CrossRef] [PubMed]
- Chumroenphat, T.; Khanprom, I.; Butkhup, L. Stability of Phytochemicals and Antioxidant Properties in Ginger (Zingiber Officinale Roscoe) Rhizome with Different Drying Methods. J. Herbs Spices Med. Plants 2011, 17, 361–374. [Google Scholar] [CrossRef]
- Gümüşay, Ö.A.; Borazan, A.A.; Ercal, N.; Demirkol, O. Drying Effects on the Antioxidant Properties of Tomatoes and Ginger. Food Chem. 2015, 173, 156–162. [Google Scholar] [CrossRef]
- Jolad, S.D.; Lantz, R.C.; Chen, G.J.; Bates, R.B.; Timmermann, B.N. Commercially Processed Dry Ginger (Zingiber Officinale): Composition and Effects on LPS-Stimulated PGE2 Production. Phytochemistry 2005, 66, 1614–1635. [Google Scholar] [CrossRef]
- An, K.; Zhao, D.; Wang, Z.; Wu, J.; Xu, Y.; Xiao, G. Comparison of Different Drying Methods on Chinese Ginger (Zingiber Officinale Roscoe): Changes in Volatiles, Chemical Profile, Antioxidant Properties, and Microstructure. Food Chem. 2016, 197 Pt B, 1292–1300. [Google Scholar] [CrossRef]
- Ding, S.; An, K.; Zhao, C.P.; Li, Y.; Guo, Y.; Wang, Z. Effect of Drying Methods on Volatiles of Chinese Ginger (Zingiber Officinale Roscoe). Food Bioprod. Process. 2012, 90, 515–524. [Google Scholar] [CrossRef]
- Kubra, R.; Rao, L. Effect of Microwave Drying on the Phytochemical Composition of Volatiles of Ginger. Int. J. Food Sci. Technol. 2011, 47, 53–60. [Google Scholar] [CrossRef]
- Salem, M.A.; Zayed, A.; Alseekh, S.; Fernie, A.R.; Giavalisco, P. The Integration of MS-Based Metabolomics and Multivariate Data Analysis Allows for Improved Quality Assessment of Zingiber Officinale Roscoe. Phytochemistry 2021, 190, 112843. [Google Scholar] [CrossRef]
- Bourdoux, S.; Li, D.; Rajkovic, A.; Devlieghere, F.; Uyttendaele, M. Performance of Drying Technologies to Ensure Microbial Safety of Dried Fruits and Vegetables. Compr. Rev. Food Sci. Food Saf. 2016, 15, 1056–1066. [Google Scholar] [CrossRef]
- Thuwapanichayanan, R.; Phowong, C.; Jaisut, D.; Stencl, J. Effects of Pretreatments and Drying Temperatures on Drying Characteristics, Antioxidant Properties and Color of Ginger Slice. Acta Univ. Agric. Ilviculturae Mendel. Brun. 2014, 62, 1125–1134. [Google Scholar] [CrossRef]
- Yamaguchi, K.; Kato, T.; Noma, S.; Igura, N.; Shimoda, M. The Effects of High Hydrostatic Pressure Treatment on the Flavor and Color of Grated Ginger. Biosci. Biotechnol. Biochem. 2010, 74, 1981–1986. [Google Scholar] [CrossRef] [PubMed]
- Khatun, M.; Eguchi, S.; Yamaguchi, T.; Takamura, H.; Matoba, T. Effect of Thermal Treatment on Radical-Scavenging Activity of Some Spices. Food Sci. Technol. Res. 2006, 12, 178–185. [Google Scholar] [CrossRef] [Green Version]
- Lim, Y.Y.; Murtijaya, J. Antioxidant Properties of Phyllanthus Amarus Extracts as Affected by Different Drying Methods. LWT—Food Sci. Technol. 2007, 40, 1664–1669. [Google Scholar] [CrossRef]
- Huang, B.; Wang, G.; Chu, Z.; Qin, L. Effect of Oven Drying, Microwave Drying, and Silica Gel Drying Methods on the Volatile Components of Ginger (Zingiber Officinale Roscoe) by HS-SPME-GC-MS. Dry. Technol. 2012, 30, 248–255. [Google Scholar] [CrossRef]
- Chan, E.W.C.; Lim, Y.Y.; Wong, S.K.; Lim, K.K.; Tan, S.P.; Lianto, F.S.; Yong, M.Y. Effects of Different Drying Methods on the Antioxidant Properties of Leaves and Tea of Ginger Species. Food Chem. 2009, 113, 166–172. [Google Scholar] [CrossRef]
- Zartha, J.; Orozco, G.; Murillo, L.; Peña Osorio, M.; Sanchez Suarez, N. Infrared Drying Trends Applied to Fruit. Front. Sustain. Food Syst. 2021, 5, 1–14. [Google Scholar] [CrossRef]
- Sakare, P.; Prasad, N.; Thombare, N.; Singh, R.; Sharma, S. Infrared Drying of Food Materials: Recent Advances. Food Eng. Rev. 2020, 12, 381–398. [Google Scholar] [CrossRef]
- Damartzis, T.; Zabaniotou, A. Thermochemical Conversion of Biomass to Second Generation Biofuels through Integrated Process Design—A Review. Renew. Sustain. Energy Rev. 2011, 15, 366–378. [Google Scholar] [CrossRef]
- Hu, J.; Guo, Z.; Glasius, M.; Kristensen, K.; Xiao, L.; Xu, X. Pressurized Liquid Extraction of Ginger (Zingiber Officinale Roscoe) with Bioethanol: An Efficient and Sustainable Approach. J. Chromatogr. A 2011, 1218, 5765–5773. [Google Scholar] [CrossRef]
- Huang, T.; Chung, C.-C.; Wang, H.-Y.; Law, C.; Chen, H.-H. Formation of 6Shogaol of Ginger Oil Under Different Drying Conditions. Dry. Technol. 2011, 29, 1884–1889. [Google Scholar] [CrossRef]
- Marques, Í.E.; Lucion, F.B.; Bizzi, C.A.; Cichoski, A.J.; Wagner, R.; de Menezes, C.R.; Barin, J.S. Are Infrared and Microwave Drying Suitable Alternatives for Moisture Determination of Meat Products? J. Food Qual. 2016, 39, 391–397. [Google Scholar] [CrossRef] [Green Version]
- Guo, J.; Zhang, W.; Wu, H.; Du, L. Microwave-Assisted Decomposition Coupled with Acidic Food Condiment as an Efficient Technology for Ginger (Zingiber Officinale Roscoe) Processing. Sep. Purif. Technol. 2015, 146, 219–226. [Google Scholar] [CrossRef]
Lp | Type of Processing | Processing Conditions | Tested Compounds | Changes in the Content of Compounds | Reference |
---|---|---|---|---|---|
1 | Freeze-drying/lyophilization | Freeze-drying at −40 °C | Phenolic compounds | ↑ sum of ((+)-catechin + (−)-epicatechin + rutin + myricetin + trans-resveratrol + quercetin + naringenin + kaempferol) ↑ TPC | [54] |
2 | Freeze-drying for 24 h at −50 °C under a pressure of 0.133 mbar | Content of glutathione, cysteine, ascorbic acid and TPC | ↓ glutathione, cysteine, ascorbic acid and TPC | [55] | |
3 | Freezing for 12 h at −40 °C and freeze-drying at 20 Pa using 25 and −58 °C for a heating plate and cold trap | Phenolic components | ↓ 6-gingerol = 8- and 10-gingerol, TFC ↑ 6-shogaol, TPC | [57] | |
4 | 4 h at −80 °C, followed by vacuum-drying for 29 h at 0.203 kPa, at temp. of 22 °C and −55 °C | Essential oil components | ↓ (2,6-octadienal, 3,7-dimethyl-, (Z), 2,6-octadienal, 3,7-dimethyl-) or increased (benzene, 1-(1,5-dimethyl-4-hexenyl)-4-methyl-, 1,3-cyclohexadiene, 5-(1,5-dimethyl-4-hexenyl)-2-methyl-[S-(R*,S*)], α-farnesene, cyclohexene, 3-(1,5-dimethyl-4-hexenyl)-6-methylene-, [S-(R*,S*)]) | [58] | |
5 | Infrared drying | Drying with three red glass lamps (225 W each) | Phenolic components | ↓ 6-, 8-, 10-gingerol, TPC ↑ 6-shogaol, TFC | [57] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zagórska, J.; Czernicka-Boś, L.; Kukula-Koch, W.; Szalak, R.; Koch, W. Impact of Thermal Processing on the Composition of Secondary Metabolites of Ginger Rhizome—A Review. Foods 2022, 11, 3484. https://doi.org/10.3390/foods11213484
Zagórska J, Czernicka-Boś L, Kukula-Koch W, Szalak R, Koch W. Impact of Thermal Processing on the Composition of Secondary Metabolites of Ginger Rhizome—A Review. Foods. 2022; 11(21):3484. https://doi.org/10.3390/foods11213484
Chicago/Turabian StyleZagórska, Justyna, Lidia Czernicka-Boś, Wirginia Kukula-Koch, Radosław Szalak, and Wojciech Koch. 2022. "Impact of Thermal Processing on the Composition of Secondary Metabolites of Ginger Rhizome—A Review" Foods 11, no. 21: 3484. https://doi.org/10.3390/foods11213484
APA StyleZagórska, J., Czernicka-Boś, L., Kukula-Koch, W., Szalak, R., & Koch, W. (2022). Impact of Thermal Processing on the Composition of Secondary Metabolites of Ginger Rhizome—A Review. Foods, 11(21), 3484. https://doi.org/10.3390/foods11213484