Anti-Arthritic and Anti-Inflammatory Effects of Andaliman Extract and Nanoandaliman in Inflammatory Arthritic Mice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Andaliman Collection and Extraction
2.2. Formulation of Nanoemulsion Andaliman
2.3. In Vivo Inflammatory Arthritic Mice
2.4. RNA Extraction
2.5. Quantitative PCR
2.6. Statistical Analysis
3. Results
3.1. Andaliman Extract and Nanoemulsion Andaliman
3.2. Effect of Andaliman Extract and Nanoandaliman on the Gene Expression of Inflammatory Arthritis in CFA-Induced Arthritis Mice
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, L.; Deng, H.; Cui, H.; Fang, J.; Zuo, Z.; Junliang, D.; Li, Y.; Wang, X.; Zhao, L. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 2018, 9, 7204–7218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Korte, S.M.; Straub, R.H. Fatigue in inflammatory rheumatic disorders: Pathophysiological mechanisms. Rheumatology 2019, 58, 35–50. [Google Scholar] [CrossRef] [PubMed]
- Angum, F.; Khan, T.; Kaler, J.; Siddiqiu, L.; Hussanin, A. The prevalence of autoimmune disorders in women: A narrative review. Cureus 2020, 12, e8094. [Google Scholar] [CrossRef] [PubMed]
- Netea, M.G.; Balkwill, F.; Chonchol, M.; Cominelli, F.; Donath, M.Y.; Giamarellos-Bourboulis, E.J.; Golenbock, D.; Gresnigt, M.; Heneka, M.T.; Hoffman, H.M.; et al. A guiding map for inflammation. Nat. Immunol. 2017, 18, 826–831. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takeuchi, O.; Akira, S. Pattern recognition receptors and inflammation. Cell 2010, 140, 805–820. [Google Scholar] [CrossRef] [Green Version]
- Roy, H.S.; Cheng, C.; Zhu, Q.; Yue, L.; Yang, S. Comparison between major types of arthritis based on diagnostic ultrasonography. Open J. Med. Imaging 2019, 11, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Bullock, J.; Rizvi, S.A.A.; Saleh, A.M.; Ahmed, S.S.; Do, D.P.; Ansari, R.A.; Ahmed, J. Rheumatoid arthritis: A brief overview of the treatment. Med. Princ. Pract. 2019, 27, 501–507. [Google Scholar] [CrossRef]
- Cooper, C.; Chapurlat, R.; Al-Daghri, N.; Herrero-Beaumont, G.; Bruyere, O.; Rannou, F.; Roth, R.; Uebelhart, D.; Reginster, J.Y. Safety of oral non-selective non-steroidal anti-inflammatory drus in osteoarthritis: What does the literature say? Drugs Aging 2019, 36, 15–26. [Google Scholar] [CrossRef] [Green Version]
- Kumar, P.; Banik, S. Pharmacotherapy options in rheumatoid arthritis. Clin. Med. Insights Arthritis Musculoskelet. Disord. 2013, 6, 35–43. [Google Scholar] [CrossRef]
- Djati, M.S.; Christina, Y.I. Traditional Indonesian rempah-rempah as a modern functional food and herbal medicine. Funct. Foods Health Dis. 2019, 9, 241–264. [Google Scholar] [CrossRef]
- Sumarni, W.; Sudarmin, S.; Sumarti, S.S. The scientification of jamu: A study of Indonesian’s traditional medicine. J. Phys. Conf. Ser. 2019, 1321, 032057. [Google Scholar] [CrossRef] [Green Version]
- Parhusip, A.J.N. Study on Antibacterial Mechanism of Andaliman (Zanthoxylum acanthopodium DC.) Extract against Foodborne Pathogen. Ph.D. Thesis, IPB University, Bogor, Indonesia, 2006. [Google Scholar]
- Siregar, B.L. Andaliman (Zanthoxylum acanthopodium DC.) in Sumatera Utara: Description and germination. Hayati J. Biosci. 2003, 10, 38–40. [Google Scholar]
- Yanti; Pramudito, T.E.; Nuriasari, N.; Juliana, K. Lemon pepper fruit extract (Zanthoxylum acanthopodium) suppresses the expression of inflammatory mediators in lipopolysaccharide-induced macrophages in vitro. Am. J. Biochem. Biotechnol. 2011, 7, 190–195. [Google Scholar]
- Imphat, C.; Thongdeeying, P.; Itharat, A.; Panthong, S.; Makchuchit, S.; Ooraikul, B.; Davies, N.M. Anti-inflammatory investigation of extracts of Zhanthoxylum rhetsa. ECAM 2021, 2021, 5512961. [Google Scholar] [PubMed]
- Zorzi, G.K.; Carvalho, E.L.; Lino von Poser, G.; Teixeira, H.F. On the use of nanotechnology-based strategies for association of complex matrices from plant extracts. Rev. Bras. Farmacogn. 2015, 25, 426–436. [Google Scholar] [CrossRef] [Green Version]
- Bahrin, N.; Muhammad, N.; Abdullah, N.; Talip, B.H.A.; Jusoh, S.; Theng, S.W. Effect of processing temperature on antioxidant activity of Ficus carica leaves extract. J. Sci. Technol. 2018, 10, 99–103. [Google Scholar] [CrossRef] [Green Version]
- Wijayanti, B.; Damayanti, P.; Sitorys, M.A.; Linstianingrum, R.D.; Dea, A.C.; Syukri, Y. Formulation of tempuyung nanoherb (Sonchus arvensisi L) using self nano-emulsifying drug delivery system (SNEDDS). J. Sains Farm. Klin. 2016, 3, 50–53. [Google Scholar] [CrossRef] [Green Version]
- Jitta, S.R.; Daram, P.; Gourishetti, K.; Misra, C.S.; Polu, P.R.; Shah, A.; Shreedhara, C.S.; Nampoothiri, M.; Lobo, R. Terminalia tomentosa bark ameliorates inflammation and arthritis in carrageenan induced inflammatory model and Freund’s adjuvant-induced arthritis model in rats. J. Toxicol. 2019, 3, 7898914. [Google Scholar] [CrossRef] [Green Version]
- Adams, G. A beginner’s guide to RT-PCR, qPCR, and RT-qPCR. Biochemist 2020, 42, 48–53. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−∆∆CT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Suryanto, E.; Sastrohamidjojo, H.; Raharjo, S.; Tranggono. Antiradical activity of andaliman (Zanthoxylum acanthopodium DC) fruit extract. Indones. Food Nutr. Prog. 2004, 11, 1–5. [Google Scholar]
- Zhang, Q.W.; Lin, L.G.; Ye, W.C. Techniques for extraction and isolation of natural products: A comprehensive review. Chin. Med. 2018, 13, 13–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Su, J.; Wang, Q.; Li, Z.; Feng, Y.; Li, Y.; Yang, S.; Feng, Y. Different Metabolites in the roots, seeds, and leaves of Acanthopanax senticosus and their role in alleviating oxidative stress. J. Anal. Methods Chem. 2021, 2021, 6628880. [Google Scholar] [CrossRef] [PubMed]
- Rienoviar, R.; Setyaningsih, D. Study on aromatic andaliman extract (Zanthoxylum acanthopodium) from various solvents using gas chromatography-mass spectra (GC-MS). J. Agro. Based Indus. 2018, 35, 85–90. [Google Scholar]
- Wijaya, C.H.; Napitupilu, F.I.; Karnady, V.; Indariani, S. A review of the bioactivity and flavor properties of the exotic spice andaliman (Zanthoxylum acanthopodium DC.). Food Rev. Int. 2018, 35, 1–19. [Google Scholar] [CrossRef]
- Syukri, Y.; Fitriani, H.; Pandapitan, H.; Nugroho, B.H. Formulation, characterization, and stability of ibuprofen-loaded self-nano emulsifying drug delivery system (SNEDDS). J. Indones. Pharm. 2019, 30, 105–113. [Google Scholar] [CrossRef]
- Bali, V.; Ali, M.; Ali, J. Nanocarrier for the enhanced bioavailability of a cardiovascular agent: In vitro, pharmacodynamic, pharmacokinetic and stability assessment. Int. J. Pharm. 2011, 403, 46–56. [Google Scholar] [CrossRef]
- Müller, D.; Schiffer, M. Preeclampsia from a renal point of view: Insides into disease models, biomarkers and therapy. World J. Nephrol. 2014, 3, 169–181. [Google Scholar] [CrossRef] [Green Version]
- Harirforoosh, S.; Asghar, W.; Jamali, F. Adverse effects of nonsteroidal anti-inflammatory drugs: An update of gastrointestinal, cardiovascular and renal complications. J. Pharm. Pharm. Sci. 2013, 16, 821–847. [Google Scholar] [CrossRef] [Green Version]
- Zozulya, A.L.; Rinke, E.; Baiu, D.C.; Karman, J.; Sandor, M.; Fabry, Z. Dendritic cell transmigration through brain microvessel endothelium is regulated by MIP-1alpha chemokine and matrix metalloproteinases. J. Immunol. 2007, 178, 520–529. [Google Scholar] [CrossRef] [Green Version]
- Tu, C.; Huang, X.; Xiao, Y.; Song, M.; Ma, Y.; Yan, J.; You, H.; Wu, H. Schisandrin A inhibits the IL-1β-induced inflammation and cartilage degradation via suppression of MAPK and NF-κB signal pathways in rat chondrocytes. Front. Pharmacol. 2019, 10, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCall, M.N.; McMurray, H.R.; Land, H.; Almudevar, A. On non-detects in qPCR data. Bioinformatics 2014, 30, 2310–2316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leonidou, A.; Lepetsos, P.; Mintzas, M.; Kenanidis, E.; Macheras, G.; Tzetis, M.; Potoupnis, M.; Tsiridis, E. Inducible nitric oxide synthase as a target for osteoarthritis treatment. Expert Opin. Ther. Targets 2018, 22, 299–318. [Google Scholar] [CrossRef] [PubMed]
- Huebner, K.D.; Shrive, N.G.; Frank, C.B. Dexamethasone inhibits inflammation and cartilage damage in a new model of post-traumatic osteoarthritis. J. Orthop. Res. 2014, 32, 566–572. [Google Scholar] [CrossRef] [PubMed]
Group | Code | Treatment |
---|---|---|
1 | K− | −CFA (negative control) |
2 | K+ | +CFA (positive control) |
3 | AD25 | CFA + Andaliman extract 25 mg/kg |
4 | AD100 | CFA + Andaliman extract 100 mg/kg |
5 | NAD25 | CFA + Nanoandaliman 25 mg/kg |
6 | NAD100 | CFA + Nanoandaliman 100 mg/kg |
7 | DEXA | CFA + Dexamethasone 15 mg/kg (standard) |
Primer | Forward | Reverse |
---|---|---|
cox-2 | 5′-cttcgggagcacaacagagt-3′ | 5′-ggggtgccagtgatagagtg-3′ |
il-1b | 5′-gagcttcaggcaggcagtat-3′ | 5′-tgggtgtgccgtctttcatt-3′ |
inos | 5′-tgccagggtcacaactttaca-3′ | 5′-tgagaacagcacaaggggtt-3′ |
mmp-1 | 5′-gttggagcaggcaggaaggag-3′ | 5′-ttgcctcagcttttcagccat-3′ |
gapdh | 5′-gccatcaacgaccccttcatt-3′ | 5′-tagactccacgacatactcagcac-3′ |
Steps | Temperature | Duration | Cycle |
---|---|---|---|
Reverse Transcription | 42 °C | 5 min | 1 |
Enzyme activation | 95 °C | 3 min | 1 |
Denaturation | 95 °C | 3 s | 25 |
Annealing/Extension | 53–55 °C | 30 s | |
Data acquisition | 72 °C | 30 s | |
Melting Curve | 95 °C | 15 s | 1 |
60 °C | 1 min | ||
95 °C | 15 s | ||
60 °C | 15 s |
Groups | Arthritis Score | |||
---|---|---|---|---|
Week 1 | Week 2 | Week 3 | Week 4 | |
K− | 0.02 ± 0.009 | 0.06 ± 0.004 | 0.06 ± 0.005 | 0.08 ± 0.006 |
K+ | 1.48 ± 0.160 * | 1,85 ± 0.192 * | 2.05 ± 0.265 * | 2.44 ± 0.310 * |
Dexa 15 mg/kg | 1.10 ± 0.155 | 1.24 ± 0.250 | 1.12 ± 0.340 | 1.55 ± 0.260 |
AD 25 mg/kg | 1.32 ± 0.156 | 1.57 ± 0.216 | 1.77 ± 0.190 | 1.90 ± 0.252 |
AD 100 mg/kg | 1.25 ± 0.114 | 1.42 ± 0.190 | 1.49 ± 0.322 | 1.56 ± 0.140 |
NAD 25 mg/kg | 1.21 ± 0.150 | 1.38 ± 0.132 | 1.25 ± 0.100 | 1.66 ± 0.128 |
NAD 100 mg/kg | 1.02 ± 0.210 | 1.19 ± 0.172 | 1.05 ± 0.095 | 1.49 ± 0.112 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Setiadi, A.Y.L.A.; Karmawan, L.U.; Yanti. Anti-Arthritic and Anti-Inflammatory Effects of Andaliman Extract and Nanoandaliman in Inflammatory Arthritic Mice. Foods 2022, 11, 3576. https://doi.org/10.3390/foods11223576
Setiadi AYLA, Karmawan LU, Yanti. Anti-Arthritic and Anti-Inflammatory Effects of Andaliman Extract and Nanoandaliman in Inflammatory Arthritic Mice. Foods. 2022; 11(22):3576. https://doi.org/10.3390/foods11223576
Chicago/Turabian StyleSetiadi, Anselmus Yakobus Lukita Adiandra, Listya Utami Karmawan, and Yanti. 2022. "Anti-Arthritic and Anti-Inflammatory Effects of Andaliman Extract and Nanoandaliman in Inflammatory Arthritic Mice" Foods 11, no. 22: 3576. https://doi.org/10.3390/foods11223576
APA StyleSetiadi, A. Y. L. A., Karmawan, L. U., & Yanti. (2022). Anti-Arthritic and Anti-Inflammatory Effects of Andaliman Extract and Nanoandaliman in Inflammatory Arthritic Mice. Foods, 11(22), 3576. https://doi.org/10.3390/foods11223576