Development and Chemical-Sensory Characterization of Chickpeas-Based Beverages Fermented with Selected Starters
Abstract
:1. Introduction
2. Material and Methods
2.1. Materials
2.2. Products Formulation
- (1)
- CTRL, control sample not inoculated and stored at 4 °C.
- (2)
- ST, sample inoculated with 0.0025% (w/v) Streptococcus thermophilus.
- (3)
- STLL, sample inoculated with 0.00125% (w/v) Streptococcus thermophilus and 0.00125% (w/v) Lactococcus lactis.
- (4)
- STLP, sample inoculated with 0.00125% w/v Streptococcus thermophilus and 0.00125% w/v Lactobacillus plantarum.
2.3. Proximate Analyses
2.4. Mineral Analysis
2.5. Total Titratable Acidity and Phytic Acids
2.6. PH, Color and Texture Analysis
2.7. Quantitative Descriptive Analysis (QDA) of Sensory Characteristics
2.8. Statistical Analysis
3. Results
3.1. Biochemical Characterization of the Beverages
3.2. Texture and Color
3.3. Sensory Analysis
3.4. Identification of Volatile Compounds in Fermented Black Chickpeas Beverages
4. Discussion
4.1. Biochemical Analyses
4.2. Texture and Color Analyses
4.3. Sensorial and VOC Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Descriptors | Definition | |
---|---|---|
Odor/Aroma | Grass | Odor associated with freshly cut grass |
Legumes | Odor associated with beany flavor | |
Flour | Odor associated with wheat flout | |
Acid | Pungent or sharp feel | |
Yogurt | Odor associated with plain yogurt | |
Yeast | Odor associated with sourdough | |
Taste | Sweet | Taste associated with the presence of sucorse |
Salt | Taste associated with the presence of sodium chloride | |
Bitter | Taste associated with caffeine | |
Sour | Taste associated with citric acid | |
Astringent | Taste associated with tanins | |
Color and texture | Color intensity | Intensity of the color (beige to brown) |
Creamy | Visual degree of creaminess (greek yogurt to spreadable cheese) | |
Stickiness | Degree of stickiness on teeth and palate | |
Soluble | Degree of solubility in saliva (not soluble to extremely soluble) | |
Homogenous | Visual uniformity of the texture | |
Adherence to spoon | Degree of spoon adhesion |
References
- Fortune Business Insight. Dairy Alternatives Market to Exhibit 13.30% CAGR by 2028; Surging Demand for Vegan and Plant-Based Diet to Boost Growth. 2021. Available online: https://www.fortunebusinessinsights.com/industry-reports/dairy-alternatives-market-100221 (accessed on 15 April 2022).
- Smart Protein Project, E.U Horizon. 2020 Research and Innovation Programme (No 862957). Plant-Based Foods in Europe: How Big Is the Market? Available online: https://smartproteinproject.eu/market-research/ (accessed on 13 March 2022).
- Corbo, M.R.; Bevilacqua, A.; Petruzzi, L.; Casanova, F.P.; Sinigaglia, M. Functional Beverages: The Emerging Side of Functional Foods: Commercial Trends, Research, and Health Implications. Compr. Rev. Food Sci. Food Saf. 2014, 13, 1192–1206. [Google Scholar] [CrossRef]
- Fructuoso, I.; Romão, B.; Han, H.; Raposo, A.; Ariza-Montes, A.; Araya-Castillo, L.; Zandonadi, R.P. An Overview on Nutritional Aspects of Plant-Based Beverages Used as Substitutes for Cow’s Milk. Nutrients 2021, 13, 2650. [Google Scholar] [CrossRef] [PubMed]
- Boukid, F.; Lamri, M.; Dar, B.N.; Garron, M.; Castellari, M. Vegan Alternatives to Processed Cheese and Yogurt Launched in the European Market during 2020: A Nutritional Challenge? Foods 2021, 10, 2782. [Google Scholar] [CrossRef]
- De Angelis, D.; Pasqualone, A.; Allegretta, I.; Porfido, C.; Terzano, R.; Squeo, G.; Summo, C. Antinutritional Factors, Mineral Composition and Functional Properties of Dry Fractionated Flours as Influenced by the Type of Pulse. Heliyon 2021, 7, e06177. [Google Scholar] [CrossRef] [PubMed]
- Mefleh, M.; Pasqualone, A.; Caponio, F.; Faccia, M. Legumes as Basic Ingredients in the Production of Dairy-Free Cheese Alternatives: A Review. J. Sci. Food Agric. 2022, 102, 8–18. [Google Scholar] [CrossRef] [PubMed]
- Emkani, M.; Oliete, B.; Saurel, R. Pea Protein Extraction Assisted by Lactic Fermentation: Impact on Protein Profile and Thermal Properties. Foods 2021, 10, 549. [Google Scholar] [CrossRef]
- Pontonio, E.; Raho, S.; Dingeo, C.; Centrone, D.; Carofiglio, V.E.; Rizzello, C.G. Nutritional, Functional, and Technological Characterization of a Novel Gluten- and Lactose-Free Yogurt-Style Snack Produced with Selected Lactic Acid Bacteria and Leguminosae Flours. Front. Microbiol. 2020, 11, 1664. [Google Scholar] [CrossRef]
- Verni, M.; Demarinis, C.; Rizzello, C.G.; Baruzzi, F. Design and Characterization of a Novel Fermented Beverage from Lentil Grains. Foods 2020, 9, 893. [Google Scholar] [CrossRef]
- Cichońska, P.; Ziarno, M. Legumes and Legume-Based Beverages Fermented with Lactic Acid Bacteria as a Potential Carrier of Probiotics and Prebiotics. Microorganisms 2022, 10, 91. [Google Scholar] [CrossRef]
- Canon, F.; Nidelet, T.; Guédon, E.; Thierry, A.; Gagnaire, V. Understanding the Mechanisms of Positive Microbial Interactions That Benefit Lactic Acid Bacteria Co-Cultures. Front. Microbiol. 2020, 11, 2088. [Google Scholar] [CrossRef]
- Pavan, S.; Lotti, C.; Marcotrigiano, A.R.; Mazzeo, R.; Bardaro, N.; Bracuto, V.; Ricciardi, F.; Taranto, F.; D’Agostino, N.; Schiavulli, A.; et al. A Distinct Genetic Cluster in Cultivated Chickpea as Revealed by Genome-wide Marker Discovery and Genotyping. Plant Genome 2017, 10, plantgenome2016.11.0115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Pasquale, I.; Pontonio, E.; Gobbetti, M.; Rizzello, C.G. Nutritional and Functional Effects of the Lactic Acid Bacteria Fermentation on Gelatinized Legume Flours. Int. J. Food Microbiol. 2020, 316, 108426. [Google Scholar] [CrossRef] [PubMed]
- Summo, C.; de Angelis, D.; Rochette, I.; Mouquet-Rivier, C.; Pasqualone, A. Influence of the Preparation Process on the Chemical Composition and Nutritional Value of Canned Purée of Kabuli and Apulian Black Chickpeas. Heliyon 2019, 5, e01361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Summo, C.; de Angelis, D.; Ricciardi, L.; Caponio, F.; Lotti, C.; Pavan, S.; Pasqualone, A. Nutritional, Physico-Chemical and Functional Characterization of a Global Chickpea Collection. J. Food Compos. Anal. 2019, 84, 103306. [Google Scholar] [CrossRef]
- Pasqualone, A.; de Angelis, D.; Squeo, G.; Difonzo, G.; Caponio, F.; Summo, C. The Effect of the Addition of Apulian Black Chickpea Flour on the Nutritional and Qualitative Properties of Durum Wheat-Based Bakery Products. Foods 2019, 8, 504. [Google Scholar] [CrossRef] [Green Version]
- Costantini, M.; Summo, C.; Faccia, M.; Caponio, F.; Pasqualone, A. Kabuli and Apulian Black Chickpea Milling By-Products as Innovative Ingredients to Provide High Levels of Dietary Fibre and Bioactive Compounds in Gluten-Free Fresh Pasta. Molecules 2021, 26, 4442. [Google Scholar] [CrossRef]
- Suarez, A. Prodotti Fermentati di Origine Vegetale. SACCO System Webinar. Available online: https://www.youtube.com/watch?v=GLRR3LdyVzA&t=900s (accessed on 5 March 2022).
- Arena, M.P.; Caggianiello, G.; Russo, P.; Albenzio, M.; Massa, S.; Fiocco, D.; Capozzi, V.; Spano, G. Functional Starters for Functional Yogurt. Foods 2015, 4, 15–33. [Google Scholar] [CrossRef] [Green Version]
- Champagne, C.P.; Gagnon, D.; St-Gelais, D.; Vuillemard, J.C. Interactions between Lactococcus Lactis and Streptococcus Thermophilus Strains in Cheddar Cheese Processing Conditions. Int. Dairy J. 2009, 19, 669–674. [Google Scholar] [CrossRef]
- Tenea, G.N.; Suárez, J. Probiotic Potential and Technological Properties of Bacteriocinogenic Lactococcus lactis Subsp. Lactis UTNGt28 from a Native Amazonian Fruit as a Yogurt Starter Culture. Microorganisms 2020, 8, 733. [Google Scholar] [CrossRef]
- SACCO Systems. 4CHOICE—Live Cultures and Solutions for Plant-Based Products. 4Choice|The Plant-Based Alternative Solution. Available online: https://www.saccosystem.com/cat-2/en/products-and-solutions-for-the-food-industry/26/4choice-live-cultures-and-solutions-for-plant-based-products/122/ (accessed on 5 March 2022).
- AACC International. Approved Methods of Analysis. In Method 30–25. 01. Crude Fat in Wheat, Corn, and Soy Flour, Feeds, and Mixed Feeds; AACC International: St. Paul, MN, USA, 2000. [Google Scholar]
- European Union Commission. Regulation EEC 2568/91 on the Characteristics of Olive Oil and Olive Pomace and Their Analytical Methods. Off. J. Euro. Comm. 1991, L248, 1–83. [Google Scholar]
- AACC International. Approved Methods of Analysis. In Method 08–0.1.01. Ash—Basic Method, 11th ed.; AACC International: St. Paul, MN, USA, 2000. [Google Scholar]
- Trani, A.; Gambacorta, G.; Loizzo, P.; Cassone, A.; Fasciano, C.; Zambrini, A.V.; Faccia, M. Comparison of HPLC-RI, LC/MS-MS and Enzymatic Assays for the Analysis of Residual Lactose in Lactose-Free Milk. Food Chem. 2017, 233, 385–390. [Google Scholar] [CrossRef] [PubMed]
- AACC International. Approved Methods of Analysis. In Method 46—13.01. Crude Protein—Micro-Kjeldahl Method, 11th ed.; AACC International: St. Paul, MN, USA, 2000. [Google Scholar]
- Merill, A.L.; Watt, B.K. Energy Value of Foods: Basis and Derivation; Agriculture Handbook No. 74; ARS United States Department of Agriculture: Washington DC, USA, 1973.
- AACC International. Approved Methods of Analysis. In Method 02-31.01. Titratable Acidity—Basic Method; AACC International: St. Paul, MN, USA, 2000. [Google Scholar]
- De Angelis, D.; Squeo, G.; Pasqualone, A.; Summo, C. Optimization of formulation and physicochemical, nutritional and sensory evaluation of vegan chickpea-based salad dressings. JFST 2022, 59, 2685–2693. [Google Scholar] [CrossRef]
- Mefleh, M.; Pasqualone, A.; Caponio, F.; de Angelis, D.; Natrella, G.; Summo, C.; Faccia, M. Spreadable Plant-Based Cheese Analogue with Dry-Fractioned Pea Protein and Inulin–Olive Oil Emulsion-Filled Gel. J Sci Food Agric 2022, 102, 5478–5487. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2014; Available online: https://www.r-project.org/ (accessed on 15 April 2022).
- Markakiou, S.; Gaspar, P.; Johansen, E.; Zeidan, A.A.; Neves, A.R. Harnessing the metabolic potential of Streptococcus thermophilus for new biotechnological applications. Curr. Opin. Biotechnol. 2020, 61, 142–152. [Google Scholar] [CrossRef] [PubMed]
- Neves, A.R.; Pool, W.A.; Kok, J.; Kuipers, O.P.; Santos, H. Overview on sugar metabolism and its control in Lactococcus lactis—The input from in vivo NMR. FEMS Microbiol. Rev. 2005, 29, 531–554. [Google Scholar] [CrossRef] [Green Version]
- Cui, Y.; Wang, M.; Zheng, Y.; Miao, K.; Qu, X. The Carbohydrate Metabolism of Lactiplantibacillus plantarum. Int. J. Mol. Sci. 2021, 22, 13452. [Google Scholar] [CrossRef]
- Angelino, D.; Rosi, A.; Vici, G.; dello Russo, M.; Pellegrini, N.; Martini, D. Nutritional Quality of Plant-Based Drinks Sold in Italy: The Food Labelling of Italian Products (FLIP) Study. Foods 2020, 9, 682. [Google Scholar] [CrossRef]
- The European Parliament and the Council of the European Union. REGULATION (EC) No 1924/2006 of the European Parliament and of the Council of 20 December 2006 on Nutrition and Health Claims Made on Foods. Off. J. Eur. Union 2006, 404, 9–25. [Google Scholar]
- Wang, S.; Chelikani, V.; Serventi, L. Evaluation of Chickpea as Alternative to Soy in Plant-Based Beverages, Fresh and Fermented. LWT 2018, 97, 570–572. [Google Scholar] [CrossRef]
- Schindler, S.; Wittig, M.; Zelena, K.; Krings, U.; Bez, J.; Eisner, P.; Berger, R.G. Lactic Fermentation to Improve the Aroma of Protein Extracts of Sweet Lupin (Lupinus angustifolius). Food Chem. 2011, 128, 330–337. [Google Scholar] [CrossRef]
- Adebo, J.A.; Njobeh, P.B.; Gbashi, S.; Oyedeji, A.B.; Ogundele, O.M.; Oyeyinka, S.A.; Adebo, O.A. Fermentation of Cereals and Legumes: Impact on Nutritional Constituents and Nutrient Bioavailability. Fermentation 2022, 8, 63. [Google Scholar] [CrossRef]
- Ziarno, M.; Bryś, J.; Parzyszek, M.; Veber, A. Effect of Lactic Acid Bacteria on the Lipid Profile of Bean-Based Plant Substitute of Fermented Milk. Microorganisms 2020, 8, 1348. [Google Scholar] [CrossRef] [PubMed]
- Gänzle, M.G. Enzymatic and Bacterial Conversions during Sourdough Fermentation. Food Microbiol. 2014, 37, 2–10. [Google Scholar] [CrossRef] [PubMed]
- Rui, X.; Wang, M.; Zhang, Y.; Chen, X.; Li, L.; Liu, Y.; Dong, M. Optimization of Soy Solid-State Fermentation with Selected Lactic Acid Bacteria and the Effect on the Anti-Nutritional Components. J. Food Process. Preserv. 2017, 41, e13290. [Google Scholar] [CrossRef]
- Starzyńska-Janiszewska, A.; Stodolak, B. Effect of Inoculated Lactic Acid Fermentation on Antinutritional and Antiradical Properties of Grass Pea (Lathyrus Sativus ’Krab’) Flour. Pol. J. Food Nutr. Sci. 2011, 61, 245–249. [Google Scholar] [CrossRef] [Green Version]
- Fritsch, C.; Vogel, R.F.; Toelstede, S. Fermentation Performance of Lactic Acid Bacteria in Different Lupin Substrates-Influence and Degradation Ability of Antinutritives and Secondary Plant Metabolites. J. Appl. Microbiol. 2015, 119, 1075–1088. [Google Scholar] [CrossRef]
- Zamudio, M.; Gonzalez, A.; Medina, J.A. Lactobacillus plantarum Phytase Activity Is Due to Non-Specific Acid Phosphatase. Lett. Appl. Microbiol. 2001, 32, 181–184. [Google Scholar] [CrossRef]
- Coda, R.; Melama, L.; Rizzello, C.G.; Curiel, J.A.; Sibakov, J.; Holopainen, U.; Pulkkinen, M.; Sozer, N. Effect of Air Classification and Fermentation by Lactobacillus Plantarum VTT E-133328 on Faba Bean (Vicia faba L.) Flour Nutritional Properties. Int. J. Food Microbiol. 2015, 193, 34–42. [Google Scholar] [CrossRef]
- Sreeramulu, G.; Srinivasa, D.S.; Nand, K.; Joseph, R. Lactobacillus Amylovorus as a Phytase Producer in Submerged Culture. Lett. Appl. Microbiol. 1996, 23, 385–388. [Google Scholar] [CrossRef]
- Lai, L.R.; Hsieh, S.C.; Huang, H.Y.; Chou, C.C. Effect of Lactic Fermentation on the Total Phenolic, Saponin and Phytic Acid Contents as Well as Anti-Colon Cancer Cell Proliferation Activity of Soymilk. J. Biosci. Bioeng. 2013, 115, 552–556. [Google Scholar] [CrossRef]
- Cominelli, E.; Pilu, R.; Sparvoli, F. Phytic Acid and Transporters: What Can We Learn from Low Phytic Acid Mutants. Plants 2020, 9, 69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, R.K.; Gangoliya, S.S.; Singh, N.K. Reduction of Phytic Acid and Enhancement of Bioavailable Micronutrients in Food Grains. J. Food Sci. Technol. 2015, 52, 676–684. [Google Scholar] [CrossRef] [PubMed]
- Olagunju, O.F.; Ezekiel, O.O.; Ogunshe, A.O.; Oyeyinka, S.A.; Ijabadeniyi, O.A. Effects of Fermentation on Proximate Composition, Mineral Profile and Antinutrients of Tamarind (Tamarindus indica L.) Seed in the Production of Daddawa-Type Condiment. LWT-Food Sci. Technol. 2018, 90, 455–459. [Google Scholar] [CrossRef]
- Licandro, H.; Ho, P.H.; Nguyen, T.K.C.; Petchkongkaew, A.; van Nguyen, H.; Chu-Ky, S.; Nguyen, T.V.A.; Lorn, D.; Waché, Y. How Fermentation by Lactic Acid Bacteria Can Address Safety Issues in Legumes Food Products? Food Control 2020, 110, 106957. [Google Scholar] [CrossRef]
- Hidgon, J. Potassium. Linus Pauling Institute Oregon State University. Originally Written in 2001 and Last Reviewed in April 2019. Available online: https://lpi.oregonstate.edu/mic/minerals/potassium (accessed on 18 May 2022).
- European Parliament and the Council of the European Union. Regulation (EU) No 1196/2011of 25 October 2011 on the Provision of Food Information to Consumers, Annex XIII. Off. J. Eur. Union 2011, 304, 18–63. [Google Scholar]
- Ložnjak Švarc, P.; Jensen, M.B.; Langwagen, M.; Poulsen, A.; Trolle, E.; Jakobsen, J. Nutrient Content in Plant-Based Protein Products Intended for Food Composition Databases. J. Food Compos. Anal. 2022, 106, 104332. [Google Scholar] [CrossRef]
- Li, C.; Li, W.; Chen, X.; Feng, M.; Rui, X.; Jiang, M.; Dong, M. Microbiological, Physicochemical and Rheological Properties of Fermented Soymilk Produced with Exopolysaccharide (EPS) Producing Lactic Acid Bacteria Strains. LWT-Food Sci. Technol. 2014, 57, 477–485. [Google Scholar] [CrossRef]
- Xu, Y.; Pitkänen, L.; Maina, N.H.; Coda, R.; Katina, K.; Tenkanen, M. Interactions between Fava Bean Protein and Dextrans Produced by Leuconostoc Pseudomesenteroides DSM 20193 and Weissella Cibaria Sj 1b. Carbohydr. Polym. 2018, 190, 315–323. [Google Scholar] [CrossRef]
- Behare, P.V.; Singh, R.; Tomar, S.K.; Nagpal, R.; Kumar, M.; Mohania, D. Effect of Exopolysaccharide-Producing Strains of Streptococcus Thermophilus on Technological Attributes of Fat-Free Lassi. J. Dairy Sci. 2010, 93, 2874–2879. [Google Scholar] [CrossRef] [Green Version]
- Mengi, B.; Ikeda, S.; Murayama, D.; Bochimoto, H.; Matsumoto, S.; Kitazawa, H.; Urashima, T.; Fukuda, K. Factors Affecting Decreasing Viscosity of the Culture Medium during the Stationary Growth Phase of Exopolysaccharide-Producing Lactobacillus Fermentum MTCC 25067. Biosci. Microbiota Food Health 2020, 39, 160–168. [Google Scholar] [CrossRef] [Green Version]
- Grasso, N.; Alonso-Miravalles, L.; O’Mahony, J.A. Composition, Physicochemical and Sensorial Properties of Commercial Plant-Based Yogurts. Foods 2020, 9, 252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, Y.; Singh, A.; Kitts, D.D.; Pratap-Singh, A. Lactic Acid Fermentation: A Novel Approach to Eliminate Unpleasant Aroma in Pea Protein Isolates. LWT 2021, 150, 111927. [Google Scholar] [CrossRef]
- Mokrzycki, W.; Tatol, M. Color Difference Delta E-A Survey Colour Difference ∆E-A Survey. Mach. Vis. Appl. 2014, 1, 14–18. [Google Scholar]
- García Arteaga, V.; Leffler, S.; Muranyi, I.; Eisner, P.; Schweiggert-Weisz, U. Sensory Profile, Functional Properties and Molecular Weight Distribution of Fermented Pea Protein Isolate. Curr. Res. Food Sci. 2021, 4, 1–10. [Google Scholar] [CrossRef]
- Khrisanapant, P.; Kebede, B.; Leong, S.Y.; Oey, I. A Comprehensive Characterisation of Volatile and Fatty Acid Profiles of Legume Seeds. Foods 2019, 8, 651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, L.; Lan, Y.; Bandillo, N.; Ohm, J.B.; Chen, B.; Rao, J. Plant Proteins from Green Pea and Chickpea: Extraction, Fractionation, Structural Characterization and Functional Properties. Food Hydrocoll. 2022, 123, 107165. [Google Scholar] [CrossRef]
- Xu, M.; Jin, Z.; Lan, Y.; Rao, J.; Chen, B. HS-SPME-GC-MS/Olfactometry Combined with Chemometrics to Assess the Impact of Germination on Flavor Attributes of Chickpea, Lentil, and Yellow Pea Flours. Food Chem. 2019, 280, 83–95. [Google Scholar] [CrossRef]
- Trikusuma, M.; Paravisini, L.; Peterson, D.G. Identification of Aroma Compounds in Pea Protein UHT Beverages. Food Chem. 2020, 312, 126082. [Google Scholar] [CrossRef]
- Karolkowski, A.; Guichard, E.; Briand, L.; Salles, C. Volatile Compounds in Pulses: A Review. Foods 2021, 10, 3140. [Google Scholar] [CrossRef]
- Achouri, A.; Boye, J.I.; Zamani, Y. Identification of Volatile Compounds in Soymilk Using Solid-Phase Microextraction-Gas Chromatography. Food Chem. 2006, 99, 759–766. [Google Scholar] [CrossRef]
- Trindler, C.; Annika Kopf-Bolanz, K.; Denkel, C. Aroma of Peas, Its Constituents and Reduction Strategies—Effects from Breeding to Processing. Food Chem. 2022, 376, 131892. [Google Scholar] [CrossRef] [PubMed]
- Bradley, D.G.; Lee, H.O.; Min, D.B. Singlet Oxygen Detection in Skim Milk by Electron Spin Resonance Spectroscopy. J. Food Sci. 2003, 68, 491–494. [Google Scholar] [CrossRef]
- Malcolmson, L.; Frohlich, P.; Boux, G.; Bellido, A.S.; Boye, J.; Warkentin, T.D. Aroma and Flavour Properties of Saskatchewan Grown Field Peas (Pisum sativum L.). Can. J. Plant Sci. 2014, 94, 1419–1426. [Google Scholar] [CrossRef] [Green Version]
- Bott, L.; Chambers Iv, E. Sensory characteristics of combinations of chemicals potentially associated with beany aroma in foods. J. Sens. Stud. 2006, 21, 308–321. [Google Scholar] [CrossRef]
- Vogelsang-O’Dwyer, M.; Zannini, E.; Arendt, E.K. Production of Pulse Protein Ingredients and Their Application in Plant-Based Milk Alternatives. Trends Food Sci. Technol. 2021, 110, 364–374. [Google Scholar] [CrossRef]
CTRL | ST | STLL | STLP | |
---|---|---|---|---|
TTA | 0.90 ± 0.70 d | 1.65 ± 0.70 b | 1.45 ± 0.00 c | 1.80 ± 1.40 a |
Moisture | 726 ± 0.62 a | 721.5 ± 18.0 a | 731.5 ± 2.10 a | 733 ± 11.4 a |
Sucrose | 30.2 ± 1.40 a | 19.7 ± 0.80 b | 11.1 ± 0.40 c | 9.60 ± 0.60 d |
Fructose | 0.20 ± 0.00 b | 2.40 ± 0.00 a | 0.20 ± 0.00 b | 0.30 ± 0.00 b |
Glucose | 0.10 ± 0.00 a | 0.20 ± 0.0 a | 0.10 ± 0.00 a | 0.20 ± 0.00 a |
Fat | 17.2 ± 0.90 a | 16.8 ± 0.60 a | 16.7 ± 0.40 a | 17.8 ± 1.20 a |
Saturated fat | 3.20 ± 0.20 a | 2.20 ± 0.30 b | 1.90 ± 0.10 b | 1.80 ± 0.40 b |
Carbohydrates | 127 ± 0.40 b | 131 ± 1.40 a | 116 ± 0.40 c | 115 ± 0.40 c |
Proteins | 118 ± 1.40 a | 117 ± 1.50 a | 121 ± 3.20 a | 122 ± 7.02 a |
Calories from proteins | 47.9 ± 0.14 a | 48.64 ± 0.49 a | 47.6 ± 0.21 a | 47.35 ± 0.21 a |
CTRL | ST | STLL | STLP | |
---|---|---|---|---|
Ash | 12.2 ± 0.30 b | 13.2 ± 0.20 a | 12.5 ± 0.80 ab | 13.2 ± 0.30 a |
Cu | 3.50 ± 0.00 a | 3.60 ± 0.00 a | 3.60 ± 0.00 a | 2.90 ± 0.00 b |
K | 4720 ± 30 b | 4860 ± 100 a | 4930 ± 90.3 a | 3870 ± 70.0 c |
Zn | 103 ± 2.80 b | 113 ± 5.10 a | 111 ± 7.00 ab | 102 ± 3.40 b |
P | 639 ± 26.1 d | 888 ± 25.4 c | 972 ± 16.2 b | 1230 ± 40.1 a |
Phytic acid | 6.68 ± 0.08 a | 2.08 ± 0.16 c | 6.09 ± 0.05 b | 1.40 ± 0.19 d |
CTRL | ST | STLL | STLP | |
---|---|---|---|---|
Firmness | 1.63 ± 0.06 b | 2.70 ± 0.04 a | 2.83 ± 0.03 a | 2.60 ± 0.10 a |
Consistency | 2.79 ± 0.51 c | 13.0 ± 0.14 a | 11.3 ± 0.61 a | 5.47 ± 0.92 b |
Cohesivity | 0.81 ± 0.05 c | 1.64 ± 0.03 a | 1.77 ± 0.06 a | 1.38 ± 0.06 b |
Viscosity | 3.39 ± 0.26 c | 11.3 ± 0.02 a | 10.4 ± 0.65 a | 6.37 ± 0.15 b |
L* | 68.50 ± 0.01 d | 71.4 ± 0.01 c | 71.8 ± 0.01 b | 72.5 ± 0.01 a |
a* | 3.00 ± 0.01 d | 3.49 ± 0.02 b | 3.59 ± 0.01 a | 3.16 ± 0.02 c |
b* | 26.6 ± 0.01 a | 24.7 ± 0.02 d | 26.1 ± 0.02 b | 25.7 ± 0.02 c |
∆E vs. CTRL | 3.55 ± 0.02 | 3.41 ± 0.02 | 4.05 ± 0.02 |
STLP | STLL | ST | CTRL | |
---|---|---|---|---|
2-eHptanone | 2.77 ± 0.23 a | 1.04 ± 0.10 b | 0.89 ± 0.14 b | 0.00 ± 0.00 c |
1-Penten-3-ol | 0.00 ± 0.00 b | 0.00 ± 0.00 b | 0.64 ± 0.04 a | 0.00 ± 0.00 b |
1-Pentanol | 16.4 ± 0.60 a | 0.00 ± 0.00 b | 17.8 ± 1.80 a | 16.14 ± 0.6 a |
2-Penten-1-ol | 1.11 ± 0.28 a | 1.76 ± 0.50 a | 0.95 ± 0.31 a | 0.97 ± 0.36 a |
1-Hexanol | 121 ± 8.10 c | 108 ± 7.3 c | 155 ± 4.83 b | 166 ± 6.10 a |
1-Octen-3-ol | 36.5 ± 3.44 a | 29.9 ± 4.81 a | 30.48 ± 2.78 a | 11.5 ± 1.40 b |
Hexanal | 59.8 ± 3.92 b | 71.9 ± 9.6 ab | 95.7 ± 18.3 a | 20.9 ± 4.29 c |
Heptanal | 4.01 ± 0.92 b | 14.8 ± 0.32 a | 2.14 ± 0.99 bc | 1.39 ± 0.20 c |
Octanal | 5.22 ± 0.07 a | 0.00 ± 0.00 b | 0.00 ± 0.00 b | 0.00 ± 0.00 b |
Nonanal | 34.5 ± 5.17 b | 68.1 ± 12.8 a | 14.1 ± 4.37 c | 0.00 ± 0.00 d |
2-Octenal | 12.8 ± 2.94 ab | 8.90 ± 0.98 b | 15.1 ± 3.45 a | 3.96 ± 0.58 c |
Decanal | 3.17 ± 0.85 a | 3.27 ± 0.87 a | 1.97 ± 0.46 a | 0.00 ± 0.00 b |
2,4-Nonadienal | 0.00 ± 0.00 b | 1.18 ± 0.20 a | 0.00 ± 0.00 b | 0.00 ± 0.00 b |
2-Pentylfuran | 7.81 ± 1.10 b | 0.00 ± 0.00 d | 11.04 ± 1.12 a | 2.79 ± 0.49 c |
Octanoic acid | 7.16 ± 1.28 a | 3.60 ± 0.47 b | 1.57 ± 0.44 c | 1.64 ± 0.50 c |
Decanoic acid | 3.52 ± 0.41 b | 11.2 ± 0.87 a | 0.21 ± 0.05 c | 0.00 ± 0.00 d |
Dimetyl trisulfide | 0.00 ± 0.00 b | 0.00 ± 0.00 b | 1.10 ± 0.14 a | 0.00 ± 0.00 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mefleh, M.; Faccia, M.; Natrella, G.; De Angelis, D.; Pasqualone, A.; Caponio, F.; Summo, C. Development and Chemical-Sensory Characterization of Chickpeas-Based Beverages Fermented with Selected Starters. Foods 2022, 11, 3578. https://doi.org/10.3390/foods11223578
Mefleh M, Faccia M, Natrella G, De Angelis D, Pasqualone A, Caponio F, Summo C. Development and Chemical-Sensory Characterization of Chickpeas-Based Beverages Fermented with Selected Starters. Foods. 2022; 11(22):3578. https://doi.org/10.3390/foods11223578
Chicago/Turabian StyleMefleh, Marina, Michele Faccia, Giuseppe Natrella, Davide De Angelis, Antonella Pasqualone, Francesco Caponio, and Carmine Summo. 2022. "Development and Chemical-Sensory Characterization of Chickpeas-Based Beverages Fermented with Selected Starters" Foods 11, no. 22: 3578. https://doi.org/10.3390/foods11223578
APA StyleMefleh, M., Faccia, M., Natrella, G., De Angelis, D., Pasqualone, A., Caponio, F., & Summo, C. (2022). Development and Chemical-Sensory Characterization of Chickpeas-Based Beverages Fermented with Selected Starters. Foods, 11(22), 3578. https://doi.org/10.3390/foods11223578