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Highlights:

What are the main findings?
• An pH-regulated strategy can achieve antibody orientation on the surface of magnetic beads.
What is the implication of the main finding?
• The capture efficiency for Staphylococcus aureus of immunomagnetic beads prepared at pH 8.0

was improved.
• The antibody orientation mechanism was demonstrated using a quantum dots labeled antigen,

antigen-binding fragment (Fab) accessibility assay and lysine mimicking.

Abstract: Immunomagnetic beads (IMBs) have been widely used to capture and isolate target
pathogens from complex food samples. The orientation of the antibody immobilized on the surface of
magnetic beads (MBs) is closely related to the effective recognition with an antigen. We put forward
an available strategy to orient the antibody on the surface of MBs by changing the charged amino
group ratio of the reactive amino groups at optimal pH value. Quantum dots labeling antigen assay,
antigen-binding fragment (Fab) accessibility assay and lysine mimicking were used for the first
time to skillfully illustrate the antibody orientation mechanism. This revealed that the positively
charged ε-NH2 group of lysine on the Fc relative to the uncharged amino terminus on Fab was
preferentially adsorbed on the surface of MBs with a negatively charged group at pH 8.0, resulting in
antigen binding sites of antibody fully exposed. This study contributes to the understanding of the
antibody orientation on the surface of MBs and the potential application of IMBs in the separation
and detection of pathogenic bacteria in food samples.

Keywords: antibody orientation; pH regulation; immunomagnetic beads; foodborne pathogen;
capture efficiency

1. Introduction

Magnetic beads (MBs) have been extensively used in the fields of biosensors, biomedicine,
and biotechnology due to their unique superparamagnetic properties and basic nanostruc-
tured characteristics, such as easy functionalization and larger surface to volume ratio [1–4].
The immunomagnetic beads (IMBs) prepared by immobilizing monoclonal or polyclonal
antibodies on the surface of magnetic beads can specifically capture and separate the target
and are widely used in the fields of food, hygiene, and environment.

Many studies have reported the potential application of IMBs in the sample pretreat-
ment of the rapid detection of pathogenic bacteria [5–8]. Although the reaction system
of IMS for foodborne pathogens, such as the amount of IMBs, and immunoreaction time
has been optimized, the capture efficiency of IMBs is still low [2,3,9], and a high capture
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performance of target bacteria has become the main goal pursued by researchers [10]. It
must be said that the capture and separation efficiency of the target bacteria are closely
associated with the accessibility of the Fab of the antibody controlled by its orientation and
loading capacity [11–15]. However, the most common strategy for antibodies immobiliza-
tion is to adopt N-hydroxysuccinimide/1-ethyl-3-(3-dimethylamino) propyl carbodiimide
hydrochloride (NHS/EDC) chemistry to activate carboxyl groups on the surface of func-
tionalized solid surface for covalently crosslinking with reactive amine groups of the
antibody [16–18]. Therefore, covalent coupling strategies do not consider the orientation of
the immobilized antibody, and random immobilization of the antibody on solid surface
will occur. As a result, the antigen binding sites of the antibody will be blocked and cannot
effectively bind the target bacteria, leading to a low capture efficiency.

To date, some effective methods to orient antibodies have been developed, one of
which is crosslinking the antibody through carbohydrates groups in the Fc of the antibody
with a hydrazine surface [19–21]. Additionally, another option is to introduce protein A or
protein G, which can specifically bind to the Fc of the antibody [22–25]. Other strategies
involve the use of engineered antibodies by introducing site-specific modifications, such as
histidine tags, biotins, and click chemistry reactive groups [26–30]. All of these approaches
are based on the immobilization of the antibody through the non-antigen binding Fc region
in order to make the Fab more available for antigen recognition. However, the above
methods not only affect antibody activity, but also require the recombinant expression of
an antibody with further antibody engineering, which is a complex process or involves
expensive immobilized proteins.

It is common knowledge that the basic structure of an antibody contains Fab and Fc.
Generally, there are more basic amino acids than acidic amino acids at the Fab terminal
of the antibody, i.e., there are more amino groups at the Fab terminal. However, at the Fc
terminal of the antibody, the quantity distribution of the two amino acids is more uniform,
so the isoelectric point of the Fab terminal is slightly higher than that of the Fc terminal.
Such different pH values will lead to an inconsistent charge distribution of antibodies,
which will affect the coupling effect of antibodies. In a recent report, the surface electrical
properties of the nanomaterial and basic characteristics of the antibody, such as charge
distribution and hydrophilicity were considered to develop a simple universal method to
orient the antibody [31], suggesting that the pH value of the reaction solution can affect
the behavior of an antibody and potentially modulate the directional fixation of antibodies
on the surface of nanomaterials [15,32]. Some novel strategies have been proposed: an
antibody is first adsorbed into the nanomaterial surface through non-covalent interactions
before being coupled to the surface [33,34], which is a process easily controlled by reaction
conditions. Other researchers applied an external electric field to orient antibodies on
two-dimensional surfaces achieving more than a 100% improvement in the signal-to-
noise ratio [35], and a weak electric field in the surrounding environment can affect the
interaction between antibodies and surface-charged nanoparticles. Some studies used a
model IgG protein (PDB: 1IGY) to investigate the orientation mechanism of antibodies on
gold nanoparticles, such as surface amino acid charge distribution and the amount of acid
or alkaline amino acid in the Fab or Fc [33,36]. Because different antibody proteins contain
different amino acid sequence structures, and each amino acid has its own isoelectric point,
which means that different antibodies have different isoelectric points, a slight sequence
variation may alter the structure and electrical properties of the antibody surface [37–39],
thus immobilizing different antibodies on nanomaterials at different pH values (pH 5–8.5),
which may lead to different orientations [40,41].

Here, we extend the methodology to the orientation of Abs on the surface of carboxy-
lated magnetic beads and its new application fields in food microbiological detection. Based
on the amino terminus and lysine side chain amino groups with significantly different pKa
values [15], we propose a strategy to control antibody orientation on MBs by modulating
the degree of ionization of reactive amino groups. Firstly, the amino terminal of the Fab
(pKa = 7.5) and the amino group from the lysine side chain on the Fc (pKa = 10.0) [15]
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could be regulated with charged properties to achieve the orientation of the Fc, and then
N-hydroxysulfosuccinimide (sulfo-NHS) was used to obtain the negatively charged surface
of the carboxyl MBs based on the NHS/EDC crosslinking chemistry (Figure 1).
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Figure 1. Scheme of activation mechanism of carboxyl MBs based on NHS/EDC chemistry.

Considering the prevalence of food contaminated by Staphylococcus, we chose the anti-
Staphylococcus antibody as a representative to prepare the IMBs to validate the feasibility of
the strategy. Meanwhile, to probe the mechanism of antibody orientation, we employed a
quantum dots labeling antigen, Fab accessibility assay and lysine mimicking to indirectly
characterize the behavior of antibodies on the surface of MBs.

2. Methods/Experimental Section
2.1. Reagents, Materials, and Apparatus

Carboxyl magnetic beads and preservation solution were obtained from BioMag Sci-
entific Inc. (Wuxi, China), CdSe/ZnS quantum dots (QDs) were purchased from Xingzi
New Material Technology Development (Shanghai, China), the Staphylococcus monoclonal
antibody was obtained from LSBio Inc. (Seattle, WA, USA), goat anti-mouse IgG Fc (anti-Fc)
was obtained from ImmunoChemistry Technologies, LLC, (Bloomington, MN, USA), and
Staphylococcus enterotoxin B (SEB) was purchased from Toxin technology, Inc. (Sarasota, FL,
USA). The Micro Bicinchoninic Acid (BCA) Protein Assay Kit, Varioskan Flash Microplate
Reader, and DynaMag magnetic separator were purchased from Thermo Fisher Scientific
Inc. (Waltham, MA, USA), and the Amino Acid Assay Kit and 2-morpholinoethanesulfonic
acid monohydrate (MES) were obtained from Solarbio Science & Technology Co., Ltd.
(Beijing, China). Ultra-high temperature instantaneous sterilization milk was obtained
from a local supermarket; 1-ethyl-3-(3-dimethylamino) propyl carbodiimide hydrochlo-
ride crystalline (EDC), N-hydroxysulfosuccinimide sodium salt (sulfo-NHS), boric acid,
sodium tetraborate, N-tert-butyloxycarbonyl(BOC)-L-lysine(ε-NH2-lys), and Nε-BOC-L-
lysine(α-NH2-lys) were purchased from J&K (Beijing, China); Nutrient Broth (NB) and
plate count agar (PCA) were purchased from Land Bridge Technology Co., Ltd. (Beijing,
China). S. aureus (ATCC 25923) was obtained from American Type Culture Collection
(ATCC, Manassas, VA, USA), the Zeiss Fluorescence Microscope was purchased from Carl
Zeiss Microscopy GmbH (Jena, Germany), QB-628 Rolling Incubator was purchased from
Haimen-Kylin-Bell Lab Instruments Co., Ltd. (Nantong, China), and the Zetasizer nano ZS
was purchased from Malvern Panalytical Ltd. (Malvern, UK).
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2.2. Preparation of IMBs
2.2.1. Activation of Carboxyl MBs

Carboxyl MBs (1 mg) were added to a 2 mL low-affinity microcentrifuge tube, washed
twice with 1 mL of MEST buffer (0.1 M MES pH 6.0, 0.05% Tween20), and incubated with
10 mg EDC mixed with 10 mg sulfo-NHS (dissolved in MEST buffer) at 25 ◦C for 30 min.
The mixture was then separated by a magnetic separator for 1 min. The supernatant was
discarded, and the activated carboxyl magnetic beads (aMBs) were used immediately.

2.2.2. Antibody Immobilization on MBs

The aMBs (1 mg) were resuspended with 200 µg of anti-Staphylococcus antibody [7],
which was excessive compared to the previous study in this laboratory, and was dissolved
in 0.05 M phosphate-buffered saline containing 0.05% Tween20 (PBST) (pH 6.0 and 7.0) or
0.05 M borate buffer (pH 8.0, 0.05% Tween20) in advance, and then incubated for 2 h at
room temperature on a vertical rotating mixer. The activation sites on MBs were blocked
by incubation with bovine serum albumin (BSA) for 1 h. The prepared IMBs were washed
twice with PBST and stored in preservation solution at 4 ◦C.

2.3. Characteristics of IMBs
2.3.1. Antibody Binding Quantification

The amount of antibody was quantified by measuring the protein concentration with
the bicinchoninic acid (BCA) protein quantitation kit. Then, 150 µL of the sample and a
150 µL aliquot of the working reagent were thoroughly mixed and incubated for 2 h at 37 ◦C.
Absorbance at 562 nm was measured with a microplate reader to determine the protein
content based on a standard curve. The amount of antibody bound on the surface of the MBs
was calculated as the protein concentration difference before and after binding to the MBs.

2.3.2. Size Distribution and Dispersity Characteristics

IMBs and aMBs were prepared at a concentration of 0.33 mg/mL in PBST or different
pH buffers, and dispersed by sonication to evaluate the size distribution and zeta potential
using the Zetasizer nano ZS instrument. The dispersed states of MBs and IMBs at the same
concentration were observed by a fluorescence microscope with 40× objective lens. The
anti-Staphylococcus antibody was diluted to a final concentration of 60 µg/mL in PBS to
measure size distribution.

2.3.3. Capture Efficiency

One hundred micrograms of IMBs was incubated with 104 colony-forming unit (CFU) of
S. aureus in 1 mL PBST or milk, shaken on a vertical rotating mixer at room temperature for 1 h,
and then separated by a magnetic separator. The IMB–bacterial complexes and supernatant
were separately diluted to appropriate concentrations and cultured on PCA for 24 h to count
the number of bacterial colonies formed. The capture efficiency of the IMBs was equal to the
percentage of bacteria captured by IMBs relative to the total bacterial count.

2.3.4. Measurement of the Maximum Binding Capacity

The S. aureus suspension cultured overnight at 37 ◦C in NB was diluted in 1 mL PBST
to final concentrations of 102, 103, 104, 105, 106 CFU/mL, and each diluted suspension was
incubated with 100 µg of IMBs at room temperature for 1 h, and then separated by a magnetic
separator. The capture efficiency of the IMBs was determined by the aforementioned method.

All used reagents, equipment and waste generated in the experiment were sterilized
by autoclaving at 120 ◦C for 1 h to prevent the spread of pathogens.

2.4. Mechanism of Antibody Orientation
2.4.1. Quantum Dots Labeling Antigen Assay

A QDs stock solution (80 µL, 5 mg/mL) was activated with 4 mg EDC and 2 mg sulfo-
NHS for 30 min, followed by the addition of 50 µg SEB, and then incubated in the dark for
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3 h. The unreacted SEB protein was removed from the system by cryogenic centrifugation
and washed twice with PBST. QDs and SEB conjugates were collected and resuspended in
500 µL PBST.

IMBs (50 µg) and the above functionalized QDs (20 µL) were incubated in the dark
for 30 min, and then separated by a magnetic separator. The IMB-QD complexes were
washed twice with PBST and resuspended in PBST. The obtained supernatant and IMB-QD
complexes were used in the subsequent fluorescence analysis.

Confocal fluorescence microscopy imaging was performed on a confocal laser scanning
fluorescence microscope, and the IMB-QD complexes were prepared by the aforementioned
protocol at the same concentration and measured using the same parameters (with 405 nm
of laser and 2 µs of exposure time).

The fluorescence intensity values of the above supernatant and IMB-QD complexes
were measured on a microplate reader from 400 to 600 nm with an excitation wavelength
of 340 nm.

2.4.2. Fab Accessibility Assay

A mixture of 100 µg IMBs and 10 µg anti-Fc in 200 µL PBS was incubated at 25 ◦C
for 1 h, and the supernatant was collected after separation by a magnetic separator. The
amount of anti-Fc was quantified using a BCA protein quantitation kit. The amount of anti-
Fc bound to the IMBs was calculated by determining the protein concentration difference
between the initial concentration and the concentration in the supernatant according to a
standard curve.

2.4.3. Crosslinking Ratio Analysis of ε-NH2-lys and α-NH2-lys on the Surface of the MBs

The aMBs were incubated with ε-NH2-lys and α-NH2-lys diluted with 0.05 M PBS
(pH 6.0 or 7.0) for 2 h, respectively. The crosslinking ratio was calculated based on the
amino acid content before and after crosslinking with MBs. The amino acid content was
quantified using an amino acid assay kit based on the principle that the amino group
of amino acids can react with indigohydrone to produce blue–violet compounds and
measured on a microplate reader at 570 nm.

3. Results and Discussion
3.1. Characterization of IMBs Properties

To investigate the effect of pH condition on antibody adsorption and orientation,
the antibody was pre-ionized at pH 6.0, 7.0, and 8.0, and coupled with MBs to produce
pH6-IMBs, pH7-IMBs and pH8-IMBs. A BCA assay was employed to analyze the antibody
binding content. The amounts of antibodies bound on the surface of MBs at pH 6.0 and
pH 7.0 were higher than the amount of antibody at pH 8.0 (Figure 2A), which is consistent
with the recommended lower pH in NHS/EDC coupling protocol. We speculated that
the surface of negatively charged carboxyl magnetic beads would adsorb more antibodies
because activated amino groups on the antibodies were positively charged below pH 7.5.
Furthermore, we analyzed the size distribution of the antibody, the MBs, and the IMBs. The
observed size distribution of IMBs was larger than that of the sum of the MB and antibody
size due to the presence of monomers (16 nm) and polymers (79 nm) of the Staphylococcus
antibody (Figure 2B,C). Finally, the dispersity of the aMBs and IMBs was characterized by
microscopy imaging and the zeta potential measurement, taking into account its influence
on the antibody binding capacity and target recognition [42]. The results show that MBs
exhibited a better dispersion and were more negatively charged compared to the IMBs due
to the antibody coating and blocking with BSA [4], while there was no significant difference
between IMBs at pH 6.0–8.0 (Figure 3, Table 1). Based on the above data of the binding
amount and dispersion of the IMBs, the higher capturing capacity of pH6-IMBs, pH7-IMBs
and pH8-IMBs on the target antigen would ideally be taken for granted, following to verify
this inference via a capture efficiency measurement.
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Table 1. The dispersity of aMBs and IMBs.

Sample Zeta Potential (mV)

aMBs-pH6 −47.73
aMBs-pH7 −41.87
aMBs-pH8 −57.07
pH6-IMBs −15.33
pH7-IMBs −17.23
pH8-IMBs −15.83

3.2. Capture Efficiency of pH6-IMBs, pH7-IMBs and pH8-IMBs

The capture efficiency on S. aureus of pH6-IMBs, pH7-IMBs and pH8-IMBs with equal
amounts was measured in PBS or milk. The results show that the capture efficiency of
pH8-IMBs was higher than that of pH6-IMBs or pH7-IMBs (Figure 4A). The maximum
capacity of the binding antigen of pH6-IMBs, pH7-IMBs and pH8-IMBs was 105 CFU
(Figure 4B); meanwhile, at 103–106 CFU/mL of S. aureus, pH8-IMBs have certain advantages
in capture efficiency compared to pH6-IMBs and pH7-IMBs. However, at 102 CFU/mL
of the S. aureus, the capture efficiency of pH8-IMBs was not significantly higher than that
of pH6-IMBs and pH7-IMBs as the amount of used IMBs exceeded the actual amount
needed. Furthermore, we investigated the capture efficiency of pH6-IMBs pH7-IMBs and
pH8-IMBs with different amounts on 100 CFU/mL of S. aureus. The results show that the
capture efficiency of all the IMBs was 100% when 20 or 50 µg of IMBs were used, indicating
that the amount of used IMBs was excessive. While the amount of IMBs was reduced to
10 µg, the capture efficiency on target bacteria of pH8-IMBs was significantly higher than
that of pH6-IMBs or pH7-IMBs (Figure 4C,D). The above results show that the antibody
binding capacity of pH8-IMBs was lower, while the capture efficiency was higher than that
of pH6-IMBs or pH7-IMBs, and these differences were not related to the dispersity. We
speculate that the Fab fragment that contains the antigen binding site was in a different
exposure status at pH 6.0, 7.0, and 8.0 during antibody immobilization, and the more the
Fab fragment was exposed, the more the antigen was recognized.
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efficiency of 100 µg IMBs on S. aureus in PBS and in milk, (B) Maximum binding capacity analysis of
100 µg IMBs, (C) The capture efficiency of IMBs with 10, 20 and 50 µg on 100 CFU/mL of S. aureus,
(D) The capture efficiency of 10 µg of IMBs on 100 CFU/mL of S. aureus.

3.3. Fluorescence Analysis of Antibody Orientation on MBs

To visualize target antigen captured and determine the orientation of the antibody on
the surface of MBs, we taken an approach: antigen SEB labeled by QD (QD-SEB) bound to
the surface of IMBs to form the IMB-QD complexes by a further immune response step,
and the fluorescence intensity of IMB-QDs were analyzed after magnetic separation, which
should be related to the amount of antigen captured and exposure status of the Fab fragment
(Figure 5A). First, we measured the excitation and emission spectrum of QD-SEB conjugates
and QDs by microplate reader. After coupling with the SEB, the maximum excitation and
emission wavelength of QD-SEB complexes was slightly red-shifted compared to QDs due
to the surrounding organic layer (antigen) [43] (Figure 5E). Additionally, the fluorescence
microscopy imaging visually indicated that pH6-IMBs, pH7-IMBs and pH8-IMBs can
recognize and capture QD-SEB to form IMB-QD complexes (Figure 5B–D). The fluorescence
intensity in the supernatant (pH6-S-QD, pH7-S-QD and pH8-S-QD) was from the unbound
QD-SEB complexes after pH6-IMBs, pH7-IMBs and pH8-IMBs capture and separation.
These results show that the fluorescence intensity of pH8-IMB-QD complexes is higher
than pH6-IMB-QD or pH7-IMB-QD complexes, and that of the corresponding supernatant
is lower than that of pH6-S-QD and pH7-S-QD. The above experiments confirmed that
pH8-IMBs possessed more exposed Fab fragments and more antigen recognition sites to
bind more antigen molecules than pH6-IMBs and pH7-IMBs (Figure 5F,G).
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3.4. Fab Accessibility Analysis on IMBs

In order to obtain more direct evidence that the Fab fragment of the pH8-IMBs is more
exposed than in the pH6-IMBs or pH7-IMBs, and based on the fact that anti-Fc antibody
can specifically recognize the exposed Fc region of the IMBs, we evaluated the accessibility
of Fab on IMBs by determining the amount of anti-Fc antibody bound to IMBs. Figure 6A
reveals that higher pH values would result in fewer anti-Fc antibodies bound to IMBs,
indicating that the Fc region of the Staphylococcus antibody was more attached to the surface
of the MBs at pH 8.0. In other words, the Fab fragment of pH8-IMBs was more exposed to
the antigen, which increased the likelihood of IMBs of recognizing S. aureus, resulting in
higher capture efficiency.
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(B) The coupling ratio assay of α−NH2−lys and ε−NH2−lys at pH 6.0 and 7.0, (C) The proposed
mechanism of antibody orientation on MBs for S. aureus. Red spheres represent MBs, yellow spheres
represent S. aureus, and blue stick structures represent antibody.

3.5. Lysine Mimicking

Considering the complex microenvironment in which lysine is located, we only
chose the representative ε-NH2-lys (α-NH2 is protected by a BOC protecting group) and
α-NH2-lys (ε-NH2 is protected by a BOC protecting group) to mimic the ε-NH2 of lysine
and the amino terminal of the antibody, respectively, in order to accurately understand
the mechanism of the oriented immobilization of antibody. We studied the coupling ratio
of aMBs with α-NH2-lys and ε-NH2-lys at pH 6.0, 7.0 and 8.0. Although the data of the
coupling rate were not obtained due to the poor solubility of amino acids at pH 8.0, the
results also show that the coupling ratio of α-NH2-lys significantly decreased compared
to that of ε-NH2-lys at a higher pH value (Figure 6B). The positively charged α-NH2-lys
and ε-NH2-lys could couple with negatively charged aMBs at pH 6.0, whereas only the
positively charged ε-NH2-lys could couple with aMBs at pH 7.0. Similarly, at pH 8.0, the
ε-NH2 group of lysine residues in the Fc region was more prone to being adsorbed in
aMBs relative to the amino terminus of the antibody, which contributed to the oriented
immobilization of the Fc fragment on the surface of MBs, thereby fully exposing the Fab
fragment and enabling the recognition of more antigens.
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4. Conclusions

In this study, we proposed an effective approach to control antibody orientation on
the surface of MBs by modulating the degree of ionization of reactive amino groups. The
mechanism of oriented immobilization of antibody on MBs was studied through the use
of a QDs labeled antigen, Fab accessibility assay and lysine mimicking. MBs activated
by EDC/sulfo-NHS were negatively charged and adsorbed the positively charged amino
groups of the antibody (amino terminus and ε-NH2 of lysine) through electrostatic interac-
tions before crosslinking with the MBs. The amino terminus of the Fab fragment and the
ε-NH2 of lysine from Fc region were both positively charged at pH < 7.5, leading to the
random immobilization of the antibody on MBs. At pH > 7.5, the positively charged ε-NH2
group of lysine was preferentially adsorbed on the negative surface relative to the un-
charged amino terminus, resulting in Fc-oriented immobilization and a more exposed Fab
fragment (Figure 6C). As a result, we improved the capture efficiency of IMBs on S. aureus
in PBS or milk by controlling the orientation of Staphylococcus antibodies immobilized on
MBs at pH 8.0, and higher capture efficiencies can be achieved with a lower amount of
pH8-IMBs. This strategy would be very useful for the preparation of IMBs for effectively
capturing and separating pathogenic bacteria from a complicated food matrix with lower
cost, thereby improving specificity and sensitivity integrated with PCR, enzyme-linked
immunosorbent assay (ELISA), luminescence and electrochemistry for the detection of
trace pathogenic microorganisms.
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IMBs immunomagnetic beads
QDs quantum dots
EDC N-(3-dimethylaminopropyl)-N’-ethylcarbodiimide hydrochloride crystalline

Sulfo-NHS: N-hydroxysulfosuccinimide sodium salt
BCA bicinchoninic acid
BSA bovine serum albumin
PCA plate count agar
NB nutrient broth
SEB Staphylococcus enterotoxin B
BOC tert-butyloxycarbonyl
CFU colony-forming unit
Fab antigen-binding fragment
Fc fragment crystallizable
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