Phytosterols and γ-Oryzanol as Cholesterol Solid Phase Modifiers during Digestion
Abstract
:1. Introduction
2. Materials and Methods
2.1. Phase Equilibrium Behaviour
2.2. In Vitro Digestibility
3. Results and Discussion
3.1. Phytosterol and γ-Oryzanol Melting Behaviour
3.2. Cholesterol + Phytosterol Solid–Liquid Equilibrium Phase Diagram
3.3. Cholesterol + γ-Oryzanol Solid–Liquid Equilibrium Phase Diagram
3.4. Phase Behavior of the Mixtures after In Vitro Digestibility
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Phillips, K.M.; Ruggio, D.M.; Toivo, J.I.; Swank, M.A.; Simpkins, A.H. Free and Esterified Sterol Composition of Edible Oils and Fats. J. Food Compos. Anal. 2002, 15, 123–142. [Google Scholar] [CrossRef]
- Trautwein, E.A.; Duchateau, G.S.M.J.E.; Lin, Y.; Mel’nikov, S.M.; Molhuizen, H.O.F.; Ntanios, F.Y. Proposed Mechanisms of Cholesterol-Lowering Action of Plant Sterols. Eur. J. Lipid Sci. Technol. 2003, 105, 171–185. [Google Scholar] [CrossRef]
- Amiot, M.J.; Knol, D.; Cardinault, N.; Nowicki, M.; Bott, R.; Antona, C.; Borel, P.; Bernard, J.P.; Duchateau, G.; Lairon, D. Comparable Reduction in Cholesterol Absorption after Two Different Ways of Phytosterol Administration in Humans. Eur. J. Nutr. 2013, 52, 1215–1222. [Google Scholar] [CrossRef]
- Ogier, N.; Amiot, M.J.; Georgé, S.; Maillot, M.; Mallmann, C.; Maraninchi, M.; Morange, S.; Lescuyer, J.F.; Peltier, S.L.; Cardinault, N. LDL-Cholesterol-Lowering Effect of a Dietary Supplement with Plant Extracts in Subjects with Moderate Hypercholesterolemia. Eur. J. Nutr. 2013, 52, 547–557. [Google Scholar] [CrossRef] [PubMed]
- Weststrate, J.A.; Meijer, G.W. Plant Sterol-Enriched Margarines and Reduction of Plasma Total- and LDL-Cholesterol Concentrations in Normocholesterolaemic and Mildly Hypercholesterolaemic Subjects. Eur. J. Clin. Nutr. 1998, 52, 334–343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanders, D.J.; Minter, H.J.; Howes, D.; Hepburn, P.A. The Safety Evaluation of Phytosterol Esters. Part 6. The Comparative Absorption and Tissue Distribution of Phytosterols in the Rat. Food Chem. Toxicol. 2000, 38, 485–491. [Google Scholar] [CrossRef]
- Rogers, M.A. Co-Operative Self-Assembly of Cholesterol and γ-Oryzanol Composite Crystals. CrystEngComm 2011, 13, 7049–7057. [Google Scholar] [CrossRef]
- Cuevas, M.S.; de Souza, P.T.; da Costa Rodrigues, C.E.; Meirelles, A.J.A. Quantification and Determination of Composition of Steryl Ferulates in Refined Rice Bran Oils Using an UPLC-MS Method. J. Am. Oil Chem. Soc. 2017, 94, 375–385. [Google Scholar] [CrossRef]
- Kim, J.S.; Godber, J.S.; King, J.M.; Prinyawiwatkul, W. Inhibition of Cholesterol Autoxidation by the Nonsaponifiable Fraction in Rice Bran in an Aqueous Model System. JAOCS J. Am. Oil Chem. Soc. 2001, 78, 685–689. [Google Scholar] [CrossRef]
- Qureshi, A.A.; Bradlow, B.A.; Salser, W.A.; Brace, L.D. Novel Tocotrienols of Rice Bran Modulate Cardiovascular Disease Risk Parameters of Hypercholesterolomic Humans. J. Nutr. Biochem. 1997, 8, 290–298. [Google Scholar] [CrossRef]
- Berger, A.; Rein, D.; Schäfer, A.; Monnard, I.; Gremaud, G.; Lambelet, P.; Bertoli, C. Similar Cholesterol-Lowering Properties of Rice Bran Oil, with Varied γ-Oryzanol, in Mildly Hypercholesterolemic Men. Eur. J. Nutr. 2005, 44, 163–173. [Google Scholar] [CrossRef]
- Patel, M.; Naik, S.N. Gamma-Oryzanol from Rice Bran Oil—A Review. Rn 2004, 55, 52–57. [Google Scholar]
- Orthoefer, F.T. Rice Bran Oil. In Bailey’s Industrial Oil and Fat Products; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2020; Volume 2, pp. 1–25. [Google Scholar] [CrossRef]
- Faludi, A.; Izar, M.; Saraiva, J.; Chacra, A.; Bianco, H.; Neto, A.A.; Bertolami, A.; Pereira, A.; Lottenberg, A.; Sposito, A.; et al. Atualização Da Diretriz Brasileira de Dislipidemias e Erevenção Da Aterosclerose—2017. Arq. Bras. De Cardiol. 2017, 109, 76. [Google Scholar] [CrossRef] [PubMed]
- Piepoli, M.F.; Hoes, A.W.; Agewall, S.; Albus, C.; Brotons, C.; Catapano, A.L.; Cooney, M.T.; Corrà, U.; Cosyns, B.; Deaton, C.; et al. 2016 European Guidelines on Cardiovascular Disease Prevention in Clinical Practice. Eur. Heart J. 2016, 37, 2315–2381. [Google Scholar] [CrossRef] [PubMed]
- Jellinger, P.S.; Handelsman, Y.; Rosenblit, P.D.; Bloomgarden, Z.T.; Fonseca, V.A.; Garber, A.J.; Grunberger, G.; Guerin, C.K.; Bell, D.S.H.; Mechanick, J.I.; et al. American Association of Clinical Endocrinologists and American College of Endocrinology Guidelines for Management of Dyslipidemia and Prevention of Cardiovascular Disease. Endocr. Pract. Off. J. Am. Coll. Endocrinol. Am. Assoc. Clin. Endocrinol. 2017, 23, 1–87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grundy, S.M.; Arai, H.; Barter, P.; Bersot, T.P.; Betteridge, D.J.; Carmena, R.; Cuevas, A.; Davidson, M.H.; Genest, J.; Kesäniemi, Y.A.; et al. An International Atherosclerosis Society Position Paper: Global Recommendations for the Management of Dyslipidemia. Executive Summary. Atherosclerosis 2014, 232, 410–413. [Google Scholar] [CrossRef]
- Catapano, A.L.; Graham, I.; De Backer, G.; Wiklund, O.; John Chapman, M.; Drexel, H.; Hoes, A.W.; Jennings, C.S.; Landmesser, U.; Pedersen, T.R.; et al. 2016 ESC/EAS Guidelines for the Management of Dyslipidaemias. Eur. Heart J. 2016, 37, 2999–3058l. [Google Scholar] [CrossRef] [Green Version]
- Lin, X.; Racette, S.B.; Lefevre, M.; Spearie, C.A.; Most, M.; Ma, L.; Ostlund, R.E. The Effects of Phytosterols Present in Natural Food Matrices on Cholesterol Metabolism and LDL-Cholesterol: A Controlled Feeding Trial. Eur. J. Clin. Nutr. 2010, 64, 1481–1487. [Google Scholar] [CrossRef] [Green Version]
- Cusack, L.K.; Fernandez, M.L.; Volek, J.S. The Food Matrix and Sterol Characteristics Affect the Plasma Cholesterol Lowering of Phytosterol/Phytostanol 1. Adv. Nutr. 2013, 4, 633–643. [Google Scholar] [CrossRef] [Green Version]
- Allman-Farinelli, M.A.; Gomes, K.; Favaloro, E.J.; Petocz, P. A Diet Rich in High-Oleic-Acid Sunflower Oil Favorably Alters Low-Density Lipoprotein Cholesterol, Triglycerides, and Factor VII Coagulant Activity. J. Am. Diet. Assoc. 2005, 105, 1071–1079. [Google Scholar] [CrossRef]
- Racette, S.B.; Lin, X.; Ma, L.; Ostlund, R.E. Natural Dietary Phytosterols. J. AOAC Int. 2015, 98, 679–684. [Google Scholar] [CrossRef]
- Christiansen, L.; Karjalainen, M.; Seppänen-Laakso, T.; Hiltunen, R.; Yliruusi, J. Effect of β-Sitosterol on Precipitation of Cholesterol from Non-Aqueous and Aqueous Solutions. Int. J. Pharm. 2003, 254, 155–166. [Google Scholar] [CrossRef]
- Rozner, S.; Garti, N. The Activity and Absorption Relationship of Cholesterol and Phytosterols. Colloids Surf. A: Physicochem. Eng. Asp. 2006, 282–283, 435–456. [Google Scholar] [CrossRef]
- Rozner, S.; Popov, I.; Uvarov, V.; Aserin, A.; Garti, N. Templated Cocrystallization of Cholesterol and Phytosterols from Microemulsions. J. Cryst. Growth 2009, 311, 4022–4033. [Google Scholar] [CrossRef]
- Bond, A.D. What Is a Co-Crystal? CrystEngComm 2007, 9, 833. [Google Scholar] [CrossRef]
- Natarajan, R.; Bridgland, L.; Sirikulkajorn, A.; Lee, J.H.; Haddow, M.F.; Magro, G.; Ali, B.; Narayanan, S.; Strickland, P.; Charmant, J.P.H.; et al. Tunable Porous Organic Crystals: Structural Scope and Adsorption Properties of Nanoporous Steroidal Ureas. J. Am. Chem. Soc. 2013, 135, 16912–16925. [Google Scholar] [CrossRef]
- Wang, J.-R.; Zhou, C.; Yu, X.; Mei, X. Stabilizing Vitamin D3 by Conformationally Selective Co-Crystallization. Chem. Commun. 2014, 50, 855–858. [Google Scholar] [CrossRef]
- Maximo, G.J.; Carareto, N.D.D.; Costa, M.C.; dos Santos, A.O.; Cardoso, L.P.; Krähenbühl, M.A.; Meirelles, A.J.A. On the Solid-Liquid Equilibrium of Binary Mixtures of Fatty Alcohols and Fatty Acids. Fluid Phase Equilibria 2014, 366, 88–98. [Google Scholar] [CrossRef]
- Maximo, G.J.; Costa, M.C.; Meirelles, A.J.A. The Crystal-T Algorithm: A New Approach to Calculate the SLE of Lipidic Mixtures Presenting Solid Solutions. Phys. Chem. 2014, 16, 16740–16754. [Google Scholar] [CrossRef] [Green Version]
- Wesdorp, L.H. Liquid–Multiple Solid Phase Equilibria in Fats, Theory and Experiments. Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands, 1990. [Google Scholar]
- Narine, S.S.; Marangoni, A.G. Relating Structure of Fat Crystal Networks to Mechanical Properties: A Review. Food Res. Int. 1999, 32, 227–248. [Google Scholar] [CrossRef]
- Marangoni, A.G.; Narine, S.S. Identifying Key Structural Indicators of Mechanical Strength in Networks of Fat Crystals. Food Res. Int. 2002, 35, 957–969. [Google Scholar] [CrossRef]
- Tang, D.; Marangoni, A.G. Modeling the Rheological Properties and Structure of Colloidal Fat Crystal Networks. Trends Food Sci. Technol. 2007, 18, 474–483. [Google Scholar] [CrossRef]
- Acevedo, N.C.; Marangoni, A.G. Characterization of the Nanoscale in Triacylglycerol Crystal Networks. Cryst. Growth Des. 2010, 10, 3327–3333. [Google Scholar] [CrossRef]
- Minekus, M.; Alminger, M.; Alvito, P.; Ballance, S.; Bohn, T.; Bourlieu, C.; Carrì, F.; Boutrou, R.; Corredig, F.M.; Dupont, D.; et al. A Standardised Static in Vitro Digestion Method Suitable for Food—An International Consensus. Food Funct. 2014, 5, 1113–1124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cuevas, M.S.; Crevelin, E.J.; de Moraes, L.A.B.; Oliveira, A.L.; Rodrigues, C.E.C.; Meirelles, A.J.A. Solubility of Commercial Octacosanol in Organic Solvents and Their Correlation by Thermodynamic Models at Different Temperatures. J. Chem. Thermodyn. 2017, 110, 186–192. [Google Scholar] [CrossRef]
- Costa, M.C.; Boros, L.A.D.; Souza, J.A.; Rolemberg, M.P.; Kr, M.A.; Meirelles, A.J.A. Solid—Liquid Equilibrium of Binary Mixtures Containing Fatty Acids and Triacylglycerols. J. Chem. Eng. Data 2011, 56, 3277–3284. [Google Scholar] [CrossRef]
- Maximo, G.J.; Costa, M.C.; Meirelles, A.J.A. Solid-Liquid Equilibrium of Triolein with Fatty Alcohols. Braz. J. Chem. Eng. 2013, 30, 33–43. [Google Scholar] [CrossRef] [Green Version]
- Costa, M.C.; Sardo, M.; Rolemberg, M.P.; Coutinho, J.A.P.; Meirelles, A.J.A.; Ribeiro-Claro, P.; Krähenbühl, M.A. The Solid–Liquid Phase Diagrams of Binary Mixtures of Consecutive, Even Saturated Fatty Acids. Chem. Phys. Lipids 2009, 160, 85–97. [Google Scholar] [CrossRef]
- Costa, M.C.; Sardo, M.; Rolemberg, M.P.; Ribeiro-Claro, P.; Meirelles, A.J.A.; Coutinho, J.A.P.; Krähenbühl, M.A. The Solid-Liquid Phase Diagrams of Binary Mixtures of Consecutive, Even Saturated Fatty Acids: Differing by Four Carbon Atoms. Chem. Phys. Lipids 2009, 157, 40–50. [Google Scholar] [CrossRef]
- Gmehling, J.; Kolbe, B.; Kleiber, M.; Rarey, J. Chemical Thermodynamics for Process Simulation; John Wiley & Sons: Hoboken, NJ, USA, 2012; ISBN 3527312773. [Google Scholar]
- Reid, R.C.; Prausnitz, J.M.; Poling, B.E. The Properties of Gases and Liquids; McGraw Hill Book Co.: New York, NY, USA, 1987. [Google Scholar]
- Esperança, E.D.S.; Bonatto, M.S.; Shimamoto, G.G.; Tubino, M.; Costa, M.C.; Meirelles, A.J.D.A.; Maximo, G.J. Phase Behavior of Cholesterol in Mixtures with Hypo- and Hypercholesterolemic Lipids. Food Funct. 2018, 9, 3447–3455. [Google Scholar] [CrossRef]
- Costa, M.C.; Rolemberg, M.P.; Boros, L.A.D.; Krähenbühl, M.A.; De Oliveira, M.G.; Meirelles, A.J.A. Solid-Liquid Equilibrium of Binary Fatty Acid Mixtures. J. Chem. Eng. Data 2007, 52, 30–36. [Google Scholar] [CrossRef]
- Bot, A.; Agterof, W.G.M. Structuring of Edible Oils by Mixtures of γ-Oryzanol with β-Sitosterol or Related Phytosterols. J. Am. Oil Chem. Soc. 2006, 83, 513–521. [Google Scholar] [CrossRef]
- Lusi, M. Engineering Crystal Properties through Solid Solutions. Cryst. Growth Des. 2018, 18, 3704–3712. [Google Scholar] [CrossRef] [Green Version]
- Esperança, E.S.; Bonatto, M.S.; Costa, M.C.; Meirelles, A.J.A.; Maximo, G.J. Cholesterol Thermodynamic Behaviour in Mixtures with Medium Chain Fatty Acids and Vegetable Oils Composed of Them. Fluid Phase Equilibria 2022, 557, 113432. [Google Scholar] [CrossRef]
- McNaught, A.D.; Wilkinson, A. IUPAC Compendium of Chemical Terminology—The “Gold Book”, 2nd ed.; Blackwell Scientific Publications: Hoboken, NJ, USA, 1997. [Google Scholar]
- James, S.L.; Adams, C.J.; Bolm, C.; Braga, D.; Collier, P.; Friščić, T.; Grepioni, F.; Harris, K.D.M.; Hyett, G.; Jones, W.; et al. Mechanochemistry: Opportunities for New and Cleaner Synthesis. Chem. Soc. Rev. 2012, 41, 413–447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weyna, D.R.; Shattock, T.; Vishweshwar, P.; Zaworotko, M.J. Synthesis and Structural Characterization of Cocrystals and Pharmaceutical Cocrystals: Mechanochemistry vs Slow Evaporation from Solution. Cryst. Growth Des. 2009, 9, 1106–1123. [Google Scholar] [CrossRef]
- Friscic, T. New Opportunities for Materials Synthesis Using Mechanochemistry. J. Mater. Chem. 2010, 20, 7599–7605. [Google Scholar] [CrossRef]
- Kong, F.; Singh, R.P. A Human Gastric Simulator (HGS) to Study Food Digestion in Human Stomach. J. Food Sci. 2010, 75, E627–E635. [Google Scholar] [CrossRef]
Cholesterol + Phytosterol | Cholesterol + γ-Oryzanol | ||||||||
---|---|---|---|---|---|---|---|---|---|
x1 | Tinitial | Tfus | x1 | Ttr1 | Tinitial | Ttr2 | Ttr3 | Tfus | Tfinal |
0.111 | 404.95 | 409.84 | 0.101 | 319.98 | 332.9 | 352.7 | 363.1 | 405.36 | 442.35 |
0.197 | 406.15 | 0.207 | 318.03 | 331.2 | 355.0 | 363.1 | 403.15 | 439.25 | |
0.300 | 399.15 | 404.70 | 0.299 | 317.83 | 324.6 | 350.1 | 361.3 | 401.15 | 436.35 |
0.408 | 403.78 | 0.398 | 317.41 | 328.3 | 350.1 | 358.1 | 394.35 | 423.15 | |
0.496 | 399.65 | 405.30 | 0.499 | 322.1 | 341.6 | 351.1 | 375.11 | 413.15 | |
0.600 | 408.25 | 0.597 | 309.74 | 321.2 | 342.6 | 339.77 | 408.15 | ||
0.698 | 409.05 | 0.691 | 329.8 | 387.94 | 398.75 | ||||
0.790 | 403.15 | 409.65 | 0.812 | 310.89 | 330.5 | 338.2 | 353.2 | 402.74 | 408.15 |
0.899 | 410.70 | 0.900 | 304.57 | 332.6 | 331.4 | 412.15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Esperança, E.S.; Bonatto, M.S.; Silva, K.C.G.; Shimamoto, G.G.; Tubino, M.; Costa, M.C.; Rodrigues, C.E.C.; Meirelles, A.J.A.; Sato, A.C.K.; Maximo, G.J. Phytosterols and γ-Oryzanol as Cholesterol Solid Phase Modifiers during Digestion. Foods 2022, 11, 3629. https://doi.org/10.3390/foods11223629
Esperança ES, Bonatto MS, Silva KCG, Shimamoto GG, Tubino M, Costa MC, Rodrigues CEC, Meirelles AJA, Sato ACK, Maximo GJ. Phytosterols and γ-Oryzanol as Cholesterol Solid Phase Modifiers during Digestion. Foods. 2022; 11(22):3629. https://doi.org/10.3390/foods11223629
Chicago/Turabian StyleEsperança, Eduardo S., Mariane S. Bonatto, Karen C. G. Silva, Gustavo G. Shimamoto, Matthieu Tubino, Mariana C. Costa, Christianne E. C. Rodrigues, Antonio J. A. Meirelles, Ana C. K. Sato, and Guilherme J. Maximo. 2022. "Phytosterols and γ-Oryzanol as Cholesterol Solid Phase Modifiers during Digestion" Foods 11, no. 22: 3629. https://doi.org/10.3390/foods11223629
APA StyleEsperança, E. S., Bonatto, M. S., Silva, K. C. G., Shimamoto, G. G., Tubino, M., Costa, M. C., Rodrigues, C. E. C., Meirelles, A. J. A., Sato, A. C. K., & Maximo, G. J. (2022). Phytosterols and γ-Oryzanol as Cholesterol Solid Phase Modifiers during Digestion. Foods, 11(22), 3629. https://doi.org/10.3390/foods11223629