Research Progress on Nutritional Value, Preservation and Processing of Fish—A Review
Abstract
:1. Introduction
2. Nutritional Value of Fish
2.1. Proteins
2.2. Lipids
2.3. Multi-Vitamins
2.4. Minerals
3. Preservation Technology Approaches of Fish
3.1. Low-Temperature Preservation
3.1.1. Cooling and Icing Technique
3.1.2. Freezing Technique
3.1.3. Super-Chilling
3.2. Antimicrobial Preservation
Antimicrobial | Preservatives | Fish/Fish Products | Storage Life | Main Effects | Reference |
---|---|---|---|---|---|
Plant origin | Wild mint leaf and cumin seed | Rainbow trout muscle | Up to 12–18 days | Total viable count and psychrotrophic bacteria ↓, peroxide value ↓, thiobarbituric acid reactive substances ↓, lipid oxidation ↓, sensory quality ↑ | [63] |
Pure lemon essential oil (p-cymene 14.36%, D-limonene 52.85% and β-pinene 13.69%) | Fish spoilage bacteria | Shelf life increased | Photobacterium damselae ↓, Vibrio vulnificus ↓, Proteus Mirabilis ↓, Serratia liquefaciens ↓, Enterococcus faecalis ↓, Pseudomonas luteola ↓, shelf life ↑ | [64] | |
Cinnamon oil (Immersion 0.1%) | Common carp muscle | Up to 2 days | Total volatile base nitrogen ↓, total viable count ↓, biogenic amines ↓, H2S producing bacteria ↓, lactic acid bacteria ↓, Pseudomonas and Aeromonas ↓, shelf life ↑, sensory quality ↑ | [65] | |
Salvia officinalis L. | Rainbow trout muscle | Shelf life increased (up to 25 days) | Total mesophilic count, Pseudomonas, Enterobacteriaceae, psychrophilic and H2S producing bacteria, formation of total volatile base nitrogen and free fatty acid ↓, shelf life ↑ | [66] | |
Marinated crayfish (Immersion 30 mL/L) | Rosemary and thyme | Up to 42–70 days | Thiobarbituric acid value ↓, total viable count ↓, total volatile basic nitrogen ↓, psychrotrophic bacteria count ↓, lactic acid bacteria ↓, moulds and yeast ↓, sensory score and shelf life ↑ | [67] | |
Animal origin | Chitosan and lysozyme (Immersion 0.6 mg/mL) | Large yellow croaker | Shelf life increased (up to 15 days) | Lipid oxidation ↓, thiobarbituric acid value ↓, total volatile basic nitrogen ↓, total viable count ↓ (7.0 log CFU/g), Salmonella, S. aureus, E. coli, P. aeruginosa ↓, shelf life ↑ | [68] |
Chitosan and glycerol monolaurate (0.1% and 0.3%) | Grass carp | Up to 15–20 days | Total viable count ↓, psychrophilic bacteria counts ↓, pseudomonads ↓, H2S producing bacteria, thiobarbituric acid value ↓, total volatile basic nitrogen ↓, shelf life ↑ | [69] | |
Pomegranate peel extract-lysozyme, gelatin | Mackerel | Shelf life increased (up to 9 days) | Mesophilic and psychrotrophic count ↓, bacterial activity ↓, free fatty acids and thiobarbituric acid reactive substances ↓, sensory and shelf life ↑ | [70] | |
Lactoperoxidase and whey | Rainbow trout muscles | Up to 12–16 days | Mesophiles, S. putrefaciens, pseudomonas spp., P. fluorescens ↓, sensory quality and shelf life ↑ | [71] | |
Bacteriocins | Lactic acid bacteria and essential oil | Sea bass | 14–21 days | Psychrotrophic bacterial count ↓, mesophilic aerobic plate count ↓, total volatile basic nitrogen ↓, shelf life ↑ | [72] |
Bacteriocin 7293 | Pangasius fish fillets | Up to 6–7 days | Gram-positive (S. aureus and L. monocytogenes) ↓, Gram-negative (A. hydrophila, S. typhimurium, P. aeruginosa and E. coli) bacteria | [73] | |
Reuterin isolated by Lactobacillus reuteri INIA P579 | Cold smoked salmon | Shelf life increased (up to 15 days) | E. coli K12 ↓, L. monocytogenes strains ↓, pathogenic bacterial growth ↓, shelf life ↑ | [74] | |
Bacteriocin EFL4 | Fresh salmon fillets | Shelf life increased (up to 7 days) | S. aureus, E. coli, S. putrefaciens, P. fluorescens and L. monocytogenes ↓, total viable count ↓, total volatile basic nitrogen ↓, shelf life ↑ | [75] | |
Organic acids | Citric and lactic acid | European lake | Shelf life increased (up to 15 days) | Aerobe and anaerobe ↓, psychrotrophic and enterobacteriaceae counts ↓, proteolytic activity ↓, sensory quality ↑ | [76] |
Citric and acetic acid (1 and 3%) | Bolti fish | Shelf life increased (up to 12 days) | Viable bacterial count ↓, coliform, yeast and mould count ↓, psychrophilic bacteria ↓, microbial load ↓ | [77] | |
Acetic and ascorbic acid | Silver carp | Shelf life increased (up to 9 days) | Total viable count ↓, peroxide value and pH ↓, bacterial activity ↓, sensory quality ↑, shelf life ↑ | [78] | |
Sodium lactate, sodium acetate, sodium citrate | Salmon | Shelf life extended (4–7 days) | Aerobic and psychrotrophic count ↓, Pseudomonas spp., lactic acid and Enterobacteriaceae bacteria ↓, H2S producing bacteria ↓, shelf life ↑ | [79] | |
Extract type | Nisin | Rainbow trout | Shelf life extended (12–16 days) | Lipid oxidation ↓, total viable count ↓, psychrotrophic viable count ↓, bacteriostatic action ↓, total viable count ↓, peroxide value ↓, thiobarbituric acid value ↓, shelf life ↑ | [80] |
Rosemary extract with nisin stored at 4 °C | Golden pompano fillet | Up to 6 days | Protein degradation ↓, nucleotide breakdown ↓, microbial count and lipid oxidation ↓, total volatile basic nitrogen ↓, colour, texture and sensory attributes ↑, shelf life ↑ | [81] | |
Urtica dioica extract with whey protein contained poly (ε-caprolactone) | Rainbow trout fillet | Up to 15 days | Antimicrobial and antioxidant activity ↑, bacterial growth ↓, total volatile basic nitrogen and thiobarbituric acid values ↓, inhibition against mesophilic, psychrophilic, lactic acid bacteria and enterobacteriaceae ↑ | [82] | |
Lactobacillus reuteri combined with modified atmosphere packaging | Tuna burger | Up to 12–13 days | Colour, odour and juiciness ↑, microbial quality ↑, product quality ↑, shelf life ↑ | [83] | |
Antioxidants | Phenols | Salted silver carp | Up to 6 days | Oxidative stability ↑, thiobarbituric acid reactive substances ↓, lipoxygenase ↓, sensory quality ↑ | [84] |
Ginger extract supercritical and essential oil (β sesquiphellandrene, α-Zingiberene, β-bisabolene, α-farnesene, α-curcumene) | Nile tilapia burger | Up to 6–8 days | Thiobarbituric acid reactive substances ↓, antioxidant activity ↑, lipid oxidation ↓ reduced by enzymatic activities (Catalases-CAT, Total superoxide dismutase-SOD and Glutathione peroxidase-GSH-px), shelf life ↑ | [85] | |
Chitosan with essential oil (clove bud, cinnamon and lemongrass) | Grass carp fillets | Up to 7–11 days | Deterioration of physicochemical quality ↓, microbial growth ↓, oxidative stress ↓, lipid oxidation ↓, shelf life ↑ | [86] | |
Nisin coated with chitosan | Yellow croaker | Shelf life extended (6–9 days) | Microbial growth ↓, lipid oxidation ↓, protein oxidation ↓, shelf life ↑ | [87] | |
Nisin combination with high-pressure processing (450 and 600 MPa) at low temperature (−3 °C) | Dry-cured cold smoked salmon | Shelf life increased | Listeria spp. ↓, spoilage microbiota ↓, sensory quality and peelability ↑, consumer preference ↑ | [88] | |
Satureja thymbra extract (ɣ terpinene, p-cymene, carvacrol and trans-caryophyllene) | Gilthead seabream | Shelf life extended (25–35%) | Lipid oxidation (peroxide value) ↓, antimicrobial activity ↓, shelf life ↑ | [89] | |
Oregano essential oil | Hake burgers | Shelf life increased (up to 14 days) | bacterial count ↓, lipid oxidation ↓, shelf life ↑ | [90] | |
Halocnemum strobilaceum (Phenolic content 500 mg GAE/L) | Dolphinfish (Coryphaena hippurus) fillet | Shelf life increased (up to 6–9 days) | Lipid oxidation ↓, peroxide value ↓, malondialdehyde ↓, sensory properties ↑, shelf life ↑ | [91] | |
Chitosan (2% w/v) and nano-chitosan (2% w/v) | Silver carp | Shelf life increased (3–6 days) | Antimicrobial activity ↓, total volatile basic nitrogen ↓, lipid oxidation ↓, thiobarbituric acid value ↓, mesophilic and psychrophilic bacteria count ↓ | [92] | |
Chitosan oligosaccharides (COS)—nisin conjugates | Collichthys niveatus | Shelf life increased (4 days) | Sensory and texture deterioration ↓, total viable counts ↓, total volatile basic nitrogen ↓, oxidative spoilage ↓, shelf life ↑ | [93] |
3.3. Antioxidant Preservation
4. Processing Technology Approaches of Fish
4.1. Non-Thermal Technology
4.1.1. Pulsed Electric Field (PEF)
4.1.2. Fluorescence Spectroscopy
4.1.3. Hyperspectral Imaging Technique (HSI)
4.1.4. High-Pressure Processing (HPP)
4.2. Thermal Technology
Canning
5. Utilization of Fish Processing By-Products
5.1. Fish Meal
5.2. Fish Oil
5.3. Fish Silage
5.4. Fish Protein Hydrolysate
5.5. Collagen
5.6. Enzymes
5.6.1. Proteases
5.6.2. Lipases
5.7. Minerals
5.8. Antioxidants
6. Conclusions
7. Future Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Frisch, A.J.; Cameron, D.S.; Pratchett, M.S.; Williamson, D.H.; Williams, A.J.; Reynolds, A.D.; Hoey, A.S.; Rizzari, J.R.; Evans, L.; Kerrigan, B.; et al. Key aspects of the biology, fisheries and management of Coral grouper. Rev. Fish Biol. Fish. 2016, 26, 303–325. [Google Scholar] [CrossRef]
- Pedro, S.; Nunes, M.L. Reducing salt levels in seafood products. In Reducing Salt in Foods, 2nd ed.; Woodhead Publishing: Thorston, UK, 2019; pp. 185–211. [Google Scholar]
- Tavares, J.; Martins, A.; Fidalgo, L.G.; Lima, V.; Amaral, R.A.; Pinto, C.A.; Silva, A.M.; Saraiva, J.A. Fresh Fish Degradation and Advances in Preservation Using Physical Emerging Technologies. Foods 2021, 10, 780. [Google Scholar] [CrossRef] [PubMed]
- Hassanien, H.A.; Al-Rashada, Y. Assessment of genetic diversity and phylogenetic relationship among grouper species Epinephelus spp. from the Saudi waters of the Arabian Gulf. Saud. J. Biol. Sci. 2021, 28, 1779–1786. [Google Scholar] [CrossRef]
- Luo, J.; Amenyogbe, E.; Fu, W.-j.; Huang, J.-s.; Chen, G. Hepatic transcriptome profiles reveal the hepatoprotective effects of dietary quercetin and sodium quercetin-5′-sulfonates supplementation in hybrid grouper (Epinephelus fuscoguttatus♀× Epinephelus polyphekadion♂). Aquaculture 2022, 2022, 738483. [Google Scholar] [CrossRef]
- Ghaly, A.E.; Ramakrishnan, V.; Brooks, M.S.; Budge, S.M.; Dave, D. Fish Processing Wastes as a Potential Source of Proteins, Amino Acids and Oils: A Critical Review. J. Microb. Biochem. Technol. 2013, 5, 107–129. [Google Scholar] [CrossRef] [Green Version]
- Innes, J.K.; Calder, P.C. Marine Omega-3 (N-3) Fatty Acids for Cardiovascular Health: An Update for 2020. Int. J. Mol. Sci. 2020, 21, 1362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khalili Tilami, S.; Sampels, S. Nutritional Value of Fish: Lipids, Proteins, Vitamins, and Minerals. Rev. Fish. Sci. Aquac. 2018, 26, 243–253. [Google Scholar] [CrossRef]
- Ekonomou, S.I.; Parlapani, F.F.; Kyritsi, M.; Hadjichristodoulou, C.; Boziaris, I.S. Preservation status and microbial communities of vacuum-packed hot smoked rainbow trout fillets. Food Microbiol. 2022, 103, 103959. [Google Scholar] [CrossRef]
- Hematyar, N.; Rustad, T.; Sampels, S.; Kastrup Dalsgaard, T. Relationship between lipid and protein oxidation in fish. Aquac. Res. 2019, 50, 1393–1403. [Google Scholar] [CrossRef]
- Rathod, N.B.; Nirmal, N.P.; Pagarkar, A.; Özogul, F.; Rocha, J.M. Antimicrobial Impacts of Microbial Metabolites on the Preservation of Fish and Fishery Products: A Review with Current Knowledge. Microorganisms 2022, 10, 773. [Google Scholar] [CrossRef]
- Rathod, N.B.; Ranveer, R.C.; Benjakul, S.; Kim, S.K.; Pagarkar, A.U.; Patange, S.; Ozogul, F. Recent developments of natural antimicrobials and antioxidants on fish and fishery food products. Compr. Rev. Food Sci. Food Saf. 2021, 20, 4182–4210. [Google Scholar] [CrossRef] [PubMed]
- Dekkers, E.; Raghavan, S.; Kristinsson, H.G.; Marshall, M.R. Oxidative stability of mahi mahi red muscle dipped in tilapia protein hydrolysates. Food Chem. 2011, 124, 640–645. [Google Scholar] [CrossRef]
- Rustad, T.; Storrø, I.; Slizyte, R. Possibilities for the utilisation of marine by-products. Int. J. Food Sci. Technol. 2011, 46, 2001–2014. [Google Scholar] [CrossRef]
- Ghosh, S.; Sarkar, T.; Pati, S.; Kari, Z.A.; Edinur, H.A.; Chakraborty, R. Novel Bioactive Compounds From Marine Sources as a Tool for Functional Food Development. Front. Mar. Sci. 2022, 9, 10-3389. [Google Scholar] [CrossRef]
- Soyano, K.; Amagai, T.; Yamaguchi, T.; Mushirobira, Y.; Xu, W.-G.; Phạm, N.T.; Murata, R. Endocrine Regulation of Maturation and Sex Change in Groupers. Cells 2022, 11, 825. [Google Scholar] [CrossRef]
- Yeşilsu, A.F.; Özyurt, G. Oxidative stability of microencapsulated fish oil with rosemary, thyme and laurel extracts: A kinetic assessment. J. Food Eng. 2019, 240, 171–182. [Google Scholar] [CrossRef]
- Ahmed, I.; Jan, K.; Fatma, S.; Dawood, M.A.O. Muscle proximate composition of various food fish species and their nutritional significance: A review. J. Anim. Physiol. Anim. Nutr. 2022, 106, 690–719. [Google Scholar] [CrossRef]
- Sathivel, S.; Bechtel, P.J.; Babbitt, J.; Prinyawiwatkul, W.; Negulescu, I.I.; Reppond, K.D. Properties of protein powders from arrowtooth flounder (Atheresthes stomias) and herring (Clupea harengus) byproducts. J. Agric. Food Chem. 2004, 52, 5040–5046. [Google Scholar] [CrossRef]
- Ryu, B.; Shin, K.H.; Kim, S.K. Muscle Protein Hydrolysates and Amino Acid Composition in Fish. Mar. Drugs 2021, 19, 377. [Google Scholar] [CrossRef]
- Lees, M.J.; Carson, B.P. The Potential Role of Fish-Derived Protein Hydrolysates on Metabolic Health, Skeletal Muscle Mass and Function in Ageing. Nutrients 2020, 12, 2434. [Google Scholar] [CrossRef]
- Mohanty, B.P.; Mahanty, A.; Ganguly, S.; Mitra, T.; Karunakaran, D.; Anandan, R. Nutritional composition of food fishes and their importance in providing food and nutritional security. Food Chem. 2019, 293, 561–570. [Google Scholar] [CrossRef] [PubMed]
- Holma, K.A.; Maalekuu, B. Effect of traditional fish processing methods on the proximate composition of red fish stored under ambient room conditions. Amer. J. Food Nutr. 2013, 3, 73–82. [Google Scholar]
- Mohanty, B.P.; Ganguly, S.; Mahanty, A.; Sankar, T.V.; Anandan, R.; Chakraborty, K.; Paul, B.N.; Sarma, D.; Syama Dayal, J.; Venkateshwarlu, G.; et al. DHA and EPA Content and Fatty Acid Profile of 39 Food Fishes from India. BioMed Res. Int. 2016, 2016, 4027437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jamshidi, A.; Cao, H.; Xiao, J.; Simal-Gandara, J. Advantages of techniques to fortify food products with the benefits of fish oil. Food Res. Int. 2020, 137, 109353. [Google Scholar] [CrossRef]
- Mesias, M.; Holgado, F.; Sevenich, R.; Briand, J.; Márquez-Ruiz, G.; Morales, F. Fatty acids profile in canned tuna and sardine after retort sterilization and high pressure thermal sterilization treatment. J. Food Nutr. Res. 2015, 54, 171–178. [Google Scholar]
- Suganthi, A.; Venkatraman, C.; Chezhian, Y. Proximate composition of different fish species collected from Muthupet mangroves. Int. J. Fish. Aquat. Stud. 2015, 2, 420–423. [Google Scholar]
- Hantoush, A.; Al-Hamadany, Q.; Al-Hassoon, A.; Al-Ibadi, H. Nutritional value of important commercial fish from Iraqi waters. Int. J. Mar. Sci. 2015, 5, 1–5. [Google Scholar]
- Ariño, A.; Beltrán, J.; Herrera, A.; Roncalés, P. Fish and seafood: Nutritional Value. Encycl. Human Nutr. 2012, 2012, 254–261. [Google Scholar] [CrossRef]
- Nirmal, N.P.; Santivarangkna, C.; Rajput, M.S.; Benjakul, S.; Maqsood, S. Valorization of fish byproducts: Sources to end-product applications of bioactive protein hydrolysate. Compr. Rev. Food Sci. Food Saf. 2022, 21, 1803–1842. [Google Scholar] [CrossRef]
- Maulu, S.; Nawanzi, K.; Abdel-Tawwab, M.; Khalil, H.S. Fish Nutritional Value as an Approach to Children’s Nutrition. Front. Nutr. 2021, 8, 780844. [Google Scholar] [CrossRef]
- Balami, S.; Sharma, A.; Karn, R. Significance of Nutritional Value of Fish for Human Health. Malay. J. Halal Res. 2019, 2, 32–34. [Google Scholar] [CrossRef] [Green Version]
- Abraha, B.; Tessema, H.A.; Mahmud, A.; Tsighe, K.N.; Shui, X.; Yang, F. Effect of processing methods on nutritional and physico-chemical composition of fish: A review. MOJ Food Process. Technol. 2018, 6, 376–382. [Google Scholar] [CrossRef] [Green Version]
- Bowen, K.J.; Harris, W.S.; Kris-Etherton, P.M. Omega-3 Fatty Acids and Cardiovascular Disease: Are There Benefits? Curr. Treat. Opt. Cardiovascular Med. 2016, 18, 69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aworanti, O.; Ajani, A.; Agarry, S.; Babatunde, K.; Akinwumi, O. Evaluation of process parameters for biodiesel production from vegetable and palm waste frying oils using a homogeneous catalyst. Int. J. Ener. Eng. 2019, 9, 25–35. [Google Scholar]
- Sangija, F.; Martin, H.; Matemu, A. African nightshades (Solanum nigrum complex): The potential contribution to human nutrition and livelihoods in sub-Saharan Africa. Compr. Rev. Food Sci. Food Saf. 2021, 20, 3284–3318. [Google Scholar] [CrossRef]
- Hernandez, L.H.; Hardy, R.W. Vitamin A functions and requirements in fish. Aquac. Res. 2020, 51, 3061–3071. [Google Scholar] [CrossRef]
- Hawk, J.L.M. Safe, mild ultraviolet-B exposure: An essential human requirement for vitamin D and other vital bodily parameter adequacy: A review. Photodermatol. Photoimmunol. Photomed. 2020, 36, 417–423. [Google Scholar] [CrossRef]
- Lilly, T.T.; Jeyasanta, I.; Jamila, P. Macro and micronutrients of selected marine fishes in Tuticorin, South East coast of India. Int. Food Res. J. 2017, 24, 191–201. [Google Scholar]
- Marques, I.; Botelho, G.; Guiné, R.P.F. Comparative study on nutritional composition of fish available in Portugal. Nutr. Food Sci. 2019, 49, 925–941. [Google Scholar] [CrossRef]
- Gorini, F.; Sabatino, L.; Pingitore, A.; Vassalle, C. Selenium: An Element of Life Essential for Thyroid Function. Molecules 2021, 26, 7084. [Google Scholar] [CrossRef]
- Sihotang, M.; Sinuhaji, P.; Aisyah, D. Synthesis and characterization of pure natural hydroxyapatite from fishbone biowaste of coastal communities. IOP Conf. Ser. Ear. Environ. Sci. 2019, 305, 012072. [Google Scholar] [CrossRef]
- Antony Jesu Prabhu, P.; Schrama, J.W.; Kaushik, S.J. Mineral requirements of fish: A systematic review. Rev. Aquac. 2016, 8, 172–219. [Google Scholar] [CrossRef]
- Getu, A.; Misganaw, K. Post-harvesting and Major Related Problems of Fish Production. Fish. Aquac. J. 2015, 6. [Google Scholar] [CrossRef]
- Speranza, B.; Racioppo, A.; Bevilacqua, A.; Buzzo, V.; Marigliano, P.; Mocerino, E.; Scognamiglio, R.; Corbo, M.R.; Scognamiglio, G.; Sinigaglia, M. Innovative Preservation Methods Improving the Quality and Safety of Fish Products: Beneficial Effects and Limits. Foods 2021, 10, 2854. [Google Scholar] [CrossRef]
- Casas-Godoy, L.; Arellano-Plaza, M.; Kirchmayr, M.; Barrera-Martínez, I.; Gschaedler-Mathis, A. Preservation of non-Saccharomyces yeasts: Current technologies and challenges. Compr. Rev. Food Sci. Food Saf. 2021, 20, 3464–3503. [Google Scholar] [CrossRef]
- Pan, C.; Chen, S.; Hao, S.; Yang, X. Effect of low-temperature preservation on quality changes in Pacific white shrimp, Litopenaeus vannamei: A review. J. Sci. Food Agric. 2019, 99, 6121–6128. [Google Scholar] [CrossRef]
- Baboo, J.; Kilbride, P.; Delahaye, M.; Milne, S.; Fonseca, F.; Blanco, M.; Meneghel, J.; Nancekievill, A.; Gaddum, N.; Morris, G.J. The Impact of Varying Cooling and Thawing Rates on the Quality of Cryopreserved Human Peripheral Blood T Cells. Sci. Rep. 2019, 9, 3417. [Google Scholar] [CrossRef] [Green Version]
- Amaral, R.A.; Pinto, C.A.; Lima, V.; Tavares, J.; Martins, A.P.; Fidalgo, L.G.; Silva, A.M.; Gil, M.M.; Teixeira, P.; Barbosa, J.; et al. Chemical-Based Methodologies to Extend the Shelf Life of Fresh Fish-A Review. Foods 2021, 10, 2300. [Google Scholar] [CrossRef]
- Zhu, Z.; Li, T.; Sun, D.W. Pressure-related cooling and freezing techniques for the food industry: Fundamentals and applications. Crit. Rev. Food Sci. Nutr. 2021, 61, 2793–2808. [Google Scholar] [CrossRef]
- Rosmini, M.; Perez-Alvarez, J.; Fernandez-Lopez, J. Operational processes for frozen red meat. In Handbook of Frozen Foods; Marcel Dekker Inc.: New York, NY, USA, 2004; pp. 177–191. [Google Scholar]
- Hassoun, A.; Shumilina, E.; Di Donato, F.; Foschi, M.; Simal-Gandara, J.; Biancolillo, A. Emerging Techniques for Differentiation of Fresh and Frozen-Thawed Seafoods: Highlighting the Potential of Spectroscopic Techniques. Molecules 2020, 25, 4472. [Google Scholar] [CrossRef]
- Zhan, X.; Sun, D.W.; Zhu, Z.; Wang, Q.J. Improving the quality and safety of frozen muscle foods by emerging freezing technologies: A review. Crit. Rev. Food Sci. Nutr. 2018, 58, 2925–2938. [Google Scholar] [CrossRef] [PubMed]
- Hansen, E.; Juncher, D.; Henckel, P.; Karlsson, A.; Bertelsen, G.; Skibsted, L.H. Oxidative stability of chilled pork chops following long term freeze storage. Meat Sci. 2004, 68, 479–484. [Google Scholar] [CrossRef] [PubMed]
- Prabhakar, P.K.; Vatsa, S.; Srivastav, P.P.; Pathak, S.S. A comprehensive review on freshness of fish and assessment: Analytical methods and recent innovations. Food Res. Int. 2020, 133, 109157. [Google Scholar] [CrossRef] [PubMed]
- Tryggvason, R.I.; Margeirsson, B.; Karlsdóttir, M.; Ólafsdóttir, A.; Gudjónsdóttir, M.; Arason, S. Effects of food container depth on the quality and yield of superchilled and iced Atlantic salmon. Packag. Technol. Sci. 2020, 33, 289–302. [Google Scholar] [CrossRef]
- Magnussen, O.; Haugland, A.; Hemmingsen, A.; Johansen, S.; Nordtvedt, T. Advances in superchilling of food—Process characteristics and product quality. Trends Food Sci. Technol. 2008, 19, 418–424. [Google Scholar] [CrossRef]
- Sheng, L.; Wang, L. The microbial safety of fish and fish products: Recent advances in understanding its significance, contamination sources, and control strategies. Compr. Rev. Food Sci. Food Saf. 2021, 20, 738–786. [Google Scholar] [CrossRef]
- Gokoglu, N. Novel natural food preservatives and applications in seafood preservation: A review. J. Sci. Food Agric. 2019, 99, 2068–2077. [Google Scholar] [CrossRef]
- Sindelar, J.J.; Houser, T.A. Alternative Curing Systems. In Ingredients in Meat Products: Properties, Functionality and Applications; Tarté, R., Ed.; Springer: New York, NY, USA, 2009; pp. 379–405. [Google Scholar] [CrossRef]
- Ray, B. Control of Microorganisms in Foods. In Fundamental Food Microbiology, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2004; pp. 439–534. [Google Scholar]
- Rybicka, I.; Nunes, M.L. Benefit and risk assessment of replacing of sodium chloride by other salt/substances in industrial seafood products. EFSA J. 2022, 20, 200420. [Google Scholar] [CrossRef]
- Raeisi, S.; Quek, S.Y.; Ojagh, S.M.; Alishahi, A.R. Effects of cumin (Cuminum cyminum L.) seed and wild mint (Mentha longifolia L.) leaf extracts on the shelf life and quality of rainbow trout (Oncorhynchus mykiss) fillets stored at 4 °C ± 1. J. Food Saf. 2016, 36, 271–281. [Google Scholar] [CrossRef]
- Yazgan, H.; Ozogul, Y.; Kuley, E. Antimicrobial influence of nanoemulsified lemon essential oil and pure lemon essential oil on food-borne pathogens and fish spoilage bacteria. Int. J. Food Microbiol. 2019, 306, 108266. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, D.; Lv, J.; Li, Q.; Kong, C.; Luo, Y. Effect of cinnamon essential oil on bacterial diversity and shelf-life in vacuum-packaged common carp (Cyprinus carpio) during refrigerated storage. Int. J. Food Microbiol. 2017, 249, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Mehdizadeh, T.; Tajik, H.; Jafarie, S.; Kaboudari, A. Effect of Salvia officinalis L. extract on chemical, microbial, sensory and shelf life of rainbow trout fillet. Food Sci. Biotechnol. 2019, 28, 1499–1506. [Google Scholar] [CrossRef] [PubMed]
- Duman, M.; Coban, O.E.; Ozpolat, E. Effects of rosemary and thyme oils on shelf life of marinated sauce crayfish. J. Anim. Plant Sci. 2015, 25, 1771–1778. [Google Scholar]
- Wu, T.; Ge, Y.; Li, Y.; Xiang, Y.; Jiang, Y.; Hu, Y. Quality enhancement of large yellow croaker treated with edible coatings based on chitosan and lysozyme. Int. J. Biol. Macromol. 2018, 120, 1072–1079. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.; Jiang, Q.; Xu, Y.; Xia, W. The shelf life extension of refrigerated grass carp (Ctenopharyngodon idellus) fillets by chitosan coating combined with glycerol monolaurate. Int. J. Biol. Macromol. 2017, 101, 448–454. [Google Scholar] [CrossRef] [PubMed]
- Khodanazary, A. Quality characteristics of refrigerated mackerel Scomberomorus commerson using gelatin-polycaprolactone composite film incorporated with lysozyme and pomegranate peel extract. Int. J. Food Prop. 2019, 22, 2057–2071. [Google Scholar] [CrossRef]
- Shokri, S.; Ehsani, A.; Jasour, M.S. Efficacy of lactoperoxidase system-whey protein coating on shelf-life extension of rainbow trout fillets during cold storage (4 °C). Food Biopr. Technol. 2015, 8, 54–62. [Google Scholar] [CrossRef]
- Boulares, M.; Ben Moussa, O.; Mankai, M.; Sadok, S.; Hassouna, M. Effects of lactic acid bacteria and citrus essential oil on the quality of vacuum-packed sea bass (Dicentrarchus labrax) fillets during refrigerated storage. J. Aquat. Food Prod. Technol. 2018, 27, 698–711. [Google Scholar] [CrossRef]
- Woraprayote, W.; Pumpuang, L.; Tosukhowong, A.; Zendo, T.; Sonomoto, K.; Benjakul, S.; Visessanguan, W. Antimicrobial biodegradable food packaging impregnated with Bacteriocin 7293 for control of pathogenic bacteria in pangasius fish fillets. LWT 2018, 89, 427–433. [Google Scholar] [CrossRef]
- Montiel, R.; Martín-Cabrejas, I.; Langa, S.; El Aouad, N.; Arqués, J.; Reyes, F.; Medina, M. Antimicrobial activity of reuterin produced by Lactobacillus reuteri on Listeria monocytogenes in cold-smoked salmon. Food Microbiol. 2014, 44, 1–5. [Google Scholar] [CrossRef]
- Mei, J.; Shen, Y.; Liu, W.; Lan, W.; Li, N.; Xie, J. Effectiveness of sodium alginate active coatings containing bacteriocin EFL4 for the quality improvement of ready-to-eat fresh salmon fillets during cold storage. Coatings 2020, 10, 506. [Google Scholar] [CrossRef]
- García-Soto, B.; Fernández-No, I.C.; Barros-Velázquez, J.; Aubourg, S.P. Use of citric and lactic acids in ice to enhance quality of two fish species during on-board chilled storage. Int. J. Refrig. 2014, 40, 390–397. [Google Scholar] [CrossRef]
- El-Shemy, M.; Yasin, N.M.; Gadallah, M.; Hanafi, E. Microbiological quality and enzymes activity of refrigerated bolti fish (Tilapia nilotica) pretreated with organic acids. J. Agric. Veter. Sci. 2016, 267, 1–14. [Google Scholar] [CrossRef]
- Monirul, I.; Yang, F.; Niaz, M.; Qixing, J.; Wenshui, X. Effectiveness of combined acetic acid and ascorbic acid spray on fresh silver carp (Hypophthalmichthys molitrix) fish to increase shelf-life at refrigerated temperature. Curr. Res. Nutr. Food Sci. J. 2019, 7, 415–426. [Google Scholar] [CrossRef] [Green Version]
- Sallam, K.I. Antimicrobial and antioxidant effects of sodium acetate, sodium lactate, and sodium citrate in refrigerated sliced salmon. Food Control 2007, 18, 566–575. [Google Scholar] [CrossRef] [Green Version]
- Behnam, S.; Anvari, M.; Rezaei, M.; Soltanian, S.; Safari, R. Effect of nisin as a biopreservative agent on quality and shelf life of vacuum packaged rainbow trout (Oncorhynchus mykiss) stored at 4 °C. J. Food Sci. Technol. 2015, 52, 2184–2192. [Google Scholar] [CrossRef]
- Gao, M.; Feng, L.; Jiang, T.; Zhu, J.; Fu, L.; Yuan, D.; Li, J. The use of rosemary extract in combination with nisin to extend the shelf life of pompano (Trachinotus ovatus) fillet during chilled storage. Food Control 2014, 37, 1–8. [Google Scholar] [CrossRef]
- Erbay, E.A.; Dağtekin, B.B.G.; Türe, M.; Yeşilsu, A.F.; Torres-Giner, S. Quality improvement of rainbow trout fillets by whey protein isolate coatings containing electrospun poly (ε-caprolactone) nanofibers with Urtica dioica L. extract during storage. LWT 2017, 78, 340–351. [Google Scholar] [CrossRef]
- Angiolillo, L.; Conte, A.; Del Nobile, M.A. Microencapsulated Lactobacillus reuteri combined with modified atmosphere as a way to improve tuna burger shelf life. Int. J. Food Sci. Technol. 2017, 52, 1576–1584. [Google Scholar] [CrossRef]
- Li, J.; Hui, T.; Wang, F.; Li, S.; Cui, B.; Cui, Y.; Peng, Z. Chinese red pepper (Zanthoxylum bungeanum Maxim.) leaf extract as natural antioxidants in salted silver carp (Hypophthalmichthys molitrix) in dorsal and ventral muscles during processing. Food Control 2015, 56, 9–17. [Google Scholar] [CrossRef]
- Mattje, L.G.B.; Tormen, L.; Bombardelli, M.C.M.; Corazza, M.L.; Bainy, E.M. Ginger essential oil and supercritical extract as natural antioxidants in tilapia fish burger. J. Food Process. Preserv. 2019, 43, 13942. [Google Scholar] [CrossRef]
- Yu, D.; Xu, Y.; Jiang, Q.; Xia, W. Effects of chitosan coating combined with essential oils on quality and antioxidant enzyme activities of grass carp (Ctenopharyngodon idellus) fillets stored at 4 °C. Int. J. Food Sci. Technol. 2017, 52, 404–412. [Google Scholar] [CrossRef]
- Wu, T.; Wu, C.; Fang, Z.; Ma, X.; Chen, S.; Hu, Y. Effect of chitosan microcapsules loaded with nisin on the preservation of small yellow croaker. Food Control 2017, 79, 317–324. [Google Scholar] [CrossRef]
- Lebow, N.K.; DesRocher, L.D.; Younce, F.L.; Zhu, M.J.; Ross, C.F.; Smith, D.M. Influence of High-Pressure Processing at Low Temperature and Nisin on Listeria innocua Survival and Sensory Preference of Dry-Cured Cold-Smoked Salmon. J. Food Sci. 2017, 82, 2977–2986. [Google Scholar] [CrossRef]
- Choulitoudi, E.; Bravou, K.; Bimpilas, A.; Tsironi, T.; Tsimogiannis, D.; Taoukis, P.; Oreopoulou, V. Antimicrobial and antioxidant activity of Satureja thymbra in gilthead seabream fillets edible coating. Food Bioprod. Process. 2016, 100, 570–577. [Google Scholar] [CrossRef]
- Asensio, C.M.; Quiroga, P.R.; Huang, Q.; Nepote, V.; Grosso, N.R. Fatty acids, volatile compounds and microbial quality preservation with an oregano nanoemulsion to extend the shelf life of hake (Merluccius hubbsi) burgers. Int. J. Food Sci. Technol. 2019, 54, 149–160. [Google Scholar] [CrossRef]
- Messina, C.M.; Bono, G.; Renda, G.; La Barbera, L.; Santulli, A. Effect of natural antioxidants and modified atmosphere packaging in preventing lipid oxidation and increasing the shelf-life of common dolphinfish (Coryphaena hippurus) fillets. LWT 2015, 62, 271–277. [Google Scholar] [CrossRef]
- Ramezani, Z.; Zarei, M.; Raminnejad, N. Comparing the effectiveness of chitosan and nanochitosan coatings on the quality of refrigerated silver carp fillets. Food Control 2015, 51, 43–48. [Google Scholar] [CrossRef]
- Zheng, X.; He, Y.; Zhou, H.; Xiong, C. Effects of Chitosan Oligosaccharide–Nisin Conjugates Formed by Maillard reaction on the preservation of Collichthys niveatus. J. Food Process. Preserv. 2019, 43, 14116. [Google Scholar] [CrossRef]
- D’Amore, T.; Di Taranto, A.; Berardi, G.; Vita, V.; Marchesani, G.; Chiaravalle, A.E.; Iammarino, M. Sulfites in meat: Occurrence, activity, toxicity, regulation, and detection. A comprehensive review. Compr. Rev. Food Sci. Food Saf. 2020, 19, 2701–2720. [Google Scholar] [CrossRef]
- Davidson, P.M.; Sofos, J.N.; Branen, A.L. Food Antimicrobials. In Antimicrobials in Food, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2005; pp. 12–17, 29, 68, 116, 151, 460–469. [Google Scholar]
- Bensid, A.; El Abed, N.; Houicher, A.; Regenstein, J.M.; Özogul, F. Antioxidant and antimicrobial preservatives: Properties, mechanism of action and applications in food–a review. Crit. Rev. Food Sci. Nutr. 2022, 62, 2985–3001. [Google Scholar] [CrossRef] [PubMed]
- Matamoros, S.; Pilet, M.F.; Gigout, F.; Prévost, H.; Leroi, F. Selection and evaluation of seafood-borne psychrotrophic lactic acid bacteria as inhibitors of pathogenic and spoilage bacteria. Food Microbiol. 2009, 26, 638–644. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- André, C.; Castanheira, I.; Cruz, J.; Paseiro, P.; Sanches-Silva, A. Analytical strategies to evaluate antioxidants in food: A review. Trends Food Sci. Technol. 2010, 21, 229–246. [Google Scholar] [CrossRef]
- Shahidi, F.; Ambigaipalan, P. Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects—A review. J. Funct. Foods 2015, 18, 820–897. [Google Scholar] [CrossRef]
- Simitzis, P.; Deligeorgis, S. Lipid oxidation of meat and use of essential oils as antioxidants in meat products. 2010. Available online: http://scitopics.com/Lipid_Oxidation_of_Meat_and_Use_of_Essential_Oils_as_Antioxidants_in_Meat_Products.html (accessed on 27 September 2022).
- Estevez, A.Y.; Boateng, Y.; Lipps, J.; Stadler, B.; Erlichman, J.S. Analysis of the antioxidant enzyme-mimetic activity and neuroprotective effects of cerium oxide nanoparticles stabilized with varying ratios of citric acid and EDTA. FASEB J. 2018, 32, 740–743. [Google Scholar] [CrossRef]
- Finnegan, S.; Percival, S.L. EDTA: An Antimicrobial and Antibiofilm Agent for Use in Wound Care. Adv. Wound Care 2015, 4, 415–421. [Google Scholar] [CrossRef]
- Ali, A.; Wei, S.; Liu, Z.; Fan, X.; Sun, Q.; Xia, Q.; Liu, S.; Hao, J.; Deng, C. Non-thermal processing technologies for the recovery of bioactive compounds from marine by-products. LWT 2021, 147, 111549. [Google Scholar] [CrossRef]
- Gavahian, M.; Farahnaky, A. Ohmic-assisted hydrodistillation technology: A review. Trends Food Sci. Technol. 2018, 72, 153–161. [Google Scholar] [CrossRef]
- Gavahian, M.; Chu, Y.-H.; Sastry, S. Extraction from Food and Natural Products by Moderate Electric Field: Mechanisms, Benefits, and Potential Industrial Applications. Compr. Rev. Food Sci. Food Saf. 2018, 17, 1040–1052. [Google Scholar] [CrossRef] [Green Version]
- Mannozzi, C.; Fauster, T.; Haas, K.; Tylewicz, U.; Romani, S.; Dalla Rosa, M.; Jaeger, H. Role of thermal and electric field effects during the pre-treatment of fruit and vegetable mash by pulsed electric fields (PEF) and ohmic heating (OH). Innov. Food Sci. Emerg. Technol. 2018, 48, 131–137. [Google Scholar] [CrossRef]
- Gómez, B.; Munekata, P.E.S.; Gavahian, M.; Barba, F.J.; Martí-Quijal, F.J.; Bolumar, T.; Campagnol, P.C.B.; Tomasevic, I.; Lorenzo, J.M. Application of pulsed electric fields in meat and fish processing industries: An overview. Food Res. Int. 2019, 123, 95–105. [Google Scholar] [CrossRef] [PubMed]
- Chotphruethipong, L.; Aluko, R.E.; Benjakul, S. Effect of Pulsed Electric Field-Assisted Process in Combination with Porcine Lipase on Defatting of Seabass Skin. J. Food Sci. 2019, 84, 1799–1805. [Google Scholar] [CrossRef] [PubMed]
- Franco, D.; Munekata, P.E.S.; Agregán, R.; Bermúdez, R.; López-Pedrouso, M.; Pateiro, M.; Lorenzo, J.M. Application of Pulsed Electric Fields for Obtaining Antioxidant Extracts from Fish Residues. Antioxidants 2020, 9, 90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, K.; Su, W.-H. Applications of Fluorescence Spectroscopy, RGB- and MultiSpectral Imaging for Quality Determinations of White Meat: A Review. Biosensors 2022, 12, 76. [Google Scholar] [CrossRef] [PubMed]
- Hassoun, A.; Karoui, R. Front-face fluorescence spectroscopy coupled with chemometric tools for monitoring fish freshness stored under different refrigerated conditions. Food Control. 2015, 54, 240–249. [Google Scholar] [CrossRef]
- Wang, K.; Sun, D.-W.; Pu, H.; Wei, Q. Principles and applications of spectroscopic techniques for evaluating food protein conformational changes: A review. Trends Food Sci. Technol. 2017, 67, 207–219. [Google Scholar] [CrossRef]
- Hu, L.; Ren, S.; Shen, Q.; Chen, J.; Ye, X.; Ling, J. Proteomic study of the effect of different cooking methods on protein oxidation in fish fillets. RSC Adv. 2017, 7, 27496–27505. [Google Scholar] [CrossRef] [Green Version]
- Hassoun, A.; Sahar, A.; Lakhal, L.; Ait Kaddour, A. Fluorescence spectroscopy as a rapid and non-destructive method for monitoring quality and authenticity of fish and meat products: Impact of different preservation conditions. LWT 2019, 103, 279–292. [Google Scholar] [CrossRef]
- Ozaki, Y. Infrared Spectroscopy-Mid-infrared, Near-infrared, and Far-infrared/Terahertz Spectroscopy. Anal. Sci. 2021, 37, 1193–1212. [Google Scholar] [CrossRef]
- Feng, C.H.; Makino, Y.; Oshita, S.; García Martín, J. Hyperspectral imaging and multispectral imaging as the novel techniques for detecting defects in raw and processed meat products: Current state-of-the-art research advances. Food Control 2018, 84, 165–176. [Google Scholar] [CrossRef]
- Antequera, T.; Caballero, D.; Grassi, S.; Uttaro, B.; Perez-Palacios, T. Evaluation of fresh meat quality by Hyperspectral Imaging (HSI), Nuclear Magnetic Resonance (NMR) and Magnetic Resonance Imaging (MRI): A review. Meat Sci. 2021, 172, 108340. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.H.; Nicolai, B.; Sun, D.W. Hyperspectral imaging with multivariate analysis for technological parameters prediction and classification of muscle foods: A review. Meat Sci. 2017, 123, 182–191. [Google Scholar] [CrossRef] [PubMed]
- Ropodi, A.; Panagou, E.; Nychas, G.-J. Multispectral imaging (MSI): A promising method for the detection of minced beef adulteration with horsemeat. Food Control 2016, 57–63. [Google Scholar] [CrossRef]
- Cheng, J.-H.; Sun, D.-W.; Pu, H.; Zhu, Z. Development of hyperspectral imaging coupled with chemometric analysis to monitor K value for evaluation of chemical spoilage in fish fillets. Food Chem. 2015, 185, 245–253. [Google Scholar] [CrossRef]
- Ma, J.; Sun, D.-W.; Qu, J.-H.; Pu, H. Prediction of textural changes in grass carp fillets as affected by vacuum freeze drying using hyperspectral imaging based on integrated group wavelengths. LWT 2017, 82, 377–385. [Google Scholar] [CrossRef]
- Huang, H.-W.; Wu, S.-J.; Lu, J.-K.; Shyu, Y.-T.; Wang, C.-Y. Current status and future trends of high-pressure processing in food industry. Food Control 2017, 72, 1–8. [Google Scholar] [CrossRef]
- Tsironi, T.; Maltezou, I.; Tsevdou, M.; Katsaros, G.; Taoukis, P. High-pressure cold pasteurization of gilthead seabream fillets: Selection of process conditions and validation of shelf life extension. Food Biopr. Technol. 2015, 8, 681–690. [Google Scholar] [CrossRef]
- Tsironi, T.; Anjos, L.; Pinto, P.I.; Dimopoulos, G.; Santos, S.; Santa, C.; Manadas, B.; Canario, A.; Taoukis, P.; Power, D. High pressure processing of European sea bass (Dicentrarchus labrax) fillets and tools for flesh quality and shelf life monitoring. J. Food Eng. 2019, 262, 83–91. [Google Scholar] [CrossRef]
- Martínez, S.; Armesto, J.; Gómez-Limia, L.; Carballo, J. Impact of processing and storage on the nutritional and sensory properties and bioactive components of Brassica spp. A review. Food Chem. 2020, 313, 126065. [Google Scholar] [CrossRef]
- Barbosa, R.G.; Trigo, M.; Fett, R.; Aubourg, S.P. Impact of a packing medium with alga Bifurcaria bifurcata extract on canned Atlantic mackerel (Scomber scombrus) quality. J. Sci. Food Agric. 2018, 98, 3462–3467. [Google Scholar] [CrossRef] [Green Version]
- Romotowska, P.E.; Gudjónsdóttir, M.; Kristinsdóttir, T.B.; Karlsdóttir, M.G.; Arason, S.; Jónsson, Á.; Kristinsson, H.G. Effect of brining and frozen storage on physicochemical properties of well-fed Atlantic mackerel (Scomber scombrus) intended for hot smoking and canning. LWT 2016, 72, 199–205. [Google Scholar] [CrossRef]
- Quijera, J.; Labidi, J. Different integration alternatives of thermosolar energy and heat pump technology in a fish canning process. Chem. Eng. Trans. 2013, 35, 511–516. [Google Scholar]
- Dominguez-Hernandez, E.; Salaseviciene, A.; Ertbjerg, P. Low-temperature long-time cooking of meat: Eating quality and underlying mechanisms. Meat Sci. 2018, 143, 104–113. [Google Scholar] [CrossRef] [Green Version]
- De Aguiar Saldanha Pinheiro, A.C.; Martí-Quijal, F.J.; Barba, F.J.; Tappi, S.; Rocculi, P. Innovative Non-Thermal Technologies for Recovery and Valorization of Value-Added Products from Crustacean Processing By-Products—An Opportunity for a Circular Economy Approach. Foods 2021, 10, 2030. [Google Scholar] [CrossRef]
- Addis, M. Major Causes Of Meat Spoilage and Preservation Techniques: A Review. Food Sci. Qual. Manag. 2015, 41, 101–114. [Google Scholar]
- Xiaobo, Z.; Xiaowei, H.; Povey, M. Non-invasive sensing for food reassurance. Analyst 2016, 141, 1587–1610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marti-Quijal, F.J.; Remize, F.; Meca, G.; Ferrer, E.; Ruiz, M.-J.; Barba, F.J. Fermentation in fish and by-products processing: An overview of current research and future prospects. Curr. Opin. Food Sci. 2020, 31, 9–16. [Google Scholar] [CrossRef]
- Tsironi, T.N.; Taoukis, P.S. Advances in Conventional and Nonthermal Processing of Fish for Quality Improvement and Shelf Life Extension. In Reference Module in Food Science; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Afseth, N.K.; Wold, J.P.; Segtnan, V.H. The potential of Raman spectroscopy for characterisation of the fatty acid unsaturation of salmon. Anal. Chim. Acta 2006, 572, 85–92. [Google Scholar] [CrossRef] [PubMed]
- Cozzolino, D.; Murray, I. A review on the application of infrared technologies to determine and monitor composition and other quality characteristics in raw fish, fish products, and seafood. Appl. Spectr. Rev. 2012, 47, 207–218. [Google Scholar] [CrossRef]
- Mathiassen, J.R.; Misimi, E.; Bondø, M.; Veliyulin, E.; Østvik, S.O. Trends in application of imaging technologies to inspection of fish and fish products. Trends Food Sci. Technol. 2011, 22, 257–275. [Google Scholar] [CrossRef]
- Medina, S.; Perestrelo, R.; Silva, P.; Pereira, J.; Câmara, J. Current trends and recent advances on food authenticity technologies and chemometric approaches. Trends Food Sci. Technol. 2019, 85, 163–176. [Google Scholar] [CrossRef]
- Chemat, F.; Rombaut, N.; Meullemiestre, A.; Turk, M.; Perino, S.; Fabiano-Tixier, A.-S.; Abert-Vian, M. Review of Green Food Processing techniques. Preservation, transformation, and extraction. Innov. Food Sci. Emerg. Technol. 2017, 41, 357–377. [Google Scholar] [CrossRef]
- Sánchez-Camargo, A.P.; Almeida Meireles, M.Â.; Lopes, B.L.F.; Cabral, F.A. Proximate composition and extraction of carotenoids and lipids from Brazilian redspotted shrimp waste (Farfantepenaeus paulensis). J. Food Eng. 2011, 102, 87–93. [Google Scholar] [CrossRef]
- Yang, H.; Wang, H.; Huang, M.; Cao, G.; Tao, F.; Shen, Q.; Zhou, G.; Yang, H. Repurposing fish waste into gelatin as a potential alternative for mammalian sources: A review. Compr. Rev. Food Sci. Food Saf. 2022, 21, 942–963. [Google Scholar] [CrossRef]
- Ivanovs, K.; Spalvins, K.; Blumberga, D. Approach for modelling anaerobic digestion processes of fish waste. Energy Procedia 2018, 147, 390–396. [Google Scholar] [CrossRef]
- Korkmaz, K.; Tokur, B. Investigation of the quality parameters of hydrolysates obtained from fish by-products using response surface methodology. J. Food Process. Preserv. 2022, 46, 16296. [Google Scholar] [CrossRef]
- Usman, M.; Sahar, A.; Inam-Ur-Raheem, M.; Rahman, U.U.; Sameen, A.; Aadil, R.M. Gelatin extraction from fish waste and potential applications in food sector. Int. J. Food Sci. Technol. 2022, 57, 154–163. [Google Scholar] [CrossRef]
- Menon, V. Enzymes from Seafood Processing Waste and Their Applications in Seafood Processing. Adv. Food Nutr. Res. 2016, 78, 47–69. [Google Scholar]
- Mikołajczak, Z.; Rawski, M.; Mazurkiewicz, J.; Kierończyk, B.; Kołodziejski, P.; Pruszyńska-Oszmałek, E.; Józefiak, D. The first insight into black soldier fly meal in brown trout nutrition as an environmentally sustainable fish meal replacement. Animal 2022, 16, 100516. [Google Scholar] [CrossRef]
- Merkle, S.; Giese, E.; Rohn, S.; Karl, H.; Lehmann, I.; Wohltmann, A.; Fritsche, J. Impact of fish species and processing technology on minor fish oil components. Food Control 2017, 73, 1379–1387. [Google Scholar] [CrossRef]
- Ivanovs, K.; Blumberga, D. Extraction of fish oil using green extraction methods: A short review. Energy Procedia 2017, 128, 477–483. [Google Scholar] [CrossRef]
- Jung, J.-M.; Oh, J.-I.; Park, Y.-K.; Lee, J.; Kwon, E.E. Biodiesel synthesis from fish waste via thermally-induced transesterification using clay as porous material. J. Hazar. Mater. 2019, 371, 27–32. [Google Scholar] [CrossRef] [PubMed]
- Bhatia, S.K.; Jagtap, S.S.; Bedekar, A.A.; Bhatia, R.K.; Rajendran, K.; Pugazhendhi, A.; Rao, C.V.; Atabani, A.E.; Kumar, G.; Yang, Y.H. Renewable biohydrogen production from lignocellulosic biomass using fermentation and integration of systems with other energy generation technologies. Sci. Total Environ. 2021, 765, 144429. [Google Scholar] [CrossRef] [PubMed]
- Shanthi, G.; Premalatha, M.; Anantharaman, N. Potential utilization of fish waste for the sustainable production of microalgae rich in renewable protein and phycocyanin-Arthrospira platensis/Spirulina. J. Clean. Prod. 2021, 294, 126106. [Google Scholar] [CrossRef]
- Ahuja, I.; Dauksas, E.; Remme, J.F.; Richardsen, R.; Løes, A.K. Fish and fish waste-based fertilizers in organic farming—With status in Norway: A review. Waste Manag. 2020, 115, 95–112. [Google Scholar] [CrossRef]
- Kim, J.K.; Jung, H.Y.; Cho, J.Y.; Kim, N.Y. Production of biofuels, bioactive compounds, and fertilizers from fishery waste and wastewater. In Advanced Technology for the Conversion of Waste into Fuels and Chemicals; Woodhead Publishing: Thorston, UK, 2021; pp. 149–181. [Google Scholar]
- Gao, R.; Yu, Q.; Shen, Y.; Chu, Q.; Chen, G.; Fen, S.; Yang, M.; Yuan, L.; McClements, D.J.; Sun, Q. Production, bioactive properties, and potential applications of fish protein hydrolysates: Developments and challenges. Trends Food Sci. Technol. 2021, 110, 687–699. [Google Scholar] [CrossRef]
- Yasaman, E. Development of animal/plant-based protein hydrolysate and its application in food, feed and nutraceutical industries: State of the art. J. Cleaner Prod. 2021, 278, 123219. [Google Scholar] [CrossRef]
- Pérez-Gálvez, R.; Morales-Medina, R.; Espejo-Carpio, F.; Guadix, A.; Guadix, E.M. Modelling of the production of ACE inhibitory hydrolysates of horse mackerel using proteases mixtures. Food Funct. 2016, 7, 3890–3901. [Google Scholar] [CrossRef]
- Harnedy, P.A.; Parthsarathy, V.; McLaughlin, C.M.; O’Keeffe, M.B.; Allsopp, P.J.; McSorley, E.M.; O’Harte, F.P.M.; FitzGerald, R.J. Blue whiting (Micromesistius poutassou) muscle protein hydrolysate with in vitro and in vivo antidiabetic properties. J. Funct. Foods 2018, 40, 137–145. [Google Scholar] [CrossRef]
- Rahmi, M.; Faid, M.; Elyachioui, M.; Berny, E.; Fakir, M.; Ouhssine, M. Protein rich ingredients from fish waste for sheep feeding. Afr. J. Microbiol. Res. 2008, 2, 73–77. [Google Scholar]
- Jafari, H.; Lista, A.; Siekapen, M.M.; Ghaffari-Bohlouli, P.; Nie, L.; Alimoradi, H.; Shavandi, A. Fish Collagen: Extraction, Characterization, and Applications for Biomaterials Engineering. Polymers 2020, 12, 2230. [Google Scholar] [CrossRef] [PubMed]
- Subhan, F.; Hussain, Z.; Tauseef, I.; Shehzad, A.; Wahid, F. A review on recent advances and applications of fish collagen. Crit. Rev. Food Sci. Nutr. 2021, 61, 1027–1037. [Google Scholar] [CrossRef] [PubMed]
- Sibilla, S.; Godfrey, M.; Brewer, S.; Budh-Raja, A.; Genovese, L. An Overview of the Beneficial Effects of Hydrolysed Collagen as a Nutraceutical on Skin Properties: Scientific Background and Clinical Studies. Open Nutr. J. 2015, 8, 29–42. [Google Scholar] [CrossRef] [Green Version]
- Peres, D.; Hubner, A.; Oliveira, C.; Almeida, T.; Kaneko, T.; Consiglieri, V.; Pinto, C.; Velasco, M.; Baby, A. Hydrolyzed collagen interferes with in vitro photoprotective effectiveness of sunscreens. Brazil. J. Pharm. Sci. 2017, 53, e16119. [Google Scholar] [CrossRef] [Green Version]
- Kaewdang, O.; Benjakul, S. Effect of ethanolic extract of coconut husk on gel properties of gelatin from swim bladder of yellowfin tuna. LWT 2015, 62, 955–961. [Google Scholar] [CrossRef]
- Al-Nimry, S.; Dayah, A.A.; Hasan, I.; Daghmash, R. Cosmetic, Biomedical and Pharmaceutical Applications of Fish Gelatin/Hydrolysates. Mar. Drugs 2021, 19, 145. [Google Scholar] [CrossRef] [PubMed]
- Karim, A.A.; Bhat, R. Fish gelatin: Properties, challenges, and prospects as an alternative to mammalian gelatins. Food Hydrocoll. 2009, 23, 563–576. [Google Scholar] [CrossRef]
- Tongnuanchan, P.; Benjakul, S.; Prodpran, T.; Pisuchpen, S.; Osako, K. Mechanical, thermal and heat sealing properties of fish skin gelatin film containing palm oil and basil essential oil with different surfactants. Food Hydrocoll. 2016, 56, 93–107. [Google Scholar] [CrossRef]
- Caruso, G.; Floris, R.; Serangeli, C.; Di Paola, L. Fishery Wastes as a Yet Undiscovered Treasure from the Sea: Biomolecules Sources, Extraction Methods and Valorization. Mar. Drugs 2020, 18, 622. [Google Scholar] [CrossRef]
- Suresh, P.V.; Kudre, T.G.; Johny, L.C. Sustainable Valorization of Seafood Processing By-Product/Discard. In Waste to Wealth; Springer: Berlin/Heidelberg, Germany, 2018; pp. 111–139. [Google Scholar]
- Jesús-de la Cruz, K.; Álvarez-González, C.A.; Peña, E.; Morales-Contreras, J.A.; Ávila-Fernández, Á. Fish trypsins: Potential applications in biomedicine and prospects for production. Biotech 2018, 8, 186. [Google Scholar] [CrossRef]
- Nalinanon, S.; Benjakul, S.; Visessanguan, W.; Kishimura, H. Tuna Pepsin: Characteristics and Its Use for Collagen Extraction from the Skin of Threadfin Bream (Nemipterus spp.). J. Food Sci. 2008, 73, C413–C419. [Google Scholar] [CrossRef]
- Idowu, A.T.; Benjakul, S. Bitterness of fish protein hydrolysate and its debittering prospects. J. Food Biochem. 2019, 43, e12978. [Google Scholar] [CrossRef] [PubMed]
- Sae-leaw, T.; Benjakul, S. Lipase from liver of seabass (Lates calcarifer): Characteristics and the use for defatting of fish skin. Food Chem. 2018, 240, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, R.C.; Virgen-Ortíz, J.J.; Dos Santos, J.C.S.; Berenguer-Murcia, Á.; Alcantara, A.R.; Barbosa, O.; Ortiz, C.; Fernandez-Lafuente, R. Immobilization of lipases on hydrophobic supports: Immobilization mechanism, advantages, problems, and solutions. Biotechnol. Adv. 2019, 37, 746–770. [Google Scholar] [CrossRef] [Green Version]
- Kurtovic, I.; Marshall, S.N. Potential of fish by-products as a source of novel marine lipases and their uses in industrial applications. Lipid Technol. 2013, 25, 35–37. [Google Scholar] [CrossRef]
- Choudhury, P. Industrial application of lipase: A review. BioPharm 2015, 1, 41–47. [Google Scholar]
- Lall, S.P.; Kaushik, S.J. Nutrition and Metabolism of Minerals in Fish. Animals 2021, 11, 2711. [Google Scholar] [CrossRef] [PubMed]
- Yamada, S.; Yamamoto, K.; Nakazono, A.; Matsuura, T.; Yoshimura, A. Functional roles of fish collagen peptides on bone regeneration. Dent. Mater. J. 2021, 40, 1295–1302. [Google Scholar] [CrossRef]
- Ucak, İ.; Khalily, R.; Abuibaid, A.; Ogunkalu, O. Maintaining the quality of rainbow trout (Oncorhynchus mykiss) fillets by treatment of red onion peel extract during refriger-ated storage. Progr. Nutr. 2018, 20, 672–678. [Google Scholar] [CrossRef]
Nutrients | Percentage | Applications | Reference |
---|---|---|---|
Protein | 15–24% | Potential source of animal protein, antioxidants and metabolic activities; improve muscle tissues and immunity; application in biotechnology and pharmaceutical. | [22] |
Lipid | 0.1–22% | Provide lipid-soluble vitamins (A and D) and essential omega-3s (PUFAs) absent in the body, lowering blood pressure and triglycerides in the blood; helps to reduce cardiovascular, childhood asthma, hypertension and Alzheimer’s disease. | [23] |
- Docosahexaenoic acid (DHA) | 6.1–10.3% | Helps to improve brain and neurodevelopment in children; involved in lipid metabolism and neural functioning and reduction in blood pressure and coronary heart disease. | [24] |
Eicosapentaenoic acid (EPA) | 3.7–4.5% | Protects against cardiovascular disease; involved in blood coagulation and aggregation of platelets; prevents dementia, atherosclerosis and rheumatoid arthritis. | [25] |
Vitamins | 0.1% | Improves growth and development of children; aids in bone, teeth and cell repair; prevents eyesight loss and blood coagulation; accelerates chemical processes in the body. | [26] |
Minerals | 1–2% | Have high bioavailability, easily absorbed by the body; helps in the synthesis of haemoglobin in RBCs and proper functioning of the thyroid gland. | [27] |
-Calcium | 0.5% | Mineralization and formation of bones; proper functioning of muscles and nervous system; involved in metabolic processes. | [28] |
-Phosphorus | 0.25% | Maintain teeth and bone structures; regulates acid–base equilibrium. | [28] |
Technologies | Advantages | Disadvantages | Storage Life | References |
---|---|---|---|---|
Pulsed electric field | Low energy consumption Short processing time Waste-free process | High initial investment Less efficient for spore inactivation Presence of bubbles effect uniformity Low economic | Improve tenderization and water holding capacity, less physiological effects due to partial disruption of cellular tissues, increase shelf life of meat | [107] |
Ohmic treatment | Quick process Relatively uniform heating | High initial cost Relatively electrolytic effect | ||
Enzymatic treatment | More recovery yields Low contamination High selectivity rate | High enzymes cost Prolong processing time Low-efficiency rate | Increased shelf life through reducing oxidative spoilage, microbial activity, improve textural properties | [131] |
Fluorescence spectroscopy | High data achievement rate Simple and more economic | Time consumption in sample preparation Not suitable for solid material detection Highly selective method | Improve protein functionality and conformational changes during protein denaturation | [112] |
Nuclear magnetic resonance | High data evaluation Non-destructive and non-intrusive | High cost-effective Highly expensive equipment | Improve sensory properties, chemical composition, nutritional and physicochemical properties | [132] |
Fermentation | More economical Environmentally friendly Useful for bioactive extraction Poor energy consumption | Slow process Recovery yield and quality effect by microorganism used | Reduce microbial proliferation, prevent foodborne pathogens, reduce microbial proliferation, therefore, extending shelf life | [133] |
High hydrostatic pressure | Energy efficient High preservative quality Easy to commercialize Wide range of microorganism inactivation | Cost-effective Less efficient for spore’s inactivation Limited packaging facility | Prolonged shelf life up to 2 months at 2 oC, reduce microbial load and food spoilage genera, improve quality | [134] |
Fourier transform infrared spectroscopy (FTIR) | Rapid and reliable Sensitive to conformational changes under various conditions Independent of the physical condition of samples | Nonlinear problems of the curve High cost Strong IR absorbance of H2O | Monitored microbial spoilage, texture and colour attributes, authenticate freshness attributes | [114] |
Raman spectroscopy | Required small size sample Less expensive instrumentations Non-destructive | Higher instrumental costs Stronger biological fluorescence interference Heat effect generated by the laser | Increase shelf life, improve protein and water contents, reduce microbial load | [135] |
Near-infrared (NIR) spectroscopy | Rapid and non-destructive Non-contact and cost-effective | Accuracy depends on the reliability of the reference method Does not provide spatial information on the sample Contain unnecessary and redundant information | Reduce microbial spoilage, predict compositional changes, reduce foodborne pathogens | [136] |
Visible near-infrared (VIS/NIR) spectroscopy | Non-contact Rapid Non-destructive | Non-independent requires samples with known analyte concentration Specular highlights and uneven illumination under varying sample surface | Reduce oxidation, optimize product quality, increase shelf life | [137] |
Nuclear magnetic resonance/magnetic resonance imaging (NMR/MRI) spectroscopy | Cost-effective Non-destructive | Slow process High initial cost Expensive equipment | Food authentication, detect alteration and unwanted compounds. | [138] |
Ultrafiltration | High energy efficiency Better quality permeates Continuous recovery | Time-consuming Expensive membranes | Extend shelf life, reduce disruption of cells, inhibit microbial spoilage | [139] |
Supercritical fluid extraction | Environmentally friendly Rapidly penetrate in sample Mild processing conditions Low processing wastes | Complex equipment Required a high pressure Use of modifiers | Minimal disruption of tissue cells, improve quality, reduce bacterial count, improve shelf life | [140] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, A.; Wei, S.; Ali, A.; Khan, I.; Sun, Q.; Xia, Q.; Wang, Z.; Han, Z.; Liu, Y.; Liu, S. Research Progress on Nutritional Value, Preservation and Processing of Fish—A Review. Foods 2022, 11, 3669. https://doi.org/10.3390/foods11223669
Ali A, Wei S, Ali A, Khan I, Sun Q, Xia Q, Wang Z, Han Z, Liu Y, Liu S. Research Progress on Nutritional Value, Preservation and Processing of Fish—A Review. Foods. 2022; 11(22):3669. https://doi.org/10.3390/foods11223669
Chicago/Turabian StyleAli, Ahtisham, Shuai Wei, Adnan Ali, Imran Khan, Qinxiu Sun, Qiuyu Xia, Zefu Wang, Zongyuan Han, Yang Liu, and Shucheng Liu. 2022. "Research Progress on Nutritional Value, Preservation and Processing of Fish—A Review" Foods 11, no. 22: 3669. https://doi.org/10.3390/foods11223669
APA StyleAli, A., Wei, S., Ali, A., Khan, I., Sun, Q., Xia, Q., Wang, Z., Han, Z., Liu, Y., & Liu, S. (2022). Research Progress on Nutritional Value, Preservation and Processing of Fish—A Review. Foods, 11(22), 3669. https://doi.org/10.3390/foods11223669