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Abstract: In this study, we performed multi-objective model-based optimization of a potato-frying
process balancing between acrylamide production and a quality parameter (yellowness). Solution
analysis revealed that, for most of the Pareto solutions, acrylamide levels exceeded the EFSA recom-
mendation. Almost equivalent optimal solutions were found for moderate processing conditions
(low temperatures and/or processing times) and the propagation of the uncertainty of the acrylamide
production model parameters led to Pareto fronts with notable differences from the one obtained
using the nominal parameters, especially in the ranges of high values of acrylamide production
and yellowness. These results can help to identify processing conditions to achieve the desired
acrylamide/yellowness balance and design more robust processes allowing for the enhancement of
flexibility when equivalent optimal solutions can be retrieved.

Keywords: multi-objective optimization; model-based optimization; equivalent solutions; uncertainty;
Monte Carlo; frying operation; acrylamide; quality

1. Introduction
1.1. Optimization in Food Engineering

Food engineering has become an increasingly important field, as evidenced by the
growth of mathematical models devoted to understanding and improving food-processing
operations [1]. One important application of mathematical modelling in food engineering
is the optimization of food-processing operations.

Optimization is the process of finding the best possible solution to a problem. This
usually involves finding the best compromise among several conflicting demands. To
optimize a process, one must find the set of decision variables which, for example, maximize
profitability while meeting a set of constraints. Several model-based optimization methods
can be used to improve food processing. These methods are more rigorous than other
empirical approaches and are thus more likely to find the best possible solution [2].

In general, optimization can be applied effectively to food processing if the changes
during the process can be predicted mathematically. Heat, mass, and momentum transfers
(as well as kinetics) are major mechanisms in food processing, and mathematical models
describing these phenomena are essential for further mathematical-based optimization
procedures [3].

Optimal operating conditions in the food industry are usually sought to ensure maxi-
mum profits and product quality, subject to constraints arising from food-safety issues and
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often environmental regulations. However, the dynamic, nonlinear and highly constrained
nature of food-processing models can make the optimization of these processes a daunting
task [4].

Achieving optimization in food processing requires some way of describing the po-
tential alternatives and of choosing the best alternative. In the design, construction and
maintenance of any engineering system, different technological and managerial decisions
are required to be given at different stages of the process to either minimize the effort
required or maximize the benefit desired. The formal description of any optimization
problem has three parts [3]:

1. A set of variables that the optimization method can control and use to specify the
alternatives (e.g., applying different process-temperature profiles during thermal
processing to achieve better processing for a given objective function).

2. A set of requirements (e.g., the differential equations, boundary conditions, and
integral equations specifying the constraints that the system and the variables are
subjected to) that the optimization method must achieve or satisfy.

3. A measure of performance to compare one alternative to another (the objective func-
tion). The objective function, which may be continuous or in some cases discrete,
is the function to be optimized (maximized or minimized). This can be accom-
plished by using either a mathematical model or by fitting an equation through
the experimental data.

1.2. Applications of Multi-Objective Optimization in Food Engineering

For most industrial processes in food, simultaneous optimization of multiple objec-
tives (e.g., product quality, operating costs, and safety) is the more realistic and desirable
approach, but since these criteria are often opposing, the optimal solution is not unique.
The multi-objective optimization (MOO) approach is used to find the best set of solutions
for a problem with multiple objectives. In food engineering, MOO is used to optimize
processes where conflicting objectives such as e.g., process economy, quality parameters
or environmental indexes appear. These solutions are known as nondominated or Pareto
optimal solutions [5]. Each of these solutions has no prior advantage over other Pareto
optimal solutions so the objective of multi-objective optimization is to generate as many
solutions as possible to evaluate and prioritize optimal trade-offs among the different
objectives [6].

Multi-objective approaches have been used to solve optimization problems in the food
engineering industry. For instance, Vilas et al. sought to maximize food quality and safety
by developing smart active packaging systems that optimize food-packaging design and
prediction of the expected shelf life along the food chain [7]. Abakarov used this technique
with experimental data obtained on osmotic dehydration of carrot cubes in a sodium
chloride solution to improve the assessment of criteria weights and produce fairer and
more consistent products [6]. Holdsworth and Simpson obtained a set of Pareto-optimal
solutions for processing time, quality retention, and texture loss under specific criteria of
the processing temperature [8]. Krüger et al. proposed a multi-objective optimization to
choose a pot and a growth substrate mixture such that environmental emissions and costs
are simultaneously minimized [9] and Gergely et al. used this approach to improve wine
filtration [10]. Sendín et al. used it to maximize the retention of several nutrients and quality
factors and minimize the total process time [11]. Kiranoudis and Markatos considered the
multi-objective approach to design the process of a conveyor-belt dryer using not only
structural and operational process variables but the quality of treated potatoes [12]. In the
same line, Olmos et al. used this approach to optimize the drying time maximizing the
product quality [13] and Winiczenko et al. studied the effect of drying temperature and
air velocity on apple quality parameters, such as color difference, volume ratio and water
absorption capacity in convective drying [14]. In the field of sustainable distribution of
foods, Bortolini et al. optimized the cost, delivery time and carbon footprint with a multi-
objective approach [15]. However, no work was found where acrylamide production and



Foods 2022, 11, 3689 3 of 14

food quality parameters were considered simultaneously in a multi-objective optimization
approach. Peñalver-Soto et al. analysed the dynamics of acrylamide production and
microbiological inactivation in certain foods by performing simulations instead of a formal
optimization formulation [16].

1.3. Uncertainty in MOO

Uncertainty propagation has been extensively studied in the fields of physics and
mathematics [17–21] and in particular, in the field of food intake, where it has been analyzed
from different approaches [22–27]. In general, the propagation of uncertainty refers to
the estimation of the variability in a given quantity. This variability can be due to several
factors, such as measurement error, sampling variability, or natural variability [22]. In food
engineering, the variability of a particular property or characteristic of a food product can
have a significant impact on the quality and safety of the product.

In this study, the propagation of uncertainty to the MOO approach was assessed by
propagating the uncertainty of model parameters to the solutions shown in the Pareto front.
Parameter uncertainty can affect the shape of the Pareto optimal front in multi-objective
optimization, and this can have important implications for decision-making [17].

Different methods can be used to propagate uncertainty in food engineering. Each
method has its strengths and weaknesses, and the choice often depends on the type of data
being studied. Some of the most common methods of uncertainty propagation include
Monte-Carlo simulation [28], linear approximation [29], the sigma point method [30], and
polynomial chaos expansion [31].

Specifically, this article applies the Monte-Carlo method which is a powerful tool for
studying the propagation of uncertainty [32]. The method is used to calculate the proba-
bility of different outcomes by randomly selecting values from a probability distribution.
This approach can be used to calculate the expected value of a function or to estimate
the uncertainty in a measurement. The Monte-Carlo method can be used to study the
propagation of uncertainty in food engineering. Garre et al. used this methodology in
microbial inactivation of foods to select optimal experiment designs [33]. In this work,
we analyzed the effects of parameter uncertainty in mathematical models describing food
processes over the robustness of the Pareto set of solutions in multi-objective optimization
using as a case study a frying process of potato chips where a quality parameter (yellow-
ness) and the production of acrylamide, a potential carcinogen [34,35] were defined as
opposed objectives.

2. Materials and Methods
2.1. Case Study

This study analyzed the potato-frying process to optimize food safety and culinary
quality. Specifically, the impact of the heat treatment on the amount of acrylamide produced
and the yellowness and moisture content were studied. The whole study was based on
mathematical model simulations. We used the Maillard model (Equations (1)–(5)) to
simulate the acrylamide formation using the fitted model provided by Knol et al. [36]
and the models proposed by Krokida et al. [37,38] (Equations (6)–(11)) to simulate the
yellowness and the moisture content. All models (see Section 2.2) were previously calibrated
and validated by their original authors as reported in the respective bibliographic references
The outputs of such models, which depend upon temperature and time, were used to
simulate the experiments and perform the multi-objective optimization as well as the
uncertainty propagation analysis. The simulated heat treatments considered were all in
the range of values for which the mathematical models were validated according to their
authors [36–38].

The selected potato corresponded to the Agria variety, which is used in products sold
in supermarket chains and has been one of the most studied varieties in frying conditions
in the literature [39–41]. The high temperatures of the considered heat treatment (frying
process) brought the two considered objectives into conflict since an increase in yellowness
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implies an increase in acrylamide production, thus a multi-objective approach was used.
Slices of 15 mm thickness were considered in this work. Likewise, no air drying or osmotic
pre-treatment were considered [42]. The experiments carried out by Krokida et al. to
calibrate the yellowness model used a commercial deep fat fryer with temperature control
of±1 ◦C that was filled with 2 l of oil and the potatoes-to-oil ratio was kept at 1:50 w/v. The
concentration of hydrogenated cotton seed oil in total (refined plus hydrogenated) oil was
considered as 50% [37]. Nevertheless, these authors stated that the type of oil did not have
any influence over color parameters. They used a Hunterlab SAV colorimeter and reported
the results in the CIE Lab color scale (non-dimensional) in their experiments [37,38]. Food
safety was determined by low levels of acrylamide. EFSA [43] determines 50 µg/kg as the
maximum level. On the other hand, culinary quality was determined by the maximization
of yellowness and the setting of moisture content between 2 and 4% as recommended by
Segnini et al. [44], as an indicator or predictor of texture.

If any of the described parameters took different values, a different potato variety
was considered or additional quality variables (e.g., textural ones) were incorporated, and
the methodology remained the same. Here we intend to illustrate how to design a frying
process using modelling tools and, particularly, multi-objective optimization, as well as
providing a global picture of the balances between objectives in the whole design variables
domain, as shown in the visual scheme in Figure 1.

Figure 1. Outline of the case study.

2.2. Mathematical Models
2.2.1. Acrylamide Production

Because of its different applications in industry as a reactive molecule to synthesize
polyacrylamide, acrylamide has been a focus of great interest [45,46]. Safe levels of exposure
to acrylamide in human beings have been analyzed and studied. For a detailed review
see [45] in which, among others, data on toxicology are included. EFSA in its latest report
on the assessment of the genotoxicity of acrylamide [47], considered the possible modes of
action of acrylamide carcinogenicity, including genotoxic and non-genotoxic effects. The
paper concludes that there is substantial evidence for acrylamide genotoxicity mediated
by metabolite formation, in addition to a possible contribution of non-genotoxic effects to
acrylamide carcinogenicity. This is particularly interesting in food processes in which the
heat treatment produces levels of acrylamide so large that they need to be controlled.

In this framework, different models have been considered. To quantify the acrylamide
formation we used multi-response kinetics in a fructose–asparagine reaction at high tem-
peratures (120–200 ◦C) proposed by Knol et al. [36]. The model is based on the reaction
network shown in Equations (1) to (5).
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Fructose and asparagine are degraded into glucose, acid acetic, Schiff base and un-
known species (X1). At the same time, the Schiff base is degraded into melanoidins
and acrylamide. Knol et al. fitted the equilibrium constants for the temperature range
(120–200 ◦C) and showed a logarithmic relationship with temperature [36]. Therefore, the
equilibrium constants for each temperature are calculated (Ki(T) for each i = 1, 2, . . . , 6).
The system of ordinary differential equations (ODEs) that relates the amount of acrylamide
formed for a specific time t (minutes) and temperature T(◦C) is defined in Equation (5).

d[Glucose]
dt

= −K1(T)·[Glucose]·[Asparagine]− K2(T)·[Glucose] (1)

d[Fructose]
dt

= −K3(T)·[Fructose]·[Asparagine] + K2(T)·[Glucose] (2)

d[Asparagine]
dt

= −K1(T)·[Glucose]·[Asparagine]− K3(T)·[Fructose]·[Asparagine] (3)

d[Schi f f base]
dt = K1(T)·[Glucose]·[Asparagine] + K3(T)·[Fructose]·[Asparagine]

−K4(T)·[Schi f f base]− K5(T)·[Schi f f base]
(4)

d[Acrylamide]
dt

= K4(T)·[Schi f f base]− K6(T)·[Acrylamide] (5)

One of the outputs of the ODEs is the acrylamide concentration formed for a heat
treatment (time, temperature), which was the first optimization objective in our formulation.
To solve this set of ODEs, apart from the heat treatment conditions, that is, the time and
temperature variables, it is necessary to set the initial amounts of fructose, glucose, and
asparagine. For the “Agria” potato, which was the variety studied, the compositions were
11.77 mmol/L of asparagine, 2.95 mmol/L of fructose and 4.12 mmol/L of glucose. Details
on these calculations are provided in the Supplementary Materials [48,49].

2.2.2. Yellowness

The second considered objective was a quality parameter related to the color of fried
potato: yellowness. Pedreschi considered it as one of the quality parameters of interest for
fried potatoes [50]. Color-related parameters are of great importance for the product to
be attractive to the consumer [37–46,50,51]. In particular, different studies revealed that
high values of yellowness are preferred by consumers [52]. The problem is that at the
same time, an increase in temperature also implies an increase in another color-related
parameter, redness, which is not a desirable quality in the final product [37]. Roughly
speaking a good level of yellowness is “the goal” but, at the same time, redness must be
minimized. Nevertheless, Knol et al. [36] and Pedreschi et al. [53] indicated that acrylamide
concentration shows a good linear correlation with the redness of potato chips. Therefore
redness can be indirectly controlled by the level of acrylamide (recall that the first objective
considered in this work was to minimize the concentration of acrylamide). Here we used
the model for the yellowness, namely b, proposed by Krokida et al. [37], described in
Equation (6)–(8), where d is the thickness of the slice (mm) and T is the temperature (◦C).

Kb = 0.12
(

T
170

)2.49( d
10

)−0.44
(6)

be = 36.2
(

T
170

)1.012( d
10

)−0.2
(7)

b(t, T) = be + (b0 − be)e−Kbt (8)
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Here we set the values of d = 15 mm and b0 = 22.6 (corresponding to no pretreatment
processes [37]). As observed in Equations (6)–(8), b, like our first-considered objective
(acrylamide production), depends on both the time and temperature.

2.2.3. Moisture Content

The moisture content of the fried product is an important quality parameter. Its
control is necessary to achieve the desired taste, texture, and color of the product. The
moisture content indicates the water loss from the potato strips during frying. It decreases
significantly when the potato is fried. The temperature of the oil has a negative effect on
the moisture content of fried potatoes. The higher the temperature of the frying oil, the
lower the moisture content for the same frying time. Moisture content is also related to one
of the quality aspects most valued by consumers, the degree of crispiness of fried potatoes.
There is a direct relationship between these variables: the higher the moisture content, the
lower the crispness. Therefore, it is of utmost importance that the moisture content value
is maintained between 2% and 4% as recommended by Segnini et al. [44]. Following the
model proposed by Krokida et al. [38], Equations (9)–(11) define the moisture content as a
function of treatment time and temperature.

Xe(T) = 0.54
(

T
170

)−3.63( d
10

)0.89
(9)

KX(T) = 0.78
(

T
170

)1.61( d
10

)−2.27
(10)

X(t, T) = Xe + (X0 − Xe(T))e−KX(T)t (11)

where X0 = 3.9 and d = 15 mm, corresponding to no pretreatment, as indicated by
Krokida et al. [38].

In our multi-objective optimization problem, we formulated the moisture content as a
constraint whose value at the end of the frying process must lie between 2% and 4%, as
recommended by Segnini et al. [44].

2.3. Multi-Objective Problem (MOP)

Multi-objective optimization aims at finding the best possible solutions to a set of
conflicting objectives, Equations (12)–(16) define the mathematical formulation applied to
our case study.

min
u(t)

F(x(t), u(t)) (12)

subject to :

dx
dt

= Ψ(x(t), u(t), t) (13)

x(t0) = x0 (14)

g(x(t), u(t)) ≤ 0 (15)

uL ≤ u(t) ≤ uS (16)

where the vector of objective functions, Equation (12), contains all the objectives consid-
ered in the problem. In our case, the objectives were already defined as f1 = acrylamide
production (Equation (5)) and f2 =−yellowness (Equation (8)), (note that the negative sign
indicates that this objective is maximized). x is the vector of state variables (e.g., chemical
species concentrations) and u is the vector of control variables (temperature and processing
time in our case). Equation (13) represents the system dynamics (dynamic mathematical
models that define acrylamide production and yellowness). Equation (14) represents the
values of the stated variables at the beginning of the process (t = 0). Equation (15) represents
inequality constraints, which can be considered at the end of the process or at intermediate



Foods 2022, 11, 3689 7 of 14

times (moisture content in our MOP). Finally, Equation (16) corresponds to the lower and
upper boundaries for the control variables (e.g., the minimum and maximum temperature
and processing time). In our problem, those boundaries were defined as [0.1, 10] min for
time and [120, 200] ◦C for temperature.

There are several methods for solving the problem. In the first approach, we used a
systematic complete search using the nominal values for the model’s parameters to obtain
not only the Pareto front but also the whole feasible region. The procedure is described
as follows: A set D is defined as D := {(t, T) ∈ [0.1, 10]× [120, 200] : 2 ≤ X(t, T) ≤ 4},
where t is the processing time, T is the temperature, and X is the moisture content. For every
value b* of yellowness within the interval [22.6, 26.9], which corresponds to the minimum
and maximum yellowness values in the ranges of times and temperatures considered, we
calculate the level curve Sb∗ : = {(t, T) ∈ [0.1, 10]× [120, 200] : b(t, T) = b∗} ∩ D. The
numerical calculation of Sb∗ provides the feasible region and the values that minimize the
acrylamide for every Sbi

provide the Pareto front.
The described complete search procedure is computationally intensive since it eval-

uates all the solutions in the feasible regions. As stated above, this was only applied
using the nominal parameter values. For assessing the uncertainty propagation, where
1000 Pareto fronts were calculated by simulating different values for the model parameters
(see Section 2.4), the heuristic algorithm NSGA-II [54] was applied. Given the characteris-
tics of the models considered in this study (nonlinear and dynamic), this type of algorithm
is a suitable option to achieve good solutions (normally the optimal ones) in relatively short
computational times [2]. Further, we checked that, for the nominal parameter values, the
obtained Pareto front by NSGA-II coincided with that obtained with the complete search
procedure. This study used the R package “nsga2” to perform the optimization of the
proposed problem.

2.4. Uncertainty Propagation

Uncertainty propagation was applied to the estimation of the equilibrium constants of
the differential equations describing acrylamide production (Equations (1)–(5)). The model
considers up to six equilibrium constants for which confidence intervals are given in [36].
The Monte-Carlo method was used to simulate 1000 sets of positive parameter values
following a normal distribution for each equilibrium constant The MOP was solved and a
Pareto front for each combination of the simulated kinetic constants was obtained. Thus,
1000 Pareto fronts were obtained. These provide an idea of the uncertainty propagation of
the equilibrium constants and their impact on the Pareto front.

3. Results
3.1. Multi-Objective Solutions

The multi-objective approach using the nominal values for the kinetic parameters
provided in [36] led to a set of optimal (non-dominated) solutions (Pareto front) shown
in Figure 2 together with the feasible space. The vertical axis represents the amount of
acrylamide produced and the horizontal axis represents the yellowness. The Pareto front is
represented as a thick red line. On the other hand, the colors of the feasible region represent
the moisture content and the blue horizontal line represents the recommended limit for
acrylamide [43].

The first relationship was, as expected, that the higher the yellowness, the lower the
moisture content and the higher the amount of acrylamide. All of this was positively
correlated with the treatment severity (i.e., higher temperatures and/or treatment times
led to an increase in the above-mentioned variables). On the other hand, given the prob-
lem boundaries and constraints, the yellowness was limited to values between 22 and
27, while the acrylamide did not exceed 1300 µg/kg which is 26 times higher than the
EFSA recommendation.
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Figure 2. Feasible set of solutions and Pareto front.

A temperature–time representation of the Pareto front is shown in Figure 3. The points
in red represent operational points that do not comply with the EFSA recommendation
in terms of acrylamide amount, and they correspond to the highest temperatures. It can
be seen that from approximately 155 ◦C, the dots form a curve that tends to be vertically
asymptotic. This curve coincides with the conditions that keep the moisture content
constraint active with a value of 2%.

Figure 3. Pareto front temperature–time solutions.

As shown in Figures 2 and 3, most of the solutions from the Pareto front led to high
levels of acrylamide, exceeding the recommended levels by up to 26 times in some cases.
Working points around 200 ◦C with a duration of approximately 2 min generated between
1200 and 1300 µg/kg of acrylamide when the recommended upper limit is 50 µg/kg.

During the optimization process, the existence of multiple quasi-equivalent solutions
in the Pareto front was found for the ranges of low acrylamide production and low yel-



Foods 2022, 11, 3689 9 of 14

lowness (e.g., low temperatures and/or processing times). The existence of these multiple
solutions was caused by the flatness of the objective functions in areas of low temperatures
and processing times (Figures S1 and S2). Table 1 illustrates some of these Pareto equivalent
solutions. Equivalent solutions were defined as having the same values of acrylamide
and yellowness with a tolerance of 0.01 but differences in temperature and time of at least
1 ◦C and 0.2 min, respectively. Figure 4 shows, in the temperature–time domain, the sets
of equivalent solutions found for selected points of the Pareto front. Quasi-equivalent
solutions are represented with the same color in Figure 4.

Table 1. Selection of Pareto fronts and quasi-equivalent solutions.

Solutions Time
(min)

Temperature
(◦C)

Acrylamide
(µg/kg) Yellowness Moisture

Content (%)

#1 1.97 120.48 0.028 22.67 3.540
#1′ 0.16 150.00 0.034 22.68 3.796
#2 1.99 124.74 0.069 22.76 3.425
#2′ 0.61 138.00 0.076 22.76 3.614
#3 2.19 127.88 0.154 22.85 3.297
#3′ 1.28 134.00 0.163 22.85 3.411
#4 2.05 132.91 0.345 22.96 3.199
#4′ 3.61 127.00 0.348 22.96 3.060
#5 4.63 130.42 1.086 23.23 2.759
#5′ 4.01 132.00 1.094 23.23 2.796
#6 5.03 132.39 1.821 23.39 2.617
#6′ 6.29 130.00 1.823 23.39 2.571
#7 8.89 134.28 7.60 24.04 2.13
#7′ 10.00 133.00 7.59 24.04 2.14

Figure 4. Selected sets of quasi-equivalent solutions.

Table 1 and Figure 4 show that the lower the time and temperature, the higher num-
ber of equivalent solutions. As time or temperature increases, the number of equivalent
solutions decreases and the curve defined by them becomes more horizontal (i.e., tem-
perature differences are relatively lower than the difference in processing time in these
cases). It is of note that, mathematically speaking, no equivalent solutions for the Pareto
front can be found in this problem but, due to the flatness of the objective functions in
certain temperature–time ranges, a set of very similar (called equivalent here) solutions
can be found, allowing processes to be flexible to achieve certain results. No equivalent
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solutions according to the definition above were found for temperature-time conditions
where acrylamide values were above 9 µg/kg.

3.2. Uncertainty Propagation

In this section, we analyze the uncertainty propagation from the kinetic parameters
of the Maillard equation characterized by Knol et al. [36] to the Pareto front of the multi-
objective optimization problem. The result of the uncertainty propagation of the k’s of the
Maillard model, Equations (1)–(5), with the Monte-Carlo method yields the set of Pareto
fronts shown in Figure 5.

Figure 5. Set of 1000 Pareto fronts resulting from Monte-Carlo simulation of the kinetic parameters
for the Maillard reaction.

Figure 5 shows, on the vertical axis, the amount of acrylamide produced and on the
horizontal axis, the yellowness. The black dots are the Pareto fronts of the 1000 simulations
where the red line represents the Pareto front with the mean values of the Maillard’s kinetic
parameters (shown in Figure 2) and the blue line represents the quantity of recommended
acrylamide. The Pareto front resulting from the average kinetic values is located approxi-
mately in the middle zone of the solutions, so the assumed normal distributions for the
kinetic parameters translate into a symmetric distribution of the Pareto solutions for each
yellowness value. On the other hand, the uncertainty increases as the yellowness (i.e.,
temperature and/or time) increases. The combination of these two means that around
95% of the points considering all the 1000 Pareto fronts are outside the recommendation in
terms of acrylamide production.

4. Discussion

This paper addresses the problem of food safety combined with product quality. It
uses a multi-objective approach, which has been widely used in the literature [6–15]. Other
studies such as that of Mestdagh [55] have studied balances between acrylamide and color
but not from the quantitative and multi-objective optimization point of view addressed in
this paper.

The MOP’s solutions (Figure 2) show that most frying processes (considering the
conditions established in Section 2.2) do not comply with EFSA recommendations. The
maximum acrylamide amount recommended by EFSA could be formulated as an additional
constraint (which would lead to a different Pareto front) or, alternatively, we could try to
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select those points corresponding to temperatures not higher than 155 ◦C, approximately
(blue points in Figure 3). Therefore, to ensure lower acrylamide values than the maximum
ones recommended by EFSA, it is recommended to use frying temperatures below 160 ◦C
with frying times not exceeding 4 min. The next implication is that, under these conditions,
the yellowness only reaches values of 22–25, so the recommended amount of acrylamide
greatly limits the visual quality of the final product regarding yellowness.

These results are influenced by all the premises taken such as the potato variety and
the type of thermal process, among others. Therefore, any change in these assumptions
may influence the results, although the procedure and analysis is useful for studying this
type of problem. For example, Johnson determined that, given their composition, not only
can the potato variety modify the balance between the variables, but the way they are
grown can also have an influence [56].

On the other hand, these solutions are not unique since at the practical level equivalent
solutions appear. Therefore, two frying processes with different conditions (time or temper-
ature) can produce the same amount of acrylamide while maintaining equivalent quality
(yellowness and moisture content). This existence of equivalent solutions in the Pareto
front was recently observed by Ortiz-Martínez et al. [57] in the multi-objective optimization
of a wastewater process. In any case, an a priori analysis of the objective functions and
their dynamics can help to anticipate whether multiple solutions for the Pareto front can
appear [16].

The study of the propagation of the uncertainty associated with the parameters comple-
ments a study that provides an additional tool to take into account other possible scenarios.
The presented analysis shows that, when performing multi-objective optimization for
design purposes, the model parameters variability and their propagation must be taken
into account to find sets of design options (i.e., Pareto fronts) that account for every possible
scenario. In this particular application, it was also shown that the propagated variabil-
ity is not the same in every part of the objectives space, being lower with soft operating
conditions (low values of yellowness and acrylamide production in Figure 2 than with
severe operating conditions (high values of the objectives and higher process-temperature
or time).

For a proper analysis of the optimal solutions, it must be taken into account that this
modelling exercise considered that the cooking temperature is uniform throughout the
potato and that the temperature of the oil is equal to the temperature of the potato. Obvi-
ously, this does not actually happen [58,59], so these theoretical times could be increased
without affecting the limit of acrylamide produced. However, we would still conclude that
most operating conditions within the ranges of temperatures and times usually consid-
ered in real processes exceed the recommended acrylamide amount. Finally, recall that
this analysis used the mean values of the estimated kinetic parameters of the acrylamide
production [36] but, considering the uncertainty of such parameters, other scenarios may
occur. To account for this, we used uncertainty propagation tools to take into account other
possible scenarios.

5. Conclusions

The multi-objective optimization of a potato-frying process balancing between acry-
lamide formation and a quality parameter (yellowness) was addressed in this study. The
results show that most of the optimal solutions (the Pareto front) considering the usual
temperature and processing time ranges provide higher acrylamide amounts than the limit
recommended by EFSA (50 µg/kg). In addition, multiple solutions for some areas of the
Pareto front (namely, those providing low values of acrylamide) have been identified. The
existence of these multiple solutions can be anticipated by a previous analysis of the objec-
tive function and their sensitivities to changes in the decision variables (temperature and
processing time) in different areas of the search space. In our case, both objective functions
showed flat areas in the ranges of low temperatures and processing times, which allows
the existence of multiple optimal solutions. These multiple solutions are not equivalent
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from a mathematical point of view but they are from a practical point of view, allowing
us to slightly change the processing conditions to obtain the same results for the objective
function within a given tolerance.

The uncertainty of the kinetic parameters for acrylamide production has been prop-
agated to the Pareto front using a Monte-Carlo simulation, showing that the uncertainty
with respect to the Pareto front using the nominal values increases as the values of the
objective functions do. This uncertainty must be taken into account when designing the
frying process to make the design more robust and avoid undesirable solutions (e.g., too
high acrylamide values).

We recommend, if possible, performing these analyses when performing model-based
multi-objective optimization to design food processes. This type of methodology is of
course not specific to food processes but, given their nature, where multiple objectives
must be optimized simultaneously, it should be applied to them. Other objectives could
be included (e.g., other quality parameters or economic or environmental factors) or other
types of food/processes where acrylamide production may be an issue can be considered
by applying the methodologies presented here. These methodologies can help in making
optimal decisions where there are unexpected conditions deviations or in re-designing
the processes.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/foods11223689/s1. Figure S1: Surface plot of the acrylamide production
(Objective function 1) with respect to processing time and temperature; Figure S2: Surface plot of the
yellowness (Objective function 2) with respect to processing time and temperature.
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convective drying of apple cubes. Comput. Electron. Agric. 2018, 145, 341–348. [CrossRef]
15. Bortolini, M.; Faccio, M.; Ferrari, E.; Gamberi, M.; Pilati, F. Fresh food sustainable distribution: Cost, delivery time and carbon

footprint three-objective optimization. J. Food Eng. 2016, 174, 56–67. [CrossRef]
16. Peñalver-Soto, J.L.; Garre, A.; Aznar, A.; Fernández, P.S.; Egea, J.A. Dynamics of Microbial Inactivation and Acrylamide Production

in High-Temperature Heat Treatments. Foods 2021, 10, 2535. [CrossRef]
17. Costa, L.; Santo, I.E.; Oliveira, P.; Simos, T.E.; Psihoyios, G.; Tsitouras, C.; Anastassi, Z. Uncertainty on Multi-objective Optimiza-

tion Problems. AIP Conf. Proc. 2011, 1389, 775–778. [CrossRef]
18. Herrador, M.; Asuero, A.G.; González, A.G. Estimation of the uncertainty of indirect measurements from the propagation of

distributions by using the Monte-Carlo method: An overview. Chemom. Intell. Lab. Syst. 2005, 79, 115–122. [CrossRef]
19. Knio, O.M.; Le Maître, O.P. Uncertainty propagation in CFD using polynomial chaos decomposition. Fluid Dyn. Res. 2006, 38,

616–640. [CrossRef]
20. Luo, Y.-Z.; Yang, Z. A review of uncertainty propagation in orbital mechanics. Prog. Aerosp. Sci. 2017, 89, 23–39. [CrossRef]
21. Zhang, J. Modern Monte Carlo methods for efficient uncertainty quantification and propagation: A survey. WIREs Comput. Stat.

2020, 13, e1539. [CrossRef]
22. Akkermans, S.; Nimmegeers, P.; Van Impe, J.F. A tutorial on uncertainty propagation techniques for predictive microbiology

models: A critical analysis of state-of-the-art techniques. Int. J. Food Microbiol. 2018, 282, 1–8. [CrossRef]
23. Feyissa, A.H.; Gernaey, K.V.; Adler-Nissen, J. Uncertainty and sensitivity analysis: Mathematical model of coupled heat and mass

transfer for a contact baking process. J. Food Eng. 2012, 109, 281–290. [CrossRef]
24. Guillard, V.; Guillaume, C.; Destercke, S. Parameter uncertainties and error propagation in modified atmosphere packaging

modelling. Postharvest Biol. Technol. 2012, 67, 154–166. [CrossRef]
25. Nicolai, B.; Verboven, P.; Scheerlinck, N.; De Baerdemaeker, J. Numerical analysis of the propagation of random parameter

fluctuations in time and space during thermal food processes. J. Food Eng. 1998, 38, 259–278. [CrossRef]
26. Srivastava, S.; Chaudhuri, A.; Srivastava, R.K. Propagation of risks and their impact on performance in fresh food retail. Int. J.

Logist. Manag. 2015, 26, 568–602. [CrossRef]
27. Turgut, S.S.; Feyissa, A.H.; Küçüköner, E.; Karacabey, E. Uncertainty and sensitivity analysis by Monte Carlo simulation: Recovery

of trans-resveratrol from grape cane by pressurised low polarity water system. J. Food Eng. 2020, 292, 110366. [CrossRef]
28. Poschet, F.; Geeraerd, A.H.; Scheerlinck, N.; Nicolaï, B.M.; van Impe, J.F. Monte Carlo analysis as a tool to incorporate variation

on experimental data in predictive microbiology. Food Microbiol. 2003, 20, 285–295. [CrossRef]
29. Van Impe, J.; Bernaerts, K.; Geeraerd, A.; Poschet, F.; Versyck, K. Modelling and prediction in an uncertain environment. Food

Process Model. 2001, 59, 156–179. [CrossRef]
30. Julier, S.; Uhlmann, J.K. A General Method for Approximating Nonlinear Transformations of Probability Distributions; Institute of

Electrical and Electronics Engineers: New York, NY, USA, 1996.
31. Wiener, N. The Homogeneous Chaos. Am. J. Math. 1938, 60, 897. [CrossRef]
32. Metropolis, N.; Ulam, S. The Monte Carlo Method. J. Am. Stat. Assoc. 1949, 44, 335–341. [CrossRef]
33. Garre, A.; Peñalver-Soto, J.L.; Esnoz, A.; Iguaz, A.; Fernandez, P.S.; Egea, J.A. On the use of in-silico simulations to support

experimental design: A case study in microbial inactivation of foods. PLoS ONE 2019, 14, e0220683. [CrossRef]
34. Johnson, K.A.; Gorzinski, S.J.; Bodner, K.M.; Campbell, R.A.; Wolf, C.H.; Friedman, M.A.; Mast, R.W. Chronic toxicity and

oncogenicity study on acrylamide incorporated in the drinking water of Fischer 344 rats. Toxicol. Appl. Pharmacol. 1986, 85,
154–168. [CrossRef]

35. Rice, J.M. The carcinogenicity of acrylamide. Mutat. Res. Toxicol. Environ. Mutagen. 2005, 580, 3–20. [CrossRef]
36. Knol, J.J.; van Loon, W.A.M.; Linssen, J.P.H.; Ruck, A.-L.; van Boekel, M.A.J.S.; Voragen, A.G.J. Toward a Kinetic Model for

Acrylamide Formation in a Glucose−Asparagine Reaction System. J. Agric. Food Chem. 2005, 53, 6133–6139. [CrossRef] [PubMed]
37. Krokida, M.; Oreopoulou, V.; Maroulis, Z.; Marinos-Kouris, D. Colour changes during deep fat frying. J. Food Eng. 2001, 48,

219–225. [CrossRef]
38. Krokida, M.K.; Oreopoulou, V.; Maroulis, Z.B.; Marinos-Kouris, D. Deep fat frying of potato strips—Quality issues. Dry. Technol.

2001, 19, 879–935. [CrossRef]
39. Abduh, S.B.M.; Leong, S.Y.; Zhao, C.; Baldwin, S.; Burritt, D.J.; Agyei, D.; Oey, I. Kinetics of Colour Development during Frying

of Potato Pre-Treated with Pulsed Electric Fields and Blanching: Effect of Cultivar. Foods 2021, 10, 2307. [CrossRef] [PubMed]

http://doi.org/10.1016/j.compag.2018.09.001
http://doi.org/10.1016/S0260-8774(02)00376-X
http://doi.org/10.1016/j.jfoodeng.2010.01.007
http://doi.org/10.1016/S0260-8774(00)00060-1
http://doi.org/10.1081/DRT-120005855
http://doi.org/10.1016/j.compag.2018.01.006
http://doi.org/10.1016/j.jfoodeng.2015.11.014
http://doi.org/10.3390/foods10112535
http://doi.org/10.1063/1.3636847
http://doi.org/10.1016/j.chemolab.2005.04.010
http://doi.org/10.1016/j.fluiddyn.2005.12.003
http://doi.org/10.1016/j.paerosci.2016.12.002
http://doi.org/10.1002/wics.1539
http://doi.org/10.1016/j.ijfoodmicro.2018.05.027
http://doi.org/10.1016/j.jfoodeng.2011.09.012
http://doi.org/10.1016/j.postharvbio.2011.12.014
http://doi.org/10.1016/S0260-8774(98)00108-3
http://doi.org/10.1108/IJLM-02-2014-0032
http://doi.org/10.1016/j.jfoodeng.2020.110366
http://doi.org/10.1016/S0740-0020(02)00156-9
http://doi.org/10.1533/9781855736375.2.156
http://doi.org/10.2307/2371268
http://doi.org/10.1080/01621459.1949.10483310
http://doi.org/10.1371/journal.pone.0220683
http://doi.org/10.1016/0041-008X(86)90109-2
http://doi.org/10.1016/j.mrgentox.2004.09.008
http://doi.org/10.1021/jf050504m
http://www.ncbi.nlm.nih.gov/pubmed/16029007
http://doi.org/10.1016/S0260-8774(00)00161-8
http://doi.org/10.1081/DRT-100103773
http://doi.org/10.3390/foods10102307
http://www.ncbi.nlm.nih.gov/pubmed/34681356


Foods 2022, 11, 3689 14 of 14

40. Kedia, P.; Kausley, S.B.; Rai, B. Development of kinetic models for prediction of reducing sugar content in potatoes using literature
data on multiple potato varieties. LWT 2021, 155, 112986. [CrossRef]

41. Yang, Y.; Achaerandio, I.; Pujolà, M. Influence of the frying process and potato cultivar on acrylamide formation in French fries.
Food Control 2016, 62, 216–223. [CrossRef]

42. Krokida, M.; Oreopoulou, V.; Maroulis, Z.; Marinos-Kouris, D. Effect of osmotic dehydration pretreatment on quality of french
fries. J. Food Eng. 2001, 49, 339–345. [CrossRef]

43. European Food Safety Authority. Update on acrylamide levels in food from monitoring years 2007 to 2010. EFSA J. 2012, 10, 2938.
[CrossRef]

44. Segnini, S.; Dejmek, P.; Oste, R. Reproducible Texture Analysis of Potato Chips. J. Food Sci. 1999, 64, 309–312. [CrossRef]
45. Friedman, M. Chemistry, Biochemistry, and Safety of Acrylamide. A Review. J. Agric. Food Chem. 2003, 51, 4504–4526. [CrossRef]
46. Friedman, M.; Mottram, D. Chemistry and Safety of Acrylamide in Food; Springer Science & Business Media: Berlin/Heidelberg,

Germany, 2006; Volume 561.
47. Benford, D.; Bignami, M.; Chipman, J.K.; Bordajandi, L.R. Assessment of the genotoxicity of acrylamide. EFSA J. 2022, 20, e07293.

[CrossRef]
48. Golmohammadi, A.; Afkari-Sayyah, A.H. Long-Term Storage Effects on the Physical Properties of the Potato. Int. J. Food Prop.

2012, 16, 104–113. [CrossRef]
49. Vivanti, V.; Finotti, E.; Friedman, M. Level of Acrylamide Precursors Asparagine, Fructose, Glucose, and Sucrose in Potatoes Sold

at Retail in Italy and in the United States. J. Food Sci. 2006, 71, C81–C85. [CrossRef]
50. Pedreschi, F. Frying of Potatoes: Physical, Chemical, and Microstructural Changes. Dry. Technol. 2012, 30, 707–725. [CrossRef]
51. Kizito, K.F.; Abdel-Aal, M.H.; Ragab, M.H.; Youssef, M.M. Quality attributes of French fries as affected by different coatings,

frozen storage and frying conditions. J. Agric. Sci. Bot. 2017, 1, 23–29.
52. Nourian, F.; Ramaswamy, H. Kinetics of quality change during cooking and frying of potatoes: Part ii. color. J. Food Process Eng.

2003, 26, 395–411. [CrossRef]
53. Pedreschi, F.; Moyano, P.; Kaack, K.; Granby, K. Color changes and acrylamide formation in fried potato slices. Food Res. Int. 2005,

38, 1–9. [CrossRef]
54. Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol.

Comput. 2002, 6, 182–197. [CrossRef]
55. Mestdagh, F.; De Wilde, T.; Castelein, P.; Németh, O.; Van Peteghem, C.; De Meulenaer, B. Impact of the reducing sugars on the

relationship between acrylamide and Maillard browning in French fries. Eur. Food Res. Technol. 2008, 227, 69–76. [CrossRef]
56. Johnson, A.M.; Porter, G.; Camire, M.E. Low-Acrylamide French Fry Acceptance: A Pilot Study. J. Food Sci. 2019, 84, 3717–3725.

[CrossRef]
57. Ortiz-Martínez, V.M.; Martínez-Frutos, J.; Hontoria, E.; Hernández-Fernández, F.J.; Egea, J.A. Multiplicity of solutions in

model-based multiobjective optimization of wastewater treatment plants. Optim. Eng. 2021, 22, 1–16. [CrossRef]
58. Farinu, A.; Baik, O.-D. Convective mass transfer coefficients in finite element simulations of deep fat frying of sweetpotato. J.

Food Eng. 2008, 89, 187–194. [CrossRef]
59. Gholamibozanjani, G.; Leong, S.; Oey, I.; Bremer, P.; Silcock, P.; Farid, M. Heat and Mass Transfer Modeling to Predict Temperature

Distribution during Potato Frying after Pre-Treatment with Pulsed Electric Field. Foods 2021, 10, 1679. [CrossRef] [PubMed]

http://doi.org/10.1016/j.lwt.2021.112986
http://doi.org/10.1016/j.foodcont.2015.10.028
http://doi.org/10.1016/S0260-8774(00)00232-6
http://doi.org/10.2903/j.efsa.2012.2938
http://doi.org/10.1111/j.1365-2621.1999.tb15889.x
http://doi.org/10.1021/jf030204+
http://doi.org/10.2903/j.efsa.2022.7293
http://doi.org/10.1080/10942912.2010.529978
http://doi.org/10.1111/j.1365-2621.2006.tb08886.x
http://doi.org/10.1080/07373937.2012.663845
http://doi.org/10.1111/j.1745-4530.2003.tb00609.x
http://doi.org/10.1016/j.foodres.2004.07.002
http://doi.org/10.1109/4235.996017
http://doi.org/10.1007/s00217-007-0694-9
http://doi.org/10.1111/1750-3841.14844
http://doi.org/10.1007/s11081-020-09500-3
http://doi.org/10.1016/j.jfoodeng.2008.04.024
http://doi.org/10.3390/foods10081679
http://www.ncbi.nlm.nih.gov/pubmed/34441456

	Introduction 
	Optimization in Food Engineering 
	Applications of Multi-Objective Optimization in Food Engineering 
	Uncertainty in MOO 

	Materials and Methods 
	Case Study 
	Mathematical Models 
	Acrylamide Production 
	Yellowness 
	Moisture Content 

	Multi-Objective Problem (MOP) 
	Uncertainty Propagation 

	Results 
	Multi-Objective Solutions 
	Uncertainty Propagation 

	Discussion 
	Conclusions 
	References

