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Abstract: Grass-finished beef (GFB) has demonstrated wide nutritional variations with some GFB
having a considerably higher n-6:n-3 ratio compared to grain-finished beef. To better understand
these variations, the current study investigated the effects of commonly used supplemental feeds on
the nutritional profile of GFB. This two-year study involved 117 steers randomly allocated to one
of four diets: (1) grass+hay (G-HAY), (2) grass+baleage (G-BLG), (3) grass+soybean hulls (G-SH),
and (4) baleage+soybean hulls in feedlot (BLG-SH). Feed samples were analyzed for their nutritional
value, and beef samples underwent analysis for fatty acids (FAs), vitamin E, minerals, lipid oxidation,
and shear force. FAs were measured by GC-MS, vitamin E was analyzed chromatographically,
minerals were analyzed by ICP-MS, and lipid oxidation was measured via a thiobarbituric acid
reactive substances (TBARS) assay. G-SH beef had the highest n-6:n-3 ratio (p < 0.001), while BLG-SH
beef contained less vitamin E (p < 0.001) and higher TBARS values (p < 0.001) compared to the other
groups. G-HAY beef contained more long-chain n-3 polyunsaturated FAs compared to the other
groups (p < 0.001). In conclusion, G-HAY beef had the most beneficial nutritional profile, while
soybean hulls increased the n-6:n-3 ratio of beef.

Keywords: cattle feed; conserved forages; fatty acids; grassland; meat quality; minerals; pasture;
sustainability

1. Introduction

The market for grass-finished beef (GFB) is growing with retail sales of pasture-raised
beef increasing from $17 million in 2012 to $272 million in 2016 [1,2]. The consumer reason-
ing for these growing sales is complex. However, sustainable food production is driving
food choices for savvy consumers [3,4]. GFB appeals to consumers who are interested
in a healthier product for human consumption and the environmental considerations [5].
Leading organizations and platforms such as the EAT Lancet commission recommend
to drastically reduce red meat consumption for health and environmental reasons [6];
however, the type of production system is generally ignored in this recommendation [2].
GFB remains an underexplored alternative to attain sustainability goals [7]. For one, GFB is
more consistent with health recommendations. Compared to conventional grain-finished
beef, GFB contains more omega-3 (n-3) fatty acids (FAs) including eicosapentaenoic acid
(EPA) and docosahexaenoic acid (DHA), twice as much conjugated linoleic acid (CLA),
and 25% more polyunsaturated FAs (PUFAs) [3,8–11]. GFB also contains less omega-6 (n-6)
PUFAs, less total fat, and less cholesterol-raising saturated FAs (SFAs) [12,13]. GFB has an
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n-6:n-3 ratio of 1.5:1 compared to 7.7:1 for conventional grain-finished beef [14,15]. Foods
containing an n-6:n-3 ratio closer to 1:1 are recommended by human nutrition health pro-
fessionals [16,17]. Additionally, consumption of foods containing higher concentrations of
phytochemicals, typically fruits and vegetables, is also a key recommendation. In fact, GFB
has important antioxidant properties that also contribute to its healthfulness [18,19]. GFB
contains three times more vitamin E and 1.5–10 times more β-carotene than grain-finished
beef [15,20–22]. Some studies suggest that grass-finishing enhances the phenolic content of
beef, especially when cattle are grazing on phytochemically biodiverse pastures [2,19,23].
Properly managed complex biodiverse pastures also have the merit to sequester more
carbon and to enhance fresh-water systems [24].

The nutritional composition of beef is highly dependent on the feeding system, yet
these differences in nutritional quality are generally not reflected on food labels [2,19]. GFB
typically means that cattle were fattened solely on grass and forages before slaughter [25].
According to the American Grassfed Association standards, all cattle must be pasture based
meaning that grass and forage must be consumed throughout the lifetime of the animal
except for milk consumed before weaning. Hay, baleage, and silages may be consumed by
the animal when fresh grass and forages are not available due to inclement weather for
instance [26]. Supplemental feeds might be needed in some regions where fresh forages are
not available year-round. Season, soil composition, weather, and light exposure all play
crucial roles in feed quality and availability [19,27–29].

Interestingly, a nutritional survey of commercially available GFB published by our
group highlighted important differences among beef from grass-finishing systems [21].
The n-6:n-3 ratio varied from 1.8:1 to as high as 28.3:1 and some GFB was devoid of β-
carotene. These differences were hypothesized to be due to a wide variety of feeding
practices that were reflected in the nutritional profile of beef [21]. Feeding fresh forages
to cattle usually results in the most beneficial nutritional profile of beef [19,21]. However,
producers may rely on conserved forages and other supplemental feeds when fresh grass is
not available [30]. Unfortunately, conserved forages made by drying (hay) or fermentation
(baleage) often display lower nutritional quality compared to fresh forages with lower
concentrations of antioxidants and phenolic compounds [31,32]. The processing of fresh
forages into conserved feeds results in oxidation of PUFAs and an increase in palmitic
acid [33,34]. These changes in the nutritional profile of feeds modify FA metabolism in
the rumen, resulting in variations in the FA content of beef [35,36]. Although not allowed
by the American Grassfed Association [26], soybean hulls are also used as supplemental
feed by some producers in the U.S. [19,21]. The effects of feeding soybean hulls to cattle
remain controversial in the literature. Some studies found no differences in CLA, trans
vaccenic acid (TVA), n-3 PUFAs, and the n-6:n-3 ratio among cattle fed soybean hulls or
fresh forage in the finishing phase [20,21]. On the other hand, another study reported that
cattle supplemented with soybean hulls had more total fat, less n-3 PUFAs, and a higher
n-6:n-3 ratio compared to cattle fed only fescue [37].

Krusinski et al. [19] highlighted that the nutritional profile of GFB is highly variable
and depends on a multitude of factors ranging from supplemental feeds to seasonal
variations. The present study builds on the work of Bronkema et al. [21] in an attempt to
explain the large variations reported among GFB, especially regarding the n-6:n-3 ratio.
With growing interest in assessing the nutritional impact and sustainability of food systems,
determining the accurate nutritional value of foods is crucial. The objective of this study
was to compare the FA and micronutrient content of GFB fed a diverse pasture mixture
and commonly used supplemental feeds to better understand the effects of different feeds
on the nutritional profile of GFB.

2. Materials and Methods

The animal protocol was reviewed and approved by the Michigan State University
Institutional Animal Care and Use Committee (IACUC #202000054).
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2.1. Experimental Design, Animals, and Diets

This two-year study (2020 and 2021) took place at the Michigan State University
Kellogg Biological Station (KBS) located in Hickory Corners, MI (latitude: 42◦24′38′′ N,
longitude: 85◦22′45′′ W, elevation: 282 m). Sixty steers for each year were randomly allo-
cated to one of four diets: grass supplemented with hay (G-HAY), grass supplemented with
baleage (G-BLG), grass supplemented with soybean hulls (G-SH), or baleage and soybean
hulls in feedlot (BLG-SH). Three groups for each diet were formed (n = 5 animals/replicate;
3 replicates/diet; 15 animals/diet) for each year. Animals were randomly stratified and
allocated to one of the three groups in each diet.

In April of each year, 60 Simmental-Angus influenced feeder cattle weighing on
average 387 kg (±47 kg) were purchased from the same producer and shipped from
Oklahoma to KBS. Upon their arrival at KBS, initial weights were collected, and steers were
randomly stratified and assigned to the diets. Steers allocated to the three diets containing
grass were kept on pasture and had ad libitum access to a diverse pasture mixture (GRASS)
and 4.5 kg of supplemental feed (dry matter; DM) per day per head. Steers kept in the
feedlot group had ad libitum access to baleage (BLG) and 4.5 kg of soybean hulls (SH) per
day per head. GRASS was a five-species mix of alfalfa (Medicago sativa), red clover (Trifolium
pratense L.), white clover (Trifolium repens L.), orchard grass (Dactylis glomerata L.), and
endophyte-free tall fescue (Festuca arundinacea). Dry hay (HAY) was composed of alfalfa
(Medicago sativa), orchard grass (Dactylis glomerata L.), and tall fescue (Festuca arundinacea).
BLG was a mixture of alfalfa (Medicago sativa) and orchard grass (Dactylis glomerata L.).
Each subgroup for each grass-containing diet was allocated a fenced paddock. In total,
each diet was allocated three paddocks, each containing five animals. Each paddock was
further divided into sub-paddocks to give time to the pasture to rest and regrow. Animals
were rotated three times per week within their paddocks to fresh parcels of grass. The
15 steers in the BLG-SH diet were treated as feedlot cattle and were separated into three
pens each containing five animals. One animal died during the first year of the experiment,
and two carcasses were misplaced by the slaughterhouse during the second year of the
study, bringing the total number of animals for the entire study to 117 (n = 117).

2.2. Sample Collection and Preparation
2.2.1. Feed Samples

Samples from grazing areas and supplemental feeds were collected every two weeks.
The sample collection started in July and ended in late October of each year. No sample
collection occurred between April and July 2020 because of COVID-19 restrictions. To
stay consistent, the sample collection period was kept the same for 2021. GRASS samples
were gathered every two weeks in each sub-paddock immediately before animals had
access to the pasture (n = 63 for each year, n = 126 in total). GRASS samples were collected
by randomly cutting three 0.25 m2 quadrats to a 5 cm stubble using hand grass clipper
scissors. HAY, BLG, and SH were sampled monthly before being distributed to the steers
(n = 4 of each supplemental feed for each year, n = 8 of each in total). Supplemental
feeds were sampled monthly instead of bi-weekly because less variations over time in the
nutritional profile of these feeds were expected. For proximate analysis, wet weights were
recorded, and samples were dried in a forced-air oven (72 h, 55 ◦C) and ground through
a 1 mm screen in a Wiley mill (Arthur H. Thomas, Philadelphia, PA, USA). For FA and
phytochemical analysis, a 30 g sub-sample was packed in a Whirl-Pak bag and frozen at
−20 ◦C immediately after collection. In order to obtain representative samples, bag contents
were mixed, and 10 g of each replicate was taken before being combined. Feed samples
were stored at −20 ◦C for the length of the trial before being stored at −80 ◦C once they
were brought back to the laboratory. Before further analysis, samples were freeze-dried in
a freeze dryer (Harvest Right, North Salt Lake, UT, USA) for 18.5 h, and ground in a Wiley
mill (1 mm screen) (Arthur H. Thomas, Philadelphia, PA, USA) with dry ice.

Weather conditions were reported according to Krusinski et al. [38] using the Michigan
State University Enviroweather platform at KBS. 30-year normal temperature and precip-
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itation (1991–2020) were reported according to the National Centers for Environmental
Information: National Oceanic and Atmospheric Administration website (Gull Lake, MI
meteorological station).

2.2.2. Meat Samples

In November of each year, before going to slaughter, steers were weighed again to
obtain total weight gain and average daily gain (ADG). Steers were slaughtered in a USDA
facility at 18–20 months of age. Body performance and carcass traits (ribeye area, 12th rib
back fat, USDA yield grade, and marbling score) were collected by trained personnel 48 h
after slaughter. Simultaneously, meat samples (approximately 7.5 to 10 cm in length) were
collected from the left-side longissimus lumborum (between 13th rib and first two lumbar
vertebra). For FA analysis and thiobarbituric acid reactive substances (TBARS), one steak
per carcass was cut into 1 × 1 cm cubes before being flash frozen with liquid nitrogen,
put into Whirl-Pak bags, and stored at −80 ◦C until analysis. For Warner-Bratzler shear
force (WBSF), another 2.54 cm-thick steak was cut, vacuum packed, and stored at 4 ◦C until
14 days postmortem. At 14 days postmortem, the steaks were frozen at −20 ◦C until WBSF
analysis was performed.

2.3. Feed Chemical Analysis
2.3.1. Proximate Analysis

The protocol for the feed proximate analysis was previously described by Maciel
et al. [39]. Samples were dried at 105 ◦C in a forced-air oven for 8 h. To determine the ash
content, feed samples were oxidized at 500 ◦C for 6 h in a muffle furnace. Neutral detergent
fiber (NDF) was determined according to Mertens [40] with the addition of amylase and
sodium sulfite. The protocol described in AOAC [41] was used to determine acid detergent
fiber (ADF). Crude protein (CP) was measured according to Hach et al. [42] and gross
energy was measured by bomb calorimeter.

2.3.2. Phytochemical Analysis

Chlorophyll A and B were determined as described previously [43]. Briefly, 2 g of
lyophilized and ground feed was added to 70% aqueous acetone. The mixture was shaken
for 30 min and centrifuged for 20 min (4 ◦C, 2500 RPM). The upper layer was transferred to
a new tube, and the extraction was repeated twice. Compounds were measured using a
UV-Vis Double Beam Spectrophotometer (VWR, Radnor, PA, USA) in cuvettes. Readings
were recorded at 663 and 646 nm and were used in the following equations:

Chlorophyll A (C a) = 12.21A663 − 2.81A646
Chlorophyll B (C b) = 20.13A646 − 5.03A663

To extract phenolic compounds, a modified protocol from Nimalaratne et al. [44]
was performed. First, 2 g of freeze-dried and ground feed was added to 20 mL of
methanol:distilled water:acetic acid (70:28:2, v/v/v). The mixture was shaken for 30 min
and centrifuged for 20 min (4 ◦C, 2500 RPM). The upper layer was recovered and transferred
to a new tube. An additional 20 mL of acetone:distilled water:acetic acid (70:28:2, v/v/v)
was added to the original tube before being shaken for 10 min and centrifuged for 15 min (4
◦C, 2500 RPM). Both supernatants were combined and stored at 4 ◦C. The Folin-Ciocalteu
assay adapted from Singleton and Rossi [45] was used to measure total phenolic content.
A standard curve was made using a 1 mg/mL gallic acid stock solution in methanol. A
serial dilution was performed by a factor of two to obtain concentrations ranging from 1
mg/mL to 0.002 mg/mL. Next, 100 µL of Folin-Ciocalteu reagent and 800 µL of 5% sodium
bicarbonate were added to the standard curve and to 100 µL of supernatant. The standard
curve and the samples were heated at 40 ◦C for 30 min. Samples were allowed to cool
down to room temperature before being plated in triplicates in a 96-well plate. Samples
were scanned at 765 nm and compared against the gallic acid standard curve. Values were
reported as mg of gallic acid equivalents (GAE)/g of feed.
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2.4. Fatty Acid Analysis of Feed and Meat

All chemicals were purchased from Sigma-Aldrich (St. Louis, MO, USA) unless
otherwise noted.

The FA analysis for feed and meat samples was conducted according to Sergin
et al. [46]. A microwave-assisted extraction protocol was performed to extract FAs as
reported by Bronkema et al. [21] using a CEM Mars 6 microwave (CEM Corp., Matthews,
NC, USA). For this step, 400 mg of ground feed sample or minced meat was added to a
microwave vessel containing 8 mL of 4:1 (v/v) ethyl acetate:methanol solution with 0.1%
BHT. The samples underwent extraction with the following settings: 55 ◦C for 15 min with
initial ramp of 2 min at 400 W. Samples were then filtered in another tube containing 3.5 mL
of HPLC water before being centrifuged (6 min, 2500 RPM). The upper layer was removed
and dried under nitrogen. To resuspend the oil, a 4:1 (v/v) dichloromethane:methanol
solution with 0.1% BHT was used to bring the concentration of each sample to 20 mg of
oil/mL.

For the creation of FA methyl esters (FAMEs), a modified version of the protocol by
Jenkins [47] was applied. Briefly, 2 mg of oil (100 µL) was resuspended in toluene with
20 µg of internal standard (methyl 12-tridecenoate, U-35M, Nu-Chek Prep, Elysian, MN,
USA). Then, 2 mL of 0.5 N anhydrous potassium methoxide was added and the samples
were heated at 50 ◦C for 10 min. Next, 3 mL of methanolic HCl (5%) was added to the
samples before being heated at 80 ◦C for 10 min. Once cool, 2 mL of HPLC water and
2 mL of hexane were added, and samples were centrifuged for 5 min at 2500 RPM. The top
layer was moved to another tube and dried under nitrogen to obtain FAMEs. FAMEs were
then resuspended in 1 mL of isooctane to get a concentration of 2mg/mL. Samples were
transferred to gas chromatography-mass spectrometry (GC-MS) vials with glass inserts.

The PerkinElmer (Waltham, MA, USA) 680/600S GC-MS in electron impact mode
(70 eV) equipped with an Agilent Technologies (Santa Clara, CA, USA) HP-88 column
(100 m, 0.25 mm ID, 0.2 µM film thickness) was used for the quantification of FAMEs. For
feed samples, one µL of sample was injected with the GC temperature set at 250 ◦C. For
meat samples, one µL was injected twice (20:1 split) at two different GC temperatures
(175 ◦C and 150 ◦C). The temperature settings for both feed and meat samples were as
follows: initial temperature at 80 ◦C for 4 min; ramp 13 ◦C/min to 175 ◦C; hold 27 min;
ramp 4 ◦C/min to 215 ◦C; hold 35 min, and then an initial temperature at 80 ◦C for 4 min;
ramp 13 ◦C/min to 150 ◦C; hold 47 min; ramp 4 ◦C/min to 215 ◦C; hold 35 min. For
meat samples, a third injection followed in splitless mode (0.75 min splitless hold time,
40 mL/min flow exiting the vent). This GC-MS method was adapted from Kramer et al. [48].
Helium was the carrier gas (flow rate of 1 mL/min). MS data were recorded in full scan
mode (mass range of m/z 70-400 amu) and the MS transfer line and ion source temperature
were set at 180 ◦C.

MassLynx V4.1 SCN 714 (Water Corporation, Milford, MA, USA) was used for the
identification of FAMEs. FAs were identified by retention time and EI mass fragmentation
compared to the reference standard containing the Supelco 37 Component FAME Mix with
mead acid, docosatetraenoic acid, n-3 DPA, n-6 DPA, and palmitelaidic acid purchased
from Cayman Chemical (Ann Arbor, MI, USA). CLA isomers were identified using the
CLA reference standard UC-59M (Nu-Chek Prep, Elysian, MN, USA). FAs not included
in the reference standard were identified by elution order and confirmed by the EI mass
fragmentation [48]. FAs were quantified using a standard curve including the reference and
internal standards. Each FAME concentration was calculated by using the internal standard
peak area and analyte peak area compared to the standard curve. C18:1 4t and C18:1 5t
were below the limit of detection, and C18:2 9c,12t and C18:2 9t,12c were not separated
from the C18:2 11t,15c peak. Eicosatetraenoic acid (C20:4 n-3) was not included in our
reference standard and was therefore not reported. FAs were reported in mg/100 g of beef
in this manuscript and in percent of total FAs in the Supplementary Tables S1 and S2.
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2.5. Vitamin E and Mineral Analysis

Protocols by Rettenmaier and Schüep [49] were followed for vitamin E analysis. In
brief, 1 g of beef was homogenized in 5 mL of water before being frozen. For extraction,
samples were thawed, and a measured aliquot was pipetted out. To precipitate the protein,
ethanol was added, and vitamins were extracted with hexane. After being centrifuged, part
of the hexane layer was removed and dried under reduced pressure in a vortexing chamber
(10 min, 35 ◦C, 300 mBar vacuum). What remained after evaporation was solubilized in the
chromatographic mobile phase and placed in vials. A calibration curve (six points) was
made as follows: a vitamin E solution (Sigma-Aldrich, St. Louis, MO, USA) diluted with
ethanol (containing BHT) underwent serial dilutions (from 50 µg/mL to 0.2 µg/mL). For the
chromatography analysis, a Waters Acquity system and Water Empower Pro Chromatogra-
phy Manager software (Water Corporation, Milford, MA, USA) were used. An isocratic
elution was performed using a mobile phase of acetonitrile:methylene chloride:methanol
(70:20:10, v/v/v) and a Symmetry C18, 1.7 µm, 2.1 × 50 mm analytical column (Waters
Corporation, Milford, MA, USA). The flow rate was 0.5mL/min and the detection was
performed by UV absorption at 292 nm.

Mineral analysis was performed as previously described [50,51]. Briefly, beef samples
underwent drying and digestion in an oven (95 ◦C, overnight) using 10 times the dry tissue
mass of nitric acid. A dilution with water to 100 times the dried tissue mass followed.
An Agilent 7900 Inductivity Coupled Plasma–Mass Spectrometer (ICP-MS) (Agilent Tech-
nologies Inc., Santa Clara, CA, USA) was used for the analysis. A six-point calibration
curve was used. Standards of bovine liver and mussels (National Institute of Standards
and Technology, Gaithersburg, MD, USA) were used as controls.

2.6. Thiobarbituric Acid Reactive Substances (TBARS)

The TBARS assay for food and beverages (Oxford Biomedical Research, Oxford, MI,
USA) adapted for a 96-well plate reader was used. First, an eight-point standard curve was
created by serial dilution ranging from 0 (only HPLC water) to 3 mg/L malondialdehyde
(MDA) (MDA stock solution provided in the kit). Then, 500 mg of minced beef sample was
added to 5 mL of HPLC water. Samples were homogenized to obtain a smooth solution.
In a microcentrifuge tube, 250 µL of sample solution and 250 µL of the indicator solution
(thiobarbituric acid (TBA) and acid solution) were mixed. The indicator solution was also
added to the standard curve, and the samples and the curve were set aside for 60 min for
the reaction to occur. Samples were then centrifuged at 11,000 RPM for 5 min at room
temperature. The aqueous layer was removed and plated in duplicates on a 96-well plate,
next to the standard curve. Absorbance was read at 532 nm on a Bio-Tek Synergy HT
spectrophotometer (Bio-Tek Instruments, Inc., Winooski, VT, USA). The standard curve was
plotted and the MDA concentration for the samples (mg MDA/L) was calculated according
to the manufacturer’s instructions.

2.7. Warner-Bratzler Shear Force (WBSF)

The protocol for WBSF was previously reported [39]. Briefly, the steaks were cooked to
an internal temperature of 71 ◦C using a preheated clamshell electric grill (George Foreman,
Beachwood, OH, USA). The steaks were then cooled down overnight at 4 ◦C. Six to eight
1.27 cm diameter cores were cut from each steak by paying close attention to cut parallel
to the muscle and fibers using a drill mounted corer. Shear force was measured using
the TA-XT Texture Analyzer (Stable Micro System Ltd., Godalming, UK) with a V-shaped
Warner-Bratzler blade. The blade was moving down at a speed of 20cm/min and cut the
sample across the muscle fiber. The purpose of the shear force testing was to measure
how much force is required to cut through cooked meat. This should be a representative
measure of the ease or difficulty a consumer would have chewing a cooked steak. Most
consumer prefer steaks cooked between medium rare and medium well, which is why an
internal temperature of 71 ◦C was chosen for the analysis. The mean of the cores for each
sample were used for the statistical analysis.
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2.8. Statistical Analysis

SAS version 9.4 (SAS Institute Inc., Cary, NC, USA) was used to perform the statistical
analysis. Mixed model analysis was performed to test the effect of diet on response
variables. In the model, the fixed effect was diet, and the random effects were year and pen
nested within year x diet. Each pen was the experimental unit. Post hoc comparison was
performed using Tukey’s adjustment, and results were considered significant at p < 0.05.
Outliers were removed for chlorophyll A and chlorophyll B after running an outlier test.
The data satisfied model’s normality and equal variance assumptions. Data are shown as
mean ± standard error across mean (SEM).

3. Results
3.1. Weather Conditions

Weather conditions at the experimental site for the length of the study are shown in
Figure 1. The hottest month in 2020 was July with an average of 23.96 ◦C. The average
temperature in August, September, and October 2020 were all below the 30-year normal.
Every month in 2020 was below the 30-year normal for rainfall. In 2021, August was
the hottest month with an average temperature of 23.10 ◦C. July, September, and October
2021 were above the 30-year normal temperature. September 2021 showed unusually high
rainfall with 338.87 mm compared to the 30-year normal precipitation of 88.39 mm.
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3.2. Feeds
3.2.1. Proximate Composition of Feeds

The proximate composition of the feeds is displayed in Table 1. No significant differ-
ences were observed between feed types regarding dry matter (DM) (p = 0.159). GRASS and
BLG had the highest values for ash (p < 0.001) and CP (p < 0.001), while SH had the lowest
values for ash (p < 0.001) and HAY had the lowest values for CP (p < 0.001). Regarding NDF,
SH was higher than GRASS, HAY, and BLG (p = 0.004). For ADF, SH was highest while
GRASS was lowest (p < 0.001). Finally, SH had the lowest amount of energy compared to
the other three feed types (p < 0.001).
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Table 1. Mean proximate composition of the feeds.

GRASS HAY BLG 1 SH 2 p-Value

DM 3 57.52 ± 22.47 85.82 ± 25.01 82.64 ± 25.02 89.98 ± 25.01 0.159
Ash * 9.20 ± 0.46 a 7.14 ± 0.61 b 8.38 ± 0.63 a,b 4.74 ± 0.61 c <0.001
CP 4 * 15.65 ± 0.39 a 7.15 ± 1.14 c 13.48 ± 1.19 a,b 9.47 ± 1.19 b,c <0.001

NDF 5 * 54.91 ± 3.30 b 66.19 ± 4.01 a,b 54.23 ± 4.04 b 68.29 ± 4.01 a 0.004
ADF 6 * 30.84 ± 0.72 c 37.98 ± 1.35 b 33.51 ± 1.39 b,c 51.72 ± 1.35 a <0.001
Energy 7 4566.41 ± 50.99 a 4405.00 ± 90.76 a 4465.41 ± 50.99 a 3709.96 ± 90.76 b <0.001

Values reported as means ± standard error. Different letters denote statistical significance at p < 0.05 (mixed
model analysis, post hoc comparison performed using Tukey’s adjustment). n = 126 for GRASS, and n = 8 for the
other three feeds. 1 BLG: baleage; 2 SH: soybean hulls; 3 DM: dry matter (%), * reported in %DM; 4 CP: crude
protein; 5 NDF: neutral detergent fiber; 6 ADF: acid detergent fiber; 7 Energy (cal/g).

3.2.2. Fatty Acid Composition of the Feeds

The FA profile of the feeds is reported in Table 2. Palmitic acid (C16:0) made up most
of the SFA content of the feeds. HAY contained the highest concentration of C16:0, while
GRASS and SH contained the lowest (p < 0.001). Regarding stearic acid (C18:0), SH and
HAY contained the most and GRASS contained the least (p < 0.001). The total SFA content
was significantly higher in HAY and was lower in GRASS and SH (p < 0.001). Total MUFA
content was significantly higher in SH and lower in GRASS. BLG and HAY values were
in between and were significantly different than SH and GRASS (p < 0.001). Regarding
PUFAs, the linoleic acid (LA) content was the highest in SH and was lower in GRASS and
HAY (p < 0.001), while the α-linolenic acid (ALA) content followed the opposite trend with
GRASS containing the most and SH containing the least (p < 0.001). GRASS contained the
highest concentration of total n-3 PUFAs and the lowest concentration of n-6 PUFAs. SH
contained the most n-6 PUFAs and the least n-3 PUFAs (p < 0.001). This resulted in SH
having the highest n-6:n-3 ratio and GRASS having the lowest (p < 0.001).

Table 2. Mean fatty acid composition of the diets (% total fatty acids).

GRASS HAY BLG 1 SH 2 p-Value

C10:0 0.16 ± 0.26 1.16 ± 0.38 0.14 ± 0.38 0.03 ± 0.38 0.116
C12:0 0.50 ± 0.22 b 1.16 ± 0.23 a 0.49 ± 0.23 b 0.10 ± 0.23 c <0.001
C13:0 0.01 ± 0.02 0.07 ± 0.03 0.02 ± 0.03 0.00 ± 0.03 0.193
C14:0 0.53 ± 0.29 b 2.14 ± 0.45 a 0.62 ± 0.45 a,b 0.21 ± 0.45 b 0.041
C15:0 0.11 ± 0.06 b 0.49 ± 0.09 a 0.33 ± 0.09 a,b 0.14 ± 0.09 b 0.010
C16:0 14.29 ± 1.98 c 32.16 ± 2.37 a 23.77 ± 2.38 b 14.95 ± 2.37 c <0.001

C16:1 9c 0.23 ± 0.02 b 0.51 ± 0.04 a 0.31 ± 0.04 b 0.23 ± 0.04 b 0.001
C16:1 7c 1.19 ± 0.27 a 1.21 ± 0.29 a 1.52 ± 0.29 a 0.11 ± 0.29 b <0.001

C17:0 0.21 ± 0.02 c 0.57 ± 0.03 a 0.36 ± 0.03 b 0.28 ± 0.03 b,c <0.001
C18:0 1.57 ± 0.13 c 3.80 ± 0.20 a 2.78 ± 0.20 b 4.33 ± 0.20 a <0.001

C18:1 9c 1.84 ± 0.07 c 3.45 ± 0.23 b 2.43 ± 0.24 b,c 12.61 ± 0.23 a <0.001
C18:1 11c 0.61 ± 0.03 c 1.04 ± 0.09 b 0.72 ± 0.10 b,c 2.43 ± 0.09 a <0.001

C18:2 n-6 (LA) 3 12.22 ± 0.35 c 14.86 ± 0.88 b,c 16.42 ± 0.91 b 48.45 ± 0.88 a <0.001
C18:3 n-3 (ALA) 4 64.66 ± 1.74 a 32.48 ± 2.57 c 46.47 ± 2.64 b 15.00 ± 2.57 d <0.001

C20:0 0.58 ± 0.08 b 2.72 ± 0.16 a 1.05 ± 0.16 b 0.41 ± 0.16 b <0.001
C20:3 n-3 0.08 ± 0.03 0.03 ± 0.03 0.05 ± 0.03 0.01 ± 0.03 0.052

C22:0 0.59 ± 0.16 b,c 1.90 ± 0.20 a 1.04 ± 0.21 b 0.29 ± 0.20 c <0.001
C24:0 0.61 ± 0.32 b 1.78 ± 0.36 a 1.40 ± 0.36 a 0.24 ± 0.36 b 0.001

∑ SFA 5 19.17 ± 2.41 c 48.03 ± 3.28 a 31.86 ± 3.29 b 21.01 ± 3.28 b,c <0.001
∑ OCFA 6 0.33 ± 0.06 c 1.11 ± 0.10 a 0.71 ± 0.10 a,b 0.44 ± 0.10 b,c <0.001
∑ MUFA 7 3.87 ± 0.30 c 6.18 ± 0.39 b 4.96 ± 0.40 b 15.40 ± 0.39 a <0.001
∑ PUFA 8 76.96 ± 2.72 a 45.79 ± 3.56 c 63.11 ± 3.58 b 63.51 ± 3.56 b <0.001

∑ n-6 9 12.22 ± 0.35 c 14.86 ± 0.88 b,c 16.42 ± 0.91 b 48.45 ± 0.88 a <0.001
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Table 2. Cont.

GRASS HAY BLG 1 SH 2 p-Value

∑ n-3 10 64.73 ± 1.71 a 32.51 ± 2.55 c 46.52 ± 2.62 b 15.02 ± 2.55 d <0.001
n-6:n-3 ratio 11 0.19 ± 0.04 c 0.53 ± 0.07 b 0.38 ± 0.07 b,c 3.20 ± 0.07 a <0.001

Values reported as means ± standard error. Different letters denote statistical significance at p < 0.05 (mixed
model analysis, post hoc comparison performed using Tukey’s adjustment). n = 126 for GRASS, and n = 8 for
the other three feeds. 1 BLG: baleage; 2 SH: soybean hulls; 3 LA: linoleic acid; 4 ALA: α-linolenic acid; 5 ∑ SFA:
total saturated FAs; 6 ∑ OCFA: total odd chain FAs; 7 ∑ MUFA: total monounsaturated FAs; 8 ∑ PUFA: total
polyunsaturated FAs; 9 ∑ n-6: LA; 10 ∑ n-3: ALA + C20:3 n-3; 11 n-6:n-3 ratio: ∑ n-6/∑ n-3.

3.2.3. Phytochemical Content of Feeds

The chlorophyll A, chlorophyll B, and total phenols content of the feeds are shown
in Figure 2. BLG and GRASS contained the highest levels of chlorophyll A. SH contained
the least (p < 0.001). GRASS contained more chlorophyll B than HAY and SH, and BLG
contained more chlorophyll B than SH (p < 0.001). Finally, BLG and GRASS contained more
phenols than SH (p = 0.010).
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Figure 2. Phytochemical content of feeds. Chlorophyll A (A), chlorophyll B (B), and total phenols
(C) found in feed samples. Values reported at means ± standard error. Different letters denote
statistical significance at p < 0.05 (mixed model analysis, post hoc comparison performed using
Tukey’s adjustment, n = 126 for GRASS, n = 8 for each of the other feeds). GRASS: fresh pasture; HAY:
dry hay; BLG: baleage; SH; soybean hulls; GAE: gallic acid equivalent.

3.3. Animal Performance and Carcass Traits

Performance and carcass traits are shown in Table 3. Initial weight did not differ
between diet groups, which was the goal when assigning animals to each group. Final
weight, total gain, and average daily gain (ADG) were all higher in the BLG-SH and G-SH
groups, while they were lower in the G-BLG and G-HAY groups (p < 0.001). A similar
trend was seen regarding hot carcass weight (HCW) with higher weights observed in the
G-SH and BLG-SH groups and lower weights observed in the G-HAY and G-BLG groups
(p = 0.003). Backfat significantly differed by diet (p = 0.011). BLG-SH and G-SH had more
backfat compared to beef from G-BLG but did not differ from G-HAY. G-HAY had the
smallest ribeye area compared to the other three groups (p = 0.012). Regarding USDA yield
grade, G-BLG had a lower numerical yield grade than G-SH but did not differ from the
remaining groups (p = 0.032). G-BLG had a lower marbling score than G-SH and BLG-SH
but was similar to G-HAY (p = 0.004).
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Table 3. Mean animal performance and carcass traits by diet.

G-HAY 1 G-BLG 2 G-SH 3 BLG-SH 4 p-Value

Growth (kg)
Initial BW 5 388.70 ± 30.30 390.77 ± 30.33 388.77 ± 30.36 378.27 ± 30.30 0.560

Final BW 483.27 ± 8.63 c 493.74 ± 8.77 b,c 524.33 ± 8.92 a,b 536.31 ± 8.63 a <0.001
Total gain 94.57 ± 25.64 b 103.02 ± 25.65 b 135.77 ± 25.66 a 158.04 ± 25.64 a <0.001

ADG 6 0.61 ± 0.10 b 0.66 ± 0.10 b 0.88 ± 0.10 a 1.03 ± 0.10 a <0.001
Carcass

HCW 7 (kg) 281.85 ± 5.53 c 287.05 ± 5.62 b,c 311.11 ± 5.72 a 306.53 ± 5.53 a,b 0.003
Backfat (mm) 7.15 ± 0.75 a,b 5.91 ± 0.76 b 9.18 ± 0.77 a 9.38 ± 0.75 a 0.011

Ribeye area (cm2) 68.28 ± 2.19 b 75.99 ± 2.20 a 75.57 ± 2.22 a 76.41 ± 2.19 a 0.012
USDA yield grade 2.80 ± 0.30 a,b 2.10 ± 0.31 b 3.29 ± 0.31 a 2.80 ± 0.30 a,b 0.032
Marbling score 8 348.00 ± 11.66 a,b 332.55 ± 11.81 b 387.39 ± 11.97 a 392.00 ± 11.66 a 0.004

Values reported as means ± standard error. Different letters denote statistical significance at p < 0.05 (mixed
model analysis, post hoc comparison performed using Tukey’s adjustment, n = 117). 1 G-HAY: grass and hay diet;
2 G-BLG: grass and baleage diet; 3 G-SH: grass and soybean hulls diet; 4 BLG-SH: baleage and soybean hulls diet;
5 BW: body weight; 6 ADG: average daily gain; 7 HCW: hot carcass weight; 8 Marbling score: 300-Slight-00 and
400-Small-00.

3.4. Beef Fatty Acids
3.4.1. Saturated and Monounsaturated Fatty Acids

The saturated and monounsaturated FA content of beef is presented in Table 4. No
significant differences were observed by diet for total SFAs (p = 0.400). Individual SFAs
ranging from C10:0 to C20:0 did not differ between groups (p > 0.05), but C22:0 was higher
in G-HAY compared to the other three groups (p < 0.001). No significant differences between
groups were observed for total branched-chain FA (BCFA) content or for individual BCFAs
(p > 0.05). The same trend was observed for total MUFA content and individual cis-MUFAs
(p > 0.05). Regarding trans-MUFAs, the only significant difference seen was for C16:1 9t
which was lower in the BLG-SH group compared to the other three groups (p = 0.003). No
differences were observed for the total FA content between groups (p > 0.05).

Table 4. Mean concentrations of saturated and monounsaturated fatty acids by diet (mg per
100 g beef).

G-HAY 1 G-BLG 2 G-SH 3 BLG-SH 4 p-Value

∑ SFA 5 275.08 ± 40.89 272.87 ± 41.46 332.71 ± 42.05 356.22 ± 40.89 0.400
C10:0 1.75 ± 1.92 2.54 ± 1.92 3.17 ± 1.92 3.28 ± 1.92 0.163
C12:0 0.57 ± 0.31 0.60 ± 0.31 0.73 ± 0.31 0.70 ± 0.31 0.442
C13:0 0.09 ± 0.07 0.11 ± 0.07 0.12 ± 0.07 0.11 ± 0.07 0.247
C14:0 12.40 ± 2.29 12.04 ± 2.33 14.95 ± 2.36 15.98 ± 2.29 0.566
C15:0 2.00 ± 0.31 2.11 ± 0.31 1.96 ± 0.32 2.02 ± 0.31 0.988
C16:0 162.66 ± 24.15 162.29 ± 24.49 202.57 ± 24.83 220.59 ± 24.15 0.259
C17:0 4.65 ± 0.79 4.86 ± 0.81 5.52 ± 0.82 6.01 ± 0.79 0.617
C18:0 87.03 ± 14.33 84.13 ± 14.49 99.28 ± 14.66 103.06 ± 14.33 0.694
C19:0 1.91 ± 1.54 2.81 ± 1.55 2.84 ± 1.55 2.99 ± 1.54 0.270
C20:0 0.78 ± 0.35 0.67 ± 0.35 0.81 ± 0.35 0.81 ± 0.35 0.305
C22:0 1.23 ± 0.39 a 0.73 ± 0.39 b 0.79 ± 0.39 b 0.84 ± 0.39 b <0.001

∑ BCFA 6 11.11 ± 1.63 11.41 ± 1.65 13.08 ± 1.68 12.29 ± 1.63 0.831
C14:0 iso 0.15 ± 0.06 0.19 ± 0.06 0.17 ± 0.06 0.16 ± 0.06 0.863
C15:0 iso 0.73 ± 0.16 0.77 ± 0.16 0.94 ± 0.16 0.84 ± 0.16 0.771

C15:0 anteiso 0.69 ± 0.15 0.72 ± 0.15 0.73 ± 0.15 0.67 ± 0.15 0.979
C16:0 iso 0.77 ± 0.25 0.77 ± 0.25 0.82 ± 0.25 0.80 ± 0.25 0.989
C17:0 iso 4.11 ± 0.45 4.16 ± 0.46 4.81 ± 0.47 4.21 ± 0.45 0.689

C17:0 anteiso 4.06 ± 0.68 4.27 ± 0.69 4.96 ± 0.70 4.96 ± 0.68 0.717
C18:0 iso 0.60 ± 0.19 0.54 ± 0.20 0.65 ± 0.20 0.65 ± 0.19 0.819
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Table 4. Cont.

G-HAY 1 G-BLG 2 G-SH 3 BLG-SH 4 p-Value

∑ MUFA 7 313.55 ± 39.66 313.17 ± 40.22 381.51 ± 40.81 371.90 ± 39.66 0.489
∑ cMUFA 8 276.91 ± 36.21 272.67 ± 36.72 342.84 ± 37.26 342.10 ± 36.21 0.358

C14:1 9c 2.67 ± 0.52 2.78 ± 0.53 3.36 ± 0.53 3.13 ± 0.52 0.724
C16:1 9c 36.73 ± 4.92 35.81 ± 5.00 45.02 ± 5.09 44.15 ± 4.92 0.444
C16:1 10c 4.17 ± 1.55 5.19 ± 1.55 4.51 ± 1.55 4.16 ± 1.55 0.554
C16:1 11c 2.00 ± 1.39 2.52 ± 1.39 2.66 ± 1.39 2.76 ± 1.39 0.328
C17:1 9c 3.76 ± 0.43 3.98 ± 0.43 4.35 ± 0.44 4.50 ± 0.43 0.490
C18:1 9c 199.97 ± 34.69 196.83 ± 35.01 252.79 ± 35.35 255.23 ± 34.69 0.309
C18:1 11c 11.87 ± 1.50 10.09 ± 1.51 12.75 ± 1.52 11.57 ± 1.50 0.321
C18:1 12c 2.14 ± 0.61 2.12 ± 0.61 2.44 ± 0.61 2.46 ± 0.61 0.560
C18:1 13c 2.33 ± 1.60 3.11 ± 1.61 3.64 ± 1.61 3.72 ± 1.60 0.065
C18:1 14c 0.91 ± 0.26 0.83 ± 0.26 0.90 ± 0.26 0.90 ± 0.26 0.878
C18:1 15c 1.29 ± 0.83 1.74 ± 0.83 1.81 ± 0.83 1.95 ± 0.83 0.153
C20:1 9c 2.82 ± 1.70 2.67 ± 1.71 3.08 ± 1.71 2.92 ± 1.70 0.718
C20:1 11c 6.26 ± 1.44 4.88 ± 1.44 5.51 ± 1.44 4.63 ± 1.44 0.179

∑ tMUFA 9 36.64 ± 9.96 40.71 ± 9.99 38.88 ± 10.02 29.80 ± 9.96 0.479
C16:1 9t 6.06 ± 1.66 a 6.68 ± 1.66 a 6.11 ± 1.67 a 3.82 ± 1.66 b 0.003

C16:1 10,11,12t 5.49 ± 2.51 6.99 ± 2.52 6.83 ± 2.52 6.63 ± 2.51 0.373
C18:1 6-8t 1.56 ± 0.99 2.07 ± 0.99 1.83 ± 0.99 2.08 ± 0.99 0.181
C18:1 9t 1.62 ± 1.19 2.44 ± 1.19 2.51 ± 1.19 2.52 ± 1.19 0.221

C18:1 10t 1.35 ± 1.23 2.49 ± 1.23 2.17 ± 1.23 1.83 ± 1.23 0.149
C18:1 11t 13.77 ± 2.73 12.37 ± 2.77 11.73 ± 2.80 5.64 ± 2.73 0.196
C18:1 12t 1.36 ± 0.51 1.43 ± 0.51 1.53 ± 0.51 1.26 ± 0.51 0.755

C18:1 13,14t 2.92 ± 0.31 2.72 ± 0.31 2.73 ± 0.32 2.51 ± 0.31 0.832
C18:1 15t 1.44 ± 1.65 2.24 ± 1.65 2.60 ± 1.65 2.34 ± 1.65 0.079
C18:1 16t 1.36 ± 0.35 1.29 ± 0.35 1.27 ± 0.35 1.17 ± 0.35 0.918
∑ FA 10 729.92 ± 83.69 698.46 ± 84.92 833.36 ± 86.21 840.46 ± 83.69 0.550

Values reported as means ± standard error. Different letters denote statistical significance at p < 0.05 (mixed
model analysis, post hoc comparison performed using Tukey’s adjustment, n = 117). 1 G-HAY: grass and hay diet;
2 G-BLG: grass and baleage diet; 3 G-SH: grass and soybean hulls diet; 4 BLG-SH: baleage and soybean hulls diet;
5 ∑ SFA: total saturated FAs; 6 ∑ BCFA: total branched chain FAs; 7 ∑ MUFA: total monounsaturated FAs; 8 ∑
cMUFA: total cis-monounsaturated FAs; 9 ∑ tMUFA: total trans-monounsaturated FAs; 10 ∑ FA: all FAs.

3.4.2. Polyunsaturated Fatty Acids and Biohydrogenation Intermediates

The PUFA, CLA, and atypical dienes (AD) content of beef are displayed in Table 5.
The total PUFA content of beef was higher in the G-HAY group compared to the other
three groups (p < 0.001). The same was true for the total n-3 PUFA content (p < 0.001).
More specifically, the ALA content of beef was highest in G-HAY and lowest in BLG-
SH (p = 0.014). All long-chain n-3 PUFAs including EPA, DPA, and DHA were higher in
beef from the G-HAY group compared to the other three groups (p < 0.001). The sum of
EPA+DHA was also higher in beef from G-HAY (11.59 mg/100 g of beef) compared to
the other three groups, but all four groups had lower amounts of EPA+DHA compared
to European Union standards to consider a food “a source of n-3 FAs” [52] (Figure 3). No
significant differences between groups were observed for n-6 PUFAs (p > 0.05) except for
C22:4 n-6 which was higher in beef from G-HAY compared to the other groups (p < 0.001).
Significant differences in the n-6:n-3 ratio were also seen; the lowest ratio was seen in the
G-HAY group while the highest ratio was seen in beef from G-SH (p < 0.001). No differences
were observed between the groups for ADs and conjugated linolenic acid (CLnA) (p > 0.05).
Significant differences were reported for the individual CLA C18:2 9c,11t/9c,7t where beef
from G-HAY contained the most and beef from BLG-SH contained the least (p = 0.015).
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Table 5. Mean concentration of polyunsaturated fatty acids by diet (mg per 100 g beef).

G-HAY 1 G-BLG 2 G-SH 3 BLG-SH 4 p-Value

∑ PUFA 5 98.31 ± 3.50 a 72.54 ± 3.56 b 76.57 ± 3.63 b 73.69 ± 3.50 b <0.001
∑ n-3 6 47.29 ± 2.97 a 29.04 ± 2.99 b 26.57 ± 3.01 b 27.20 ± 2.97 b <0.001

C18:3 n-3 (ALA) 7 10.63 ± 1.26 a 10.39 ± 1.26 a,b 8.62 ± 1.27 a,b 8.31 ± 1.26 b 0.014
C20:3 n-3 0.89 ± 0.41 0.68 ± 0.41 0.74 ± 0.41 0.70 ± 0.41 0.235

C20:5 n-3 (EPA) 8 9.26 ± 0.38 a 5.68 ± 0.39 b 5.04 ± 0.39 b 5.00 ± 0.38 b <0.001
C22:5 n-3 (DPA) 9 24.18 ± 2.82 a 11.09 ± 2.82 b 10.88 ± 2.83 b 11.59 ± 2.82 b <0.001

C22:6 n-3 (DHA) 10 2.33 ± 0.54 a 1.43 ± 0.54 b 1.51 ± 0.54 b 1.60 ± 0.54 b <0.001
∑ n-6 11 47.64 ± 2.84 41.67 ± 2.86 48.26 ± 2.88 44.67 ± 2.84 0.108

C18:2 n-6 (LA) 12 28.23 ± 3.73 25.42 ± 3.73 30.14 ± 3.74 27.37 ± 3.73 0.121
C18:3 n-6 0.72 ± 0.46 0.69 ± 0.46 0.76 ± 0.46 0.76 ± 0.46 0.733
C20:2 n-6 1.01 ± 0.32 0.76 ± 0.32 0.84 ± 0.32 0.90 ± 0.32 0.087
C20:3 n-6 2.20 ± 0.31 2.21 ± 0.31 2.65 ± 0.31 2.53 ± 0.31 0.123
C20:4 n-6 10.43 ± 1.19 10.02 ± 1.20 10.63 ± 1.20 10.02 ± 1.19 0.903
C22:4 n-6 5.05 ± 1.36 a 2.68 ± 1.36 b 3.35 ± 1.36 b 3.29 ± 1.36 b <0.001

n-6:n-3 ratio 13 1.03 ± 0.23 c 1.49 ± 0.23 b 1.89 ± 0.23 a 1.70 ± 0.23 a,b <0.001
C20:3 n-9 3.38 ± 0.93 a 1.87 ± 0.93 b 1.79 ± 0.93 b 1.83 ± 0.93 b <0.001

∑ CLnA 14 1.59 ± 1.15 1.56 ± 1.15 1.76 ± 1.15 1.63 ± 1.15 0.690
C18:3 9c,11t,15t 0.80 ± 0.57 0.82 ± 0.57 0.91 ± 0.57 0.84 ± 0.57 0.676
C18:3 9c,11t,15c 0.79 ± 0.58 0.74 ± 0.58 0.85 ± 0.58 0.79 ± 0.58 0.648

∑ AD 15 18.30 ± 6.84 17.25 ± 6.84 17.56 ± 6.85 15.84 ± 6.84 0.833
C18:2 11t,15t 4.26 ± 0.84 3.27 ± 0.84 3.22 ± 0.85 2.65 ± 0.84 0.207
C18:2 9t,12t 1.82 ± 1.09 2.27 ± 1.09 2.37 ± 1.09 2.21 ± 1.09 0.377

C18:2 9c,14t/9c,13t 2.60 ± 1.27 2.69 ± 1.27 2.78 ± 1.27 2.56 ± 1.27 0.944
C18:2 11t,15c 4.20 ± 0.82 3.48 ± 0.82 3.04 ± 0.83 2.52 ± 0.82 0.189
C18:2 9c,16t 1.90 ± 0.88 1.87 ± 0.88 2.07 ± 0.88 2.00 ± 0.88 0.715
C18:2 9c,15c 2.10 ± 1.29 2.35 ± 1.29 2.59 ± 1.29 2.39 ± 1.29 0.587
C18:2 12c,15c 1.42 ± 0.80 1.31 ± 0.80 1.48 ± 0.80 1.51 ± 0.80 0.589

∑ CLA 16 10.45 ± 3.43 8.35 ± 3.44 9.03 ± 3.44 7.11 ± 3.43 0.107
C18:2 9c,11t/9c,7t 6.26 ± 1.00 a 4.41 ± 1.00 a,b 4.66 ± 1.00 a,b 3.05 ± 1.00 b 0.015

C18:2 11t,13c 1.72 ± 0.89 1.51 ± 0.89 1.64 ± 0.89 1.49 ± 0.89 0.570
C18:2 11t,13t 1.27 ± 0.83 1.28 ± 0.83 1.44 ± 0.83 1.36 ± 0.83 0.580

C18:2 t,t 1.20 ± 0.80 1.15 ± 0.80 1.27 ± 0.80 1.21 ± 0.80 0.799

Values reported as means ± standard error. Different letters denote statistical significance at p < 0.05 (mixed
model analysis, post hoc comparison performed using Tukey’s adjustment, n = 117). 1 G-HAY: grass and hay diet;
2 G-BLG: grass and baleage diet; 3 G-SH: grass and soybean hulls diet; 4 BLG-SH: baleage and soybean hulls diet;
5 ∑ PUFA: total polyunsaturated FAs; 6 ∑ n-3: total omega-3 FAs; 7 ALA: α-linolenic acid; 8 EPA: eicosapentaenoic
acid; 9 DPA: docosapentaenoic acid; 10 DHA: docosahexaenoic acid; 11 ∑ n-6: total omega-6 FAs; 12 LA: linoleic
acid; 13 n-6:n-3 ratio: ∑ n-6/∑ n-3; 14 ∑ CLnA: total conjugated linolenic acid isomers; 15 ∑ Atypical Dienes: total
non-conjugated linoleic acid isomers; 16 ∑ CLA: total conjugated linoleic acid isomers.

Foods 2022, 11, x FOR PEER REVIEW 13 of 23 
 

 

 
Figure 3. Long-chain n-3 PUFAs in beef by diet. (A) α-linolenic acid (ALA), eicosapentaenoic acid 
(EPA), docosapentaenoic acid (DPA), and docosahexaenoic acid (DHA) content of beef by diet. (B) 
Sum of EPA+DHA in beef by diet compared to the European Union (EU) standard to consider a 
food “a source of n-3 PUFAs” [52]. Data shown as means ± standard error. Different letters denote 
statistical significance at p < 0.05 (mixed model analysis, post hoc comparison performed using 
Tukey’s adjustment, n = 117). G-HAY: grass and hay diet; G-BLG: grass and baleage diet; G-SH: 
grass and soybean hulls diet; BLG-SH: baleage and soybean hulls diet; EU: European Union stand-
ard for a food to be considered “a source of n-3 fatty acids.” 

3.5. Vitamin E and Minerals in Beef 
The vitamin E and minerals in beef are presented in Table 6. Vitamin E was signifi-

cantly lower in beef from the BLG-SH group compared to the other three diets (p < 0.001). 
Selenium, iron, copper, and zinc did not differ between diets (p > 0.05). Manganese was 
higher in beef from G-HAY and G-BLG, and lower in beef from BLG-SH (p = 0.002). 

Table 6. Mean concentrations of vitamin E and minerals by diet (μg per g of beef). 

 G-HAY 1 G-BLG 2 G-SH 3 BLG-SH 4 p-Value 
Vitamin E 29.93 ± 1.44 a 28.86 ± 1.46 a 25.62 ± 1.47 a 13.83 ± 1.44 b <0.001 
Selenium 0.44 ± 0.04 0.42 ± 0.04 0.44 ± 0.04 0.45 ± 0.04 0.561 

Iron 59.87 ± 7.61 59.65 ± 7.61 60.41 ± 7.62 56.94 ± 7.61 0.422 
Copper 1.98 ± 0.07 2.09 ± 0.07 2.07 ± 0.07 1.93 ± 0.07 0.117 

Zinc 126.31 ± 3.35 123.35 ± 3.40 123.80 ± 3.45 119.36 ± 3.35 0.545 
Manganese 0.92 ± 0.02 a 0.90 ± 0.02 a,b 0.85 ± 0.02 b,c 0.84 ± 0.02 c 0.002 

Values reported as means ± standard error. Different letters denote statistical significance at p < 0.05 
(mixed model analysis, post hoc comparison performed using Tukey’s adjustment, n = 117). 1 G-
HAY: grass and hay diet; 2 G-BLG: grass and baleage diet; 3 G-SH: grass and soybean hulls diet; 4 

BLG-SH: baleage and soybean hulls diet. 

3.6. Thiobarbituric Acid Reactive Substances and Warner-Bratzler Shear Force Values for Beef 
The TBARS and WBSF values for beef by diet are displayed in Figure 4. Beef from 

the BLG-SH group showed higher TBARS values compared to the other three groups (p < 
0.001). Regarding WBSF values, beef from the BLG-SH group displayed lower values com-
pared to beef from G-HAY and G-BLG (p = 0.017). 

Figure 3. Long-chain n-3 PUFAs in beef by diet. (A) α-linolenic acid (ALA), eicosapentaenoic acid
(EPA), docosapentaenoic acid (DPA), and docosahexaenoic acid (DHA) content of beef by diet. (B) Sum



Foods 2022, 11, 3856 13 of 22

of EPA+DHA in beef by diet compared to the European Union (EU) standard to consider a food
“a source of n-3 PUFAs” [52]. Data shown as means ± standard error. Different letters denote
statistical significance at p < 0.05 (mixed model analysis, post hoc comparison performed using
Tukey’s adjustment, n = 117). G-HAY: grass and hay diet; G-BLG: grass and baleage diet; G-SH: grass
and soybean hulls diet; BLG-SH: baleage and soybean hulls diet; EU: European Union standard for a
food to be considered “a source of n-3 fatty acids”.

3.5. Vitamin E and Minerals in Beef

The vitamin E and minerals in beef are presented in Table 6. Vitamin E was signifi-
cantly lower in beef from the BLG-SH group compared to the other three diets (p < 0.001).
Selenium, iron, copper, and zinc did not differ between diets (p > 0.05). Manganese was
higher in beef from G-HAY and G-BLG, and lower in beef from BLG-SH (p = 0.002).

Table 6. Mean concentrations of vitamin E and minerals by diet (µg per g of beef).

G-HAY 1 G-BLG 2 G-SH 3 BLG-SH 4 p-Value

Vitamin E 29.93 ± 1.44 a 28.86 ± 1.46 a 25.62 ± 1.47 a 13.83 ± 1.44 b <0.001
Selenium 0.44 ± 0.04 0.42 ± 0.04 0.44 ± 0.04 0.45 ± 0.04 0.561

Iron 59.87 ± 7.61 59.65 ± 7.61 60.41 ± 7.62 56.94 ± 7.61 0.422
Copper 1.98 ± 0.07 2.09 ± 0.07 2.07 ± 0.07 1.93 ± 0.07 0.117

Zinc 126.31 ± 3.35 123.35 ± 3.40 123.80 ± 3.45 119.36 ± 3.35 0.545
Manganese 0.92 ± 0.02 a 0.90 ± 0.02 a,b 0.85 ± 0.02 b,c 0.84 ± 0.02 c 0.002

Values reported as means ± standard error. Different letters denote statistical significance at p < 0.05 (mixed
model analysis, post hoc comparison performed using Tukey’s adjustment, n = 117). 1 G-HAY: grass and hay diet;
2 G-BLG: grass and baleage diet; 3 G-SH: grass and soybean hulls diet; 4 BLG-SH: baleage and soybean hulls diet.

3.6. Thiobarbituric Acid Reactive Substances and Warner-Bratzler Shear Force Values for Beef

The TBARS and WBSF values for beef by diet are displayed in Figure 4. Beef from
the BLG-SH group showed higher TBARS values compared to the other three groups
(p < 0.001). Regarding WBSF values, beef from the BLG-SH group displayed lower values
compared to beef from G-HAY and G-BLG (p = 0.017).
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Foods 2022, 11, 3856 14 of 22

4. Discussion
4.1. Feeds
4.1.1. Proximate Composition of the Feeds

The proximate analysis of the feeds indicates that SH are higher in fiber than GRASS,
HAY, and BLG. This finding is supported by the literature [53,54]. SH are low in lignin
and have a high digestibility potential for ruminants [54]. Therefore, SH provide energy
without the management problems associated with high grain diets [53]. In the present
study, SH provided less energy than the other three feed types. However, SH were not
consumed by the animals in isolation but as a combination with either GRASS or BLG.
Poore et al. [54] noted that energy levels of SH were variable in various studies, but because
of an associative effect on forage digestion, SH appear to have an effective energy value.
GRASS contained the most CP and gross energy compared to the other feeds. These
findings confirm previously published results by Krusinski et al. [38] showing that pastures
contain more CP and gross energy than conserved forages.

4.1.2. Fatty Acid Profile of the Feeds

Numerous differences in the FA content of the feeds were observed in the current
study. GRASS contained more n-3 PUFAs in the form of ALA than all the other feeds.
This was expected since grasses contain higher concentrations of ALA (50-75% of total
FAs) [19,21,38,55]. High levels of PUFAs are found in chloroplasts of green plants (i.e.,
grasses), which may explain the higher concentrations of ALA [56]. Levels of n-3 PUFAs
drastically decreased in conserved forages (HAY and BLG). While they still contained more
PUFAs than SH, conserved forages usually have reduced nutritional quality compared
to fresh grasses. This is due to the drying process of HAY and the fermenting process of
BLG which result in the oxidation of PUFAs, especially ALA. More specifically, PUFAs
are released from the plant membranes and are then oxidized with exposure to air by
lipoxygenases [33]. This process is generally followed by an increase in levels of palmitic
acid (C16:0) since SFAs are less prone to oxidation [33,34]. This was confirmed in the
present study with HAY and BLG containing more palmitic acid than GRASS. We also
reported a higher n-6:n-3 ratio in SH compared to the other feeds. Bronkema et al. [21]
indicated that SH have a higher LA content, thus increasing the n-6:n-3 ratio. The results
presented in the current study confirm these statements since we found higher levels of n-6
PUFAs and lower levels of n-3 PUFAs in SH compared to the other feeds, thus increasing
the n-6:n-3 ratio. Interestingly, SH contained more MUFA than the other types of feeds
(mainly as oleic acid). O’Callaghan et al. [57] showed that adding SH to a concentrate diet
decreased levels of oleic acid. Ensiled forages such as BLG have advantages compared to
HAY. Ensiling does not greatly impact the FA profile [33,36]. Ensiling forages protects FAs
from oxidation, explaining why oxidation in HAY is generally more prevalent [58]. Our
results confirm the more beneficial FA profile of BLG compared to HAY; BLG contained
more n-3 PUFAs and had a lower n-6:n-3 ratio compared to HAY. However, it is important
to note that the feed composition plays a major role in the nutritional profile of feeds.
Different plant species have different effects on the FA profile of feeds [32]. A limitation of
the current study is the lack of information about the proportion of plant species present
in the feeds. Krusinski et al. [38] showed that individual plant species affect the FA and
antioxidant profiles of pastures.

4.1.3. Phytochemical Content of the Feeds

GRASS and BLG contained the most chlorophyll A, chlorophyll B, and total phenols
while SH contained the least of these compounds. There is a strong positive correlation
between chlorophyll A and B and ALA in grasses [59]. Green forages are also known to
contain vitamins with antioxidant properties such as vitamin E [56]. The high total phenols
levels found in GRASS were expected. It was previously reported that the total phenolic
content is higher in grasses than in seeds [60]. In a study comparing a complex pasture
mixture to a grain diet, the authors reported higher levels of chlorophyll A, chlorophyll B,
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and total phenols in pasture [38]. Surprisingly, levels of these antioxidant compounds were
not lower in BLG. Drying and fermenting usually decrease concentrations of antioxidants
and phenolics [19,31,32]. Tripathi et al. [61] noted that haymaking may cause more leaf
dropping and shattering compared to BLG making (leaves are the most nutritious parts of
the plant), which may explain why concentrations of these compounds were reduced in
HAY but not in BLG. While SH have been investigated for their antioxidant potential [62],
our results indicate that SH have low levels of total phenols when compared to GRASS or
BLG. However, it appears that the growth stage of the soybean plant affects its phenolic
concentration [63].

4.2. Animal Performance and Carcass Traits

Results in the present study demonstrate that the diet has an impact on animal growth,
carcass traits, and meat quality. Initial body weight did not differ between groups, which
may be attributed to pre-trial management. The addition of SH to either GRASS or BLG led
to higher final body weight, higher total gain, and higher ADG. While the BLG-SH group
was expected to be higher than the other groups for these variables, it was interesting to
see a similar trend in the G-SH group which was out on pasture. The BLG-SH group was
treated as feedlot cattle. Previous studies showed that cattle finished in feedlots have higher
final body weight, total weight gain, and ADG compared to pasture-finished cattle [39,64].
Besides diet, another explanation may be that cattle in feedlots also have less exercise than
cattle out on pasture, which reduces their maintenance requirements. The G-SH group
was also out on pasture and consumed mostly GRASS, but differences with the BLG-SH
group were not significant. Neel et al. [64] showed that increasing the amount of soybean
meal and SH in the cattle’s diet led to higher final body weight and ADG. Dennis et al. [65]
reported that animals consuming a diet of only HAY showed higher final body weight and
ADG than animals consuming a BLG diet. In the present study, no significant differences
were seen between the G-HAY and the G-BLG groups. This might be due to animals
consuming HAY and BLG as supplemental feeds while eating mostly GRASS. The plant
species used might also differ compared to other studies.

Regarding carcass traits, a similar trend was observed for hot carcass weight with the
G-SH and the BLG-SH groups weighing more than the other two groups. This finding
aligns with previous results about weight gain. Maciel et al. [39] reported that animals
in feedlots finished on grain have greater backfat, ribeye size, USDA yield grade, and
marbling scores than animals finished on pasture. In the present study, the BLG-SH group
showed the same trends, and the same was observed for the G-SH group (which can be
attributed to the inclusion of SH). It was previously shown that increasing the amount of
soybean meal and SH in the diet increased fat thickness and the USDA yield grade [64].
Supplementing grass-finished cattle with BLG seems to reduce backfat, USDA yield grade,
and marbling score. There is limited evidence in the literature demonstrating how feeding
conserved forages affects carcass traits and the nutritional profile of beef [19]. The present
study indicates that including SH in the diet increases weight gain, while HAY and BLG
may reduce weight gain, yield grade, and marbling scores.

4.3. Beef Fatty Acids
4.3.1. Saturated Fatty Acid Content of Beef

No differences in SFAs between groups were seen. Red meat and especially beef are
criticized for their high SFA content [66]. SFAs increase low-density lipoprotein (LDL)
cholesterol, which may increase risks of coronary heart diseases [67]. Based on this, dietary
guidelines in the U.S. recommend limiting the intake of SFAs to 10% of daily caloric
intake [68]. However, not all SFAs have the same health effects. For instance, palmitic
acid (C16:0) has a strong LDL cholesterol-raising effect, while stearic acid (C18:0) has a
neutral effect on LDL-cholesterol [69,70]. While no differences were observed in this study,
Baublits et al. [37] found that supplementing with SH increases C16:0 levels in beef. Based
on the feed FA profile, it was expected that HAY and BLG supplementation would increase
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the SFA content of beef, especially C16:0. The processing of forages into HAY and BLG
generally result in a loss of PUFAs accompanied with an increase in palmitic acid [33,34].
Nevertheless, the lack of significant differences found in the present study might be due
to cattle consuming mostly fresh pasture. One limitation of this study is that we did not
record the intake of supplemental feeds. Even if the FA profile of the feeds can give us
an idea of what to expect in the meat, the gross transfer of dietary SFAs into ruminant
products is variable. For example, the transfer of dietary C16:0 into milk fat ranges from
12% to 50% [71].

4.3.2. Monounsaturated Fatty Acid Content of Beef

The MUFA content of beef did not differ between groups. MUFAs make up almost
half of beef fat (mostly as oleic acid) [72]. Oleic acid consumption has the potential to lower
LDL-cholesterol and blood pressure in humans [69]. Grain-finished beef usually contains
up to 70% more MUFAs than GFB [8,73]. In the present study, oleic acid (C18:1 9c) was
the most abundant FA. The only difference observed was in concentrations of C16:1 9t
which were lower in beef from the BLG-SH group compared to the other three groups.
O’Callaghan et al. [57] observed that adding SH to a concentrate diet resulted in lower
MUFA content in milk. Further, Baublits et al. [37] found that supplementing cattle diet with
SH led to lower levels of C16:1 9t. Ruminant trans-FAs are produced by the isomerization of
MUFAs in the rumen [74], and grass feeding generally leads to a more favorable rumen pH
which allows for more efficient biohydrogenation and isomerization [19,75,76]. Thus, the
higher amount of C16:1 9t found in the groups with fresh GRASS was expected. The health
effects of ruminant trans-FAs remain unclear. Some studies reported the antiatherogenic
and anticarcinogenic effects of ruminant trans-FAs [33], while others reported potential
negative health effects [77,78].

4.3.3. Polyunsaturated Fatty Acid Content of Beef

More differences between groups were observed for PUFAs. Overall, beef from the
G-HAY group contained more PUFAs than the other three groups. The concentration of
n-6 PUFAs did not differ between groups, so the variations in PUFA content were due
to differences in n-3 PUFAs. Both n-6 and n-3 PUFAs are of interest for human health.
Consumption of long-chain n-3 PUFAs have anti-inflammatory potential, while n-6 PUFAs
are generally considered pro-inflammatory [17]. This makes the n-6:n-3 ratio a crucial
metric to determine the health effects of a food [16,17]. In the present study, beef from
BLG-SH contained less ALA than beef from G-HAY. This was expected since fresh forages
contain 50–75% n-3 PUFAs, mostly as ALA [79]. It appears that the addition of SH to
the cattle diet reduced the amount of ALA in beef. This finding is supported by results
published by Baublits et al. [37]. They reported that the addition of SH to forages resulted
in a decrease in n-3 PUFAs, especially ALA. Regarding long-chain n-3 PUFAs (EPA, DPA,
DHA), beef from the G-HAY group contained higher levels of these beneficial FAs than the
three other groups. The European Commission considers a food “a source of n-3 PUFAs”
if 100 g of the food contains at least 40 mg of EPA+DHA or 0.3 g of ALA [52]. Even if the
EPA+DHA content in beef of all four groups were below the limit to qualify as a “source of
n-3 PUFAs”, beef from G-HAY was the closest to meet these standards and can contribute
to the intake of these long-chain n-3 PUFAs, especially for individuals who have limited
access to marine foods [80]. EPA and DHA are linked to healthier cardiovascular, immune,
and cognitive functions [81,82]. DPA has been shown to improve cognitive functions,
lower cholesterol, and reduce inflammation [83]. Our results indicate that consuming GFB
supplemented with HAY provides higher levels of these long-chain n-3 PUFAs compared
to the other groups. While lower levels of n-3 PUFAs in the groups fed SH were expected, it
was surprising to see lower levels of these FAs in the groups fed BLG. Haymaking generally
results in the loss of PUFAs because of oxidation and the dropping of leaves compared to
BLG [19,61]. One explanation might be that animals in the G-BLG group consumed more
of their supplemental feed than animals in the G-HAY group. Cattle seem to prefer BLG
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over HAY [84]. If animals consumed more GRASS in the G-HAY group than the G-BLG
group, it might explain the differences in long-chain n-3 PUFAs.

The Western diet is generally high in n-6 PUFAs and low in n-3 PUFAs, leading to
increased risks of diseases [16]. The n-6:n-3 ratio in the Western diet is estimated to be
between 15:1 and 20:1. The optimal n-6:n-3 ratio to benefit human health is between 1:1 and
4:1 [16,17]. In the present study, the n-6:n-3 ratio was higher in beef from G-SH and BLG-SH,
and lower in beef from G-HAY. Even though we noted significant differences between
groups, the n-6:n-3 ratio was still below 2:1 for all of them. The higher n-6:n-3 ratio in the
groups containing SH was expected due to lower amounts of n-3 PUFAs and higher levels
of n-6 PUFAs in SH compared to the other feeds. Duckett et al. [20] found no differences
in the n-6:n-3 ratio when feeding SH to cattle before forage finishing. Baublits et al. [37],
on the other hand, reported a greater n-6:n-3 ratio when cattle where supplemented with
SH. However, the addition of any of the supplemental feeds tested cannot explain the wide
variations in GFB found by Bronkema et al. [21]. Increasing the n-3 PUFA and CLA content
while decreasing the SFA and n-6 content are priorities to improve the nutritional quality
of beef [85].

4.3.4. Biohydrogenation Intermediates in Beef

Biohydrogenation intermediates including CLA, CLnA, and ADs are formed when LA
and ALA undergo biohydrogenation in the rumen (70-95% and 85-100%, respectively) [86].
No differences in CLnA and AD were observed in this study. The only difference was
seen in levels of C18:2 9c,11t/9c,7t, with beef from G-HAY containing the most and beef
from BLG-SH containing the least. This was expected since GRASS contains more PUFAs
than SH. Feeding mostly GRASS to cattle results in a more favorable rumen pH, leading
to more efficient biohydrogenation [75,76]. However, SH has the potential to increase the
CLA content of beef compared to grain-diets, mainly because of their high fiber content
resulting in a more optimal rumen pH for biohydrogenation to occur [87].

4.4. Vitamin E, TBARS, and WBSF

Beef from the three groups fed fresh GRASS contained more vitamin E than beef from
BLG-SH. Vitamin E is of interest for human health due to its antioxidant properties [14].
Duckett et al. [20] found no difference in vitamin E levels when pasture was supplemented
with SH or not. However, GFB generally contains up to three times more vitamin E than
grain-finished beef [15,20,22,51]. The amount of vitamin E found in GFB is enough to
protect the beef from oxidation and extend the shelf-life of meat [14,88]. TBARS is an
effective assay to measure lipid oxidation. In the present study, TBARS values were higher
in beef from BLG-SH compared to the other three groups. Untrained panelists usually do
not detect oxidation flavors until oxidation values reach 2.0 mg MDA/kg of tissue [89].
In the current study, only beef from the BLG-SH group exceeded this threshold. Feeding
GRASS to cattle usually leads to reduced TBARS values in beef compared to concentrate
diets [90]. The higher amounts of antioxidants (including vitamin E) present in GFB might
explain the better oxidative stability and lower TBARS values [91].

Shear force values were the lowest for beef from BLG-SH compared to beef from
G-HAY and G-BLG. Maciel et al. [39] reported that GFB has higher WBSF values compared
to grain-finished beef. These findings indicate that grass-finishing affects the tenderness of
beef. Marbling may be a contributing factor to increased meat tenderness (lower WBSF
values). Baublits et al. [37] found no difference in shear force values when including SH to
a grass diet. Based on the results of the present study, supplementing the diet of cattle with
SH might help with meat tenderness, especially in GFB.

5. Conclusions

Based on our findings, we can conclude that SH caused more weight gain in cattle,
increased the marbling score of beef, and improved the tenderness of GFB. SH did increase
the n-6:n-3 ratio in beef, but it remained under 2:1. The use of SH as a supplemental
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feed increased TBARS values as well. Feeding GFB fresh GRASS and HAY resulted in
a higher PUFA content, especially higher levels of long-chain n-3 PUFAs including EPA,
DPA, and DHA. Vitamin E concentrations were also increased in beef on fresh pasture,
likely contributing to lower TBARS values. In conclusion, none of the supplemental feeds
tested in the current study increased the n-6:n-3 ratio to the values observed previously
by Bronkema et al. [21] in their nutritional survey of commercially available GFB. Future
research should investigate other feeds (with different plant species) and determine what
ingredients cause large increases in the n-6:n-3 ratio of GFB. As observed here, the n-6:n-3
ratio of GFB should remain under 4:1 to benefit human health. GFB has the potential to
provide beneficial bioactive compounds for human health including long-chain n-3 PUFAs,
phenols, and vitamin E.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/foods11233856/s1, Table S1: Mean concentrations of saturated
and monounsaturated fatty acids by diet (% total fatty acids); Table S2: Mean concentrations of
polyunsaturated fatty acids by diet (% total fatty acids).
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