Isolation and Identification of Constituents Exhibiting Antioxidant, Antibacterial, and Antihyperuricemia Activities in Piper methysticum Root
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Isolation and Purification Procedure of Antioxidant Compounds
2.3. Identification of Antioxidative Compounds
2.4. Bioactivity Assays
2.4.1. Antioxidant Assays
DPPH Radical Scavenging Assay
ABTS Radical Scavenging Assay
2.4.2. Xanthine Oxidase Inhibitory Activity
2.4.3. Antibacterial Assay
2.5. Statistical Analysis
3. Results
3.1. Phytochemical Isolation and Structure Elucidation
3.2. Biological Activity of Crude Extracts
3.2.1. Xanthine Oxidase Inhibitory (XOI) and Antioxidant Activity of Crude Extracts
3.2.2. Antibacterial Activity of Crude Extracts
3.3. Biological Activity of Isolated Compounds
3.3.1. Antioxidant Activity of Isolated Compounds
3.3.2. XOI Activity of Isolated Compounds
3.4. Antibacterial Activity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lobo, V.; Patil, A.; Phatak, A.; Chandra, N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn. Rev. 2010, 4, 118–126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phaniendra, A.; Jestadi, D.B.; Periyasamy, L. Free radicals: Properties, sources, targets, and their implication in various diseases. Indian J. Clin. Biochem. 2015, 30, 11–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valko, M.; Rhodes, C.; Moncol, J.; Izakovic, M.M.; Mazur, M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem. Biol. Interact. 2006, 160, 1–40. [Google Scholar] [CrossRef] [PubMed]
- Birben, E.; Sahiner, U.M.; Sackesen, C.; Erzurum, S.; Kalayci, O. Oxidative stress and antioxidant defense. World Allergy. Organ. J. 2012, 5, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Conen, D.; Wietlisbach, V.; Bovet, P.; Shamlaye, C.; Riesen, W.; Paccaud, F.; Burnier, M. Prevalence of hyperuricemia and relation of serum uric acid with cardiovascular risk factors in a developing country. BMC Public Health 2004, 4, 9. [Google Scholar] [CrossRef] [Green Version]
- Xuan, T.D.; Gangqiang, G.; Minh, T.N.; Quy, T.N.; Khanh, T.D. An overview of chemical profiles, antioxidant and antimicrobial activities of commercial vegetable edible oils marketed in Japan. Foods 2018, 7, 21. [Google Scholar] [CrossRef] [Green Version]
- Patra, J.K.; Das, G.; Baek, K.H. Chemical composition and antioxidant and antibacterial activities of an essential oil extracted from an edible seaweed, Laminaria japonica L. Molecules 2015, 20, 12093–12113. [Google Scholar] [CrossRef] [Green Version]
- Rahal, A.; Kumar, A.; Singh, V.; Yadav, B.; Tiwari, R.; Chakraborty, S.; Dhama, K. Oxidative stress, prooxidants, and antioxidants: The interplay. Biomed. Res. Int. 2014, 2014, 761264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shaikh, S.M.; Doijad, R.C.; Shete, A.S.; Sankpal, P.S.A. Review on: Preservatives used in pharmaceuticals and impacts on health. Pharma Tutor 2016, 4, 25–34. [Google Scholar]
- Kapoor, N.; Saxena, S. Potential xanthine oxidase inhibitory activity of endophytic Lasiodiplodia pseudotheobromae. App. Biochem. Biotechnol. 2014, 173, 1360–1374. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, M.T.T.; Awale, S.; Tezuka, Y.; Le Tran, Q.; Watanabe, H.; Kadota, S. Xanthine oxidase inhibitory activity of Vietnamese medicinal plants. Biol. Pharm. Bull. 2004, 27, 1414–1421. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, M.T.T.; Awale, S.; Tezuka, Y.; Le Tran, Q.; Kadota, S. Xanthine oxidase inhibitors from the heartwood of Vietnamese Caesalpinia sappan. Chem. Pharm. Bull. 2005, 53, 984–988. [Google Scholar] [CrossRef] [Green Version]
- Mohammad, M.K.; Almasri, I.M.; Tawaha, K.; Issa, A.; Al-Nadaf, A.; Hudaib, M.; Alkhatib, H.S.; Abu-Gharbieh, E.; Bustanji, Y. Antioxidant, antihyperuricemic and xanthine oxidase inhibitory activities of Hyoscyamus reticulatus. Pharm. Biol. 2010, 48, 1376–1383. [Google Scholar] [CrossRef] [Green Version]
- Neogi, T. Gout. New Engl. J. Med. 2011, 364, 443–452. [Google Scholar] [CrossRef] [PubMed]
- Perez-Ruiz, F.; Dalbeth, N.; Bardin, T. A review of uric acid, crystal deposition disease, and gout. Adv. Ther. 2015, 32, 31–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kostić, D.A.; Dimitrijević, D.S.; Stojanović, G.S.; Palić, I.R.; Đorđević, A.S.; Ickovski, J.D. Xanthine oxidase: Isolation, assays of activity, and inhibition. J. Chem. 2015, 2015, 294858. [Google Scholar] [CrossRef] [Green Version]
- Davis, R.I.; Brown, J.F. Kava (Piper methysticum) in the South Pacific: Its Importance, Methods of Cultivation, Cultivars, Diseases and Pests; Australian Centre for International Agricultural Research (ACIAR): Canberra, Australia, 1999.
- Singh, Y.N. Kava: An overview. J. Ethnopharmacol. 1992, 37, 13–45. [Google Scholar] [CrossRef]
- Siméoni, P.; Lebot, V. Identification of factors determining kavalactone content and chemotype in kava (Piper methysticum Forst. f.). Biochem. Syst. Ecol. 2002, 30, 413–424. [Google Scholar] [CrossRef]
- Tabudravu, J.N.; Jaspars, M. Anticancer activities of constituents of kava (Piper methysticum). SPJNAS 2005, 23, 26–29. [Google Scholar] [CrossRef]
- Meyer, H.J. Pharmacology of kava. In Ethnopharmacologic Search for Psychoactive Drugs, 2nd Ed.; Efron, D.H., Holmstedt, B., Kline, N.S., Eds.; Raven Press: New York, NY, USA, 1979; ISBN 9780300052138. [Google Scholar]
- Lebot, V.; Merlin, M.; Lindstrom, L. Kava: The Pacific drug; Yale University Press: New Haven, CT, USA, 1992; ISBN1 10-0300052138. ISBN2 13-978-0300052138. [Google Scholar]
- Sarris, J.; LaPorte, E.; Schweitzer, I. Kava: A comprehensive review of efficacy, safety, and psychopharmacology. ANZJP 2011, 45, 27–35. [Google Scholar] [CrossRef]
- Lal, B.V.; Fortune, K. (Eds.) The Pacific Islands: An Encyclopedia; University of Hawaii Press: Honolulu, HI, USA, 2000; Volume 1, 619p. [Google Scholar]
- Rowe, A.; Narlawar, R.; Groundwater, P.W.; Ramzan, I. Kavalactone pharmacophores for major cellular drug targets. Mini-Rev. Med. Chem. 2011, 11, 79–83. [Google Scholar] [CrossRef] [PubMed]
- Van, T.M.; Xuan, T.D.; Minh, T.N.; Quan, N.V. Isolation and purification of potent growth inhibitors from Piper methysticum root. Molecules 2018, 23, 1907. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Minh, T.N.; Xuan, T.D.; Ahmad, A.; Elzaawely, A.A.; Teschke, R.; Van, T.M. Efficacy from different extractions for chemical profile and biological activities of rice husk. Sustainability 2018, 10, 1356. [Google Scholar] [CrossRef] [Green Version]
- Tuyen, P.T.; Xuan, T.D.; Khang, D.T.; Ahmad, A.; Quan, N.V.; Tu Anh, T.T.; Anh, L.H.; Minh, T.N. Phenolic compositions and antioxidant properties in bark, flower, inner skin, kernel and leaf extracts of Castanea crenata Sieb. et Zucc. Antioxidants 2017, 6, 31. [Google Scholar] [CrossRef] [Green Version]
- Umamaheswari, M.; AsokKumar, K.; Somasundaram, A.; Sivashanmugam, T.; Subhadradevi, V.; Ravi, T.K. Xanthine oxidase inhibitory activity of some Indian medical plants. J. Ethnopharmacol. 2007, 109, 547–551. [Google Scholar] [CrossRef] [PubMed]
- Elzaawely, A.A.; Xuan, T.D.; Tawata, S. Antioxidant and antibacterial activities of Rumex japonicus HOUTT. aerial parts. Biol. Pharm. Bull. 2005, 28, 2225–2230. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Pandey, A.K. Chemistry and biological activities of flavonoids: An overview. Sci. World J. 2013, 2013, 162750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pham-Huy, L.A.; He, H.; Pham-Huy, C. Free radicals, antioxidants in disease and health. IJBS 2008, 4, 89. [Google Scholar]
- Srivastava, K.K.; Kumar, R. Stress, oxidative injury and disease. Indian J. Clin. Biochem. 2015, 30, 3–10. [Google Scholar] [CrossRef] [Green Version]
- Amic, D.; Davidovic-Amic, D.; Beslo, D.; Rastija, V.; Lucic, B.; Trinajstic, N. SAR and QSAR of the antioxidant activity of flavonoids. Curr. Med. Chem. 2007, 14, 827–845. [Google Scholar] [CrossRef]
- Sen, S.; Chakraborty, R. The role of antioxidants in human health. In Oxidative Stress: Diagnostics, Prevention, and Therapy, 1st ed.; Silvana, A., Maria, H., Eds.; State University of New York: Postdam, NY, USA, 2011; pp. 1–37. ISBN 13-9780841226838. [Google Scholar]
- Bhouri, W.; Sghaier, M.B.; Kilani, S.; Bouhlel, I.; Dijoux-Franca, M.G.; Ghedira, K.; Ghedira, L.C. Evaluation of antioxidant and antigenotoxic activity of two flavonoids from Rhamnus alaternus L. (Rhamnaceae): Kaempferol 3-O-β-isorhamninoside and rhamnocitrin 3-O-β-isorhamninoside. Food Chem. Toxicol. 2011, 49, 1167–1173. [Google Scholar] [CrossRef]
- Teffo, L.S.; Aderogba, M.A.; Eloff, J.N. Antibacterial and antioxidant activities of four kaempferol methyl ethers isolated from Dodonaea viscosa Jacq. var. angustifolia leaf extracts. South Afr. J. Bot. 2010, 76, 25–29. [Google Scholar] [CrossRef]
- Wang, T.Y.; Li, Q.; Bi, K.S. Bioactive flavonoids in medicinal plants: Structure, activity and biological fate. Asian J. Pharm. Sci. 2017, 13, 12–13. [Google Scholar] [CrossRef] [PubMed]
- Cotelle, N. Role of flavonoids in oxidative stress. Curr. Med. Chem. 2001, 1, 569–590. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, T.; Sawa, K.; Kawasaki, M.; Arisawa, M.; Shimizu, M.; Morita, N. Inhibition of cow’s milk xanthine oxidase by flavonoids. J. Nat. Prod. 1988, 51, 345–348. [Google Scholar] [CrossRef] [PubMed]
- Van Hoorn, D.E.; Nijveldt, R.J.; Van Leeuwen, P.A.; Hofman, Z.; M’Rabet, L.; De Bont, D.B.; Van Norren, K. Accurate prediction of xanthine oxidase inhibition based on the structure of flavonoids. Eur. J. Pharmacol. 2002, 451, 111–118. [Google Scholar] [CrossRef]
- Wu, D.; Yu, L.; Nair, M.G.; DeWitt, D.L.; Ramsewak, R.S. Cyclooxygenase enzyme inhibitory compounds with antioxidant activities from Piper methysticum (kava kava) roots. Phytomedicine 2002, 9, 41–47. [Google Scholar] [CrossRef]
- Whatley, F.R.; Greenaway, W.; May, J. Populus candicans and the Balm of Gilead. Z. Nat. C 1989, 44, 353–356. [Google Scholar] [CrossRef] [PubMed]
- Shankar, S.; Ravikumar, R.; Palanisamy, A.; Sivasubramanian, A. Development and extraction optimization of baicalein and pinostrobin from Scutellaria violacea through response surface methodology. Pharmacogn. Mag. 2015, 11, 127–138. [Google Scholar]
- Fahey, J.W.; Stephenson, K.K. Pinostrobin from honey and Thai ginger (Boesenbergia pandurata): A potent flavonoid inducer of mammalian phase 2 chemoprotective and antioxidant enzymes. J. Agric. Food Chem. 2002, 50, 7472–7476. [Google Scholar] [CrossRef] [PubMed]
Code | Retention Time | Peak Area (%) | Compound | Chemical Formula | Molecular Weight | Chemical Class |
---|---|---|---|---|---|---|
C1 | 23.4 | 93.28 | 5-Hydroxy-4′,7-dimethoxyflavanone | C17H16O5 | 300 | Flavonoids |
C2 | 25.37 | 90.00 | Matteucinol | C18H18O5 | 314 | Flavonoids |
C3 | 21.67 | 97.17 | 5,7-Dihydroxy-4′-methoxyflavanone (Isosakuranetin) | C16H14O5 | 286 | Flavonoids |
C4 | 23.05 | 90.00 | 5,7- Dimethoxyflavanone | C17H16O4 | 284 | Flavonoids |
MC5 | 20.84 | 72.05 | 5,6-Dehydrokawain (DK) | C14H12O3 | 228 | Kava lactones |
22.26 | 27.95 | 2′,4′-Dihydroxy-6′-methoxydihydrochalcone | C16H16O4 | 272 | Flavonoids | |
C6 | 20.8 | 94.66 | 5,6-Dehydrokawain (DK) | C14H12O3 | 228 | Kava lactones |
MC7 | 20.07 23.34 | 59.42 40.58 | Kavain Yangonin | C14H14O3 C15H14O4 | 230 258 | Kava lactones Kava lactones |
C8 | 23.34 | 93.64 | Yangonin | C15H14O4 | 258 | Kava lactones |
MC9 | 16.25 18.35 22.45 23.4 | 12.78 20.44 54.77 8.9 | Dihydro-5,6-dehydrokavain (DDK) 7,8-Dihydrokavain Dihydromethysticin Methysticin | C14H14O3 C14H16O3 C15H16O5 C15H14O5 | 230 232 276 274 | Kava lactones Kava lactones Kava lactones Kava lactones |
C10 | 21.61 | 90.06 | Alpinetin | C16H14O4 | 270 | Flavonoids |
Extracts | Radical Scavenging Activity | XOI Activity | |
---|---|---|---|
IC50 DPPH (µg/mL) | IC50 ABTS (µg/mL) | IC50 (µg/mL) | |
Hexane | - | 1706.0 ± 4.6 a | 2008.1 ± 6.7 a |
Chloroform | 2392.3 ± 4.5 a | 1304.0 ± 5.3 b | 922.7 ± 3.1 b |
Ethyl acetate | 946.3 ± 7.6 b | 1007.0 ± 6.2 c | 724.6 ± 2.4 b |
Aqueous | 971.6 ± 9.0 b | 1017.4 ± 4.7 c | - |
Zone of Inhibition (mm) | |||||
---|---|---|---|---|---|
E. coli(a) | K. pneumoniae(a) | P. mirabilis(a) | B. subtilis(b) | L. monocytogenes(b) | |
Hexane | - | - | 10.1 ± 2.5 | - | - |
Chloroform | - | - | - | 15.0 ± 2.0 | - |
EtOAc | 23.0 ± 2.5 | - | - | - | - |
Water | - | - | - | - | - |
Control | - | - | - | - | - |
Standards (30 µg/disc) | |||||
Ampicillin | 34.0 ± 1.0 | 44.1 ± 3.2 | 43.0 ± 1.5 | 17.1 ± 1.5 | 24.0 ± 3.1 |
Streptomycin | 19.1 ± 1.0 | 15.2 ± 0.6 | 29. ± 1.5 | 12.0 ± 1.0 | 18.1 ± 1.7 |
Compounds | IC50 (µg/mL) | |
---|---|---|
DPPH | ABTS | |
C1 | - | 205.8 ± 5.7 c |
C2 | - | 172.8 ± 6.5 d |
C3 | 74.8 ± 3.5 e | 76.5 ± 7.1 f |
C4 | 477.8 ± 4.7 d | 143.5 ± 6.5 e |
MC5 | 1211.5 ± 6.1 a | 183.4 ± 5.7 d |
C6 | 496.6 ± 4.5 c | 463.5 ± 7.1 b |
BHT | 9.5 ± 0.2 f | 45.1 ± 3.7 g |
Fractions | IC50 (µg/mL) |
---|---|
C4 | 268.65 ± 2.00 c |
MC5 | 452.68 ± 3.43 b |
C6 | 242.01 ± 1.12 d |
MC9 | 465.27 ± 2.22 a |
C10 | 134.52 ± 1.80 e |
Allopurinol * | 21.33 ± 0.19 f |
Zone of Inhibition (mm) | |||||
---|---|---|---|---|---|
E. coli(a) | K. pneumoniae(a) | P. mirabilis(a) | B. subtilis(b) | L. monocytogenes(b) | |
MC5 | - | - | - | - | 13.0 ± 0.5 |
C6 | - | - | - | - | 9.0 ± 0.5 |
MC7 | - | 9.7 ± 0.5 | - | - | - |
Control | - | - | - | - | - |
Standards (30 µg/disc) | |||||
Ampicillin | 34.0 ± 1.0 | 44.1 ± 3.2 | 43.0 ± 1.5 | 17.1 ± 1.5 | 24.0 ± 3.1 |
Streptomycin | 19.1 ± 1.0 | 15.2 ± 0.6 | 29. ± 1.5 | 12.0 ± 1.0 | 18.1 ± 1.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Minh, T.N.; Van, T.M.; Khanh, T.D.; Xuan, T.D. Isolation and Identification of Constituents Exhibiting Antioxidant, Antibacterial, and Antihyperuricemia Activities in Piper methysticum Root. Foods 2022, 11, 3889. https://doi.org/10.3390/foods11233889
Minh TN, Van TM, Khanh TD, Xuan TD. Isolation and Identification of Constituents Exhibiting Antioxidant, Antibacterial, and Antihyperuricemia Activities in Piper methysticum Root. Foods. 2022; 11(23):3889. https://doi.org/10.3390/foods11233889
Chicago/Turabian StyleMinh, Truong Ngoc, Truong Mai Van, Tran Dang Khanh, and Tran Dang Xuan. 2022. "Isolation and Identification of Constituents Exhibiting Antioxidant, Antibacterial, and Antihyperuricemia Activities in Piper methysticum Root" Foods 11, no. 23: 3889. https://doi.org/10.3390/foods11233889
APA StyleMinh, T. N., Van, T. M., Khanh, T. D., & Xuan, T. D. (2022). Isolation and Identification of Constituents Exhibiting Antioxidant, Antibacterial, and Antihyperuricemia Activities in Piper methysticum Root. Foods, 11(23), 3889. https://doi.org/10.3390/foods11233889