Influence of Seasonings and Spice Essential Oils on Acrylamide Production in a Low Moisture Model System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Chemicals
2.2. Model System Preparation
2.3. Effect of Seasonings and Spice Essential Oils on AA Production
2.4. Determination of AA
2.5. Determination of aw
2.6. Statistical Analyses
3. Results and Discussion
3.1. Effect of aw on the Production of AA
3.2. Effect of Seasonings on the Production of AA
3.3. Effect of Spice Essential Oils on the Production of AA
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Starowicz, M.; Zieliński, H. How Maillard reaction influences sensorial properties (color, flavor and texture) of food products? Food Rev. Int. 2019, 35, 707–725. [Google Scholar] [CrossRef]
- Koszucka, A.; Nowak, A. Thermal processing food-related toxicants: A review. Crit. Rev. Food Sci. Nutr. 2019, 59, 3579–3596. [Google Scholar] [CrossRef] [PubMed]
- Mottram, D.S.; Wedzicha, B.L.; Dodson, A.T. Acrylamide is formed in the Maillard reaction. Nature 2002, 419, 448–449. [Google Scholar] [CrossRef] [PubMed]
- Stadler, R.H.; Blank, I.; Varga, N.; Robert, F.; Hau, J.; Guy, P.A.; Robert, M.C.; Riediker, S. Acrylamide from Maillard reaction products. Nature 2002, 419, 449–450. [Google Scholar] [CrossRef] [PubMed]
- Yaylayan, V.A.; Wnorowski, A.; Perez Locas, C. Why asparagine needs carbohydrates to generate acrylamide. J. Agric. Food Chem. 2003, 51, 1753–1757. [Google Scholar] [CrossRef] [PubMed]
- Pundir, C.S.; Yadav, N.; Chhillar, A.K. Occurrence, synthesis, toxicity and detection methods for acrylamide determination in processed foods with special reference to biosensors: A review. Trends Food Sci. Technol. 2019, 85, 211–225. [Google Scholar] [CrossRef]
- Monographs on the Evaluation of Carcinogenic Risks to Humans: Some Industrial Chemicals; IARC: Geneva, Switzerland, 1994; Volume 60.
- EFSA, Update on acrylamide levels in food from monitoring years 2007 to 2010. EFSA J. 2012, 10, 2938.
- Mencin, M.; Abramovič, H.; Vidrih, R.; Schreiner, M. Acrylamide levels in food products on the Slovenian market. Food Control 2020, 114, 107267. [Google Scholar] [CrossRef]
- FAO/WHO. Evaluation of Certain Contaminants in Food: Seventy-Second Report of the Joint FAO/WHO Expert Committe on Food Additives; World Health Organization: Geneva, Switzerland, 2011; Volume 959. [Google Scholar]
- Abt, E.; Robin, L.P.; McGrath, S.; Srinivasan, J.; DiNovi, M.; Adachi, Y.; Chirtel, S. Acrylamide levels and dietary exposure from foods in the United States, an update based on 2011–2015 data. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2019, 36, 1475–1490. [Google Scholar] [CrossRef]
- Authority, E.F.S. Scientific opinion on acrylamide in food. EFSA J. 2015, 13, 4104. [Google Scholar]
- Gao, J.; Zhao, Y.; Zhu, F.; Ma, Y.; Li, X.; Miao, H.; Wu, Y. Dietary exposure of acrylamide from the fifth Chinese Total Diet Study. Food Chem. Toxicol. 2016, 87, 97–102. [Google Scholar] [CrossRef] [PubMed]
- Wong, W.W.; Chung, S.W.; Lam, C.H.; Ho, Y.Y.; Xiao, Y. Dietary exposure of Hong Kong adults to acrylamide: Results of the first Hong Kong Total Diet Study. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2014, 31, 799–805. [Google Scholar] [CrossRef] [PubMed]
- Kotemori, A.; Ishihara, J.; Zha, L.; Liu, R.; Sawada, N.; Iwasaki, M.; Sobue, T.; Tsugane, S.; Group, J.S. Dietary acrylamide intake and risk of breast cancer: The Japan public health center-based prospective study. Cancer Sci. 2018, 109, 843–853. [Google Scholar] [CrossRef] [PubMed]
- Medeiros Vinci, R.; Mestdagh, F.; De Meulenaer, B. Acrylamide formation in fried potato products—Present and future, a critical review on mitigation strategies. Food Chem. 2012, 133, 1138–1154. [Google Scholar] [CrossRef]
- Zhu, Y.; Luo, Y.; Sun, G.; Wang, P.; Hu, X.; Chen, F. Inhibition of acrylamide by glutathione in asparagine/glucose model systems and cookies. Food Chem. 2020, 329, 127171. [Google Scholar] [CrossRef]
- De Vleeschouwer, K.; Van der Plancken, I.; Van Loey, A.; Hendrickx, M.E. Kinetics of acrylamide formation/elimination reactions as affected by water activity. Biotechnol. Prog. 2007, 23, 722–728. [Google Scholar] [CrossRef]
- Bassama, J.; Brat, P.; Bohuon, P.; Hocine, B.; Boulanger, R.; Günata, Z. Acrylamide kinetic in plantain during heating process: Precursors and effect of water activity. Food Res. Int. 2011, 44, 1452–1458. [Google Scholar] [CrossRef]
- De Vleeschouwer, K.; Van der Plancken, I.; Van Loey, A.; Hendrickx, M.E. Investigation of the influence of different moisture levels on acrylamide formation/elimination reactions using multiresponse analysis. J. Agric. Food Chem. 2008, 56, 6460–6470. [Google Scholar] [CrossRef]
- Hedegaard, R.V.; Frandsen, H.; Granby, K.; Apostolopoulou, A.; Skibsted, L.H. Model studies on acrylamide generation from glucose/asparagine in aqueous glycerol. J. Agric. Food Chem. 2007, 55, 486–492. [Google Scholar] [CrossRef]
- Miśkiewicz, K.; Rosicka-Kaczmarek, J.; Nebesny, E. Effects of chickpea protein on carbohydrate reactivity in acrylamide formation in low humidity model systems. Foods 2020, 9, 167. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Wang, J.; Zhang, Y. Study on formation of acrylamide under low-moisture asparagine–sugar reaction system. Food Chem. 2007, 104, 1127–1135. [Google Scholar] [CrossRef]
- Diez-Simon, C.; Eichelsheim, C.; Mumm, R.; Hall, R.D. Chemical and sensory characteristics of soy sauce: A review. J. Agric. Food Chem. 2020, 68, 11612–11630. [Google Scholar] [CrossRef] [PubMed]
- Martín-Vertedor, D.; Fernández, A.; Hernández, A.; Arias-Calderón, R.; Delgado-Adámez, J.; Pérez-Nevado, F. Acrylamide reduction after phenols addition to Californian-style black olives. Food Control 2020, 108, 106888. [Google Scholar] [CrossRef]
- Salazar, R.; Arambula-Villa, G.; Vazquez-Landaverde, P.A.; Hidalgo, F.J.; Zamora, R. Mitigating effect of amaranth (Amarantus hypochondriacus) protein on acrylamide formation in foods. Food Chem. 2012, 135, 2293–2298. [Google Scholar] [CrossRef]
- Moreau, L.; Lagrange, J.; Bindzus, W.; Hill, S. Influence of sodium chloride on colour, residual volatiles and acrylamide formation in model systems and breakfast cereals. Int. J. Food Sci. Technol. 2009, 44, 2407–2416. [Google Scholar] [CrossRef]
- Zhu, Y.; Luo, Y.; Sun, G.; Wang, P.; Hu, X.; Chen, F. The simultaneous inhibition of histidine on 5-hydroxymethylfurfural and acrylamide in model systems and cookies. Food Chem. 2022, 370, 131271. [Google Scholar] [CrossRef]
- GB2719-2018; Vinegar. National Food Safety Standard of China: Beijing, China, 2018.
- Kong, Y.; Zhang, L.L.; Sun, Y.; Zhang, Y.Y.; Sun, B.G.; Chen, H.T. Determination of the free amino acid, organic acid, and nucleotide in commercial vinegars. J. Food Sci. 2017, 82, 1116–1123. [Google Scholar] [CrossRef]
- Al-Dalali, S.; Zheng, F.; Sun, B.; Zhou, C.; Li, M.; Chen, F. Effects of different brewing processes on the volatile flavor profiles of Chinese vinegar determined by HS-SPME-AEDA with GC-MS and GC-O. LWT-Food Sci. Technol. 2020, 133, 109969. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, P.; Xu, D.; Wang, W.; Zhao, Y. Aroma patterns of Beijing rice vinegar and their potential biomarker for traditional Chinese cereal vinegars. Food Res. Int. 2019, 119, 398–410. [Google Scholar] [CrossRef]
- Yuan, Y.; Zhao, G.H.; Hu, X.S.; Wu, J.H.; Liu, J.; Chen, F. High correlation of methylglyoxal with acrylamide formation in glucose/asparagine Maillard reaction model. Eur. Food Res. Technol. 2008, 226, 1301–1307. [Google Scholar] [CrossRef]
- Wang, H.; Zhou, Y.; Ma, J.; Zhou, Y.; Jiang, H. The effects of phytic acid on the Maillard reaction and the formation of acrylamide. Food Chem. 2013, 141, 18–22. [Google Scholar] [CrossRef] [PubMed]
- Komprda, T.; Pridal, A.; Mikulikova, R.; Svoboda, Z.; Cwikova, O.; Nedomova, S.; Sykora, V. A combination of additives can synergically decrease acrylamide content in gingerbread without compromising sensory quality. J. Sci. Food Agric. 2017, 97, 889–895. [Google Scholar] [CrossRef] [PubMed]
- Jung, M.Y.; Choi, D.S.; Ju, J.W. A novel technique for limitation of acrylamide formation in fried and baked corn chips and in French fries. J. Food Sci. 2003, 68, 1287–1290. [Google Scholar] [CrossRef]
- Gao, Q.; Li, X.B.; Sun, J.; Xia, E.D.; Tang, F.; Cao, H.Q.; Xun, H. Isolation and identification of new chemical constituents from Chinese chive (Allium tuberosum) and toxicological evaluation of raw and cooked Chinese chive. Food Chem. Toxicol. 2018, 112, 400–411. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, S.; Miyazawa, M.; Kameoka, H. Volatile flavor components of chive (Allium schoenoprasum L.). J. Food Sci. 1983, 48, 1858–1859. [Google Scholar] [CrossRef]
- Zamora, R.; Delgado, R.M.; Hidalgo, F.J. Strecker aldehydes and alpha-keto acids, produced by carbonyl-amine reactions, contribute to the formation of acrylamide. Food Chem. 2011, 128, 465–470. [Google Scholar] [CrossRef] [PubMed]
- Bassama, J.; Brat, P.; Bohuon, P.; Boulanger, R.; Günata, Z. Study of acrylamide mitigation in model system: Effect of pure phenolic compounds. Food Chem. 2010, 123, 558–562. [Google Scholar] [CrossRef]
- Mildner-Szkudlarz, S.; Rozanska, M.; Piechowska, P.; Waskiewicz, A.; Zawirska-Wojtasiak, R. Effects of polyphenols on volatile profile and acrylamide formation in a model wheat bread system. Food Chem. 2019, 297, 125008. [Google Scholar] [CrossRef]
- Deng, G.F.; Lin, X.; Xu, X.R.; Gao, L.L.; Xie, J.F.; Li, H.B. Antioxidant capacities and total phenolic contents of 56 vegetables. J. Funct. Foods 2013, 5, 260–266. [Google Scholar] [CrossRef]
- Kiyama, R. Nutritional implications of ginger: Chemistry, biological activities and signaling pathways. J. Nutr. Biochem. 2020, 86, 108486. [Google Scholar] [CrossRef]
- Jaworska, D.; Mojska, H.; Gielecinska, I.; Najman, K.; Gondek, E.; Przybylski, W.; Krzyczkowska, P. The effect of vegetable and spice addition on the acrylamide content and antioxidant activity of innovative cereal products. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2019, 36, 374–384. [Google Scholar] [CrossRef] [PubMed]
- Haddarah, A.; Naim, E.; Dankar, I.; Sepulcre, F.; Pujola, M.; Chkeir, M. The effect of borage, ginger and fennel extracts on acrylamide formation in French fries in deep and electric air frying. Food Chem. 2021, 350, 129060. [Google Scholar] [CrossRef]
- Zhu, Y.; Xu, R.; Luo, Y.; Sun, G.; Lin, M.; Hu, X.; Chen, F. Influence of citral on acrylamide formation in model systems. Food Chem. 2022, 378, 132097. [Google Scholar] [CrossRef] [PubMed]
- Ji, Y.; Li, S.; Ho, C.T. Chemical composition, sensory properties and application of Sichuan pepper (Zanthoxylum genus). Food Sci. Hum. Wellness 2019, 8, 115–125. [Google Scholar] [CrossRef]
- Zeng, M.; Wang, J.; Zhang, M.; Chen, J.; He, Z.; Qin, F.; Xu, Z.; Cao, D.; Chen, J. Inhibitory effects of Sichuan pepper (Zanthoxylum bungeanum) and sanshoamide extract on heterocyclic amine formation in grilled ground beef patties. Food Chem. 2018, 239, 111–118. [Google Scholar] [CrossRef]
Model Systems | Diethylene Glycol (mL) | Deionized Water (mL) | aw |
---|---|---|---|
Model 1 | 4.75 | 0.25 | 0.173 |
Model 2 | 4.50 | 0.50 | 0.270 |
Model 3 | 4.25 | 0.75 | 0.442 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Y.; An, B.; Luo, Y.; Hu, X.; Chen, F. Influence of Seasonings and Spice Essential Oils on Acrylamide Production in a Low Moisture Model System. Foods 2022, 11, 3967. https://doi.org/10.3390/foods11243967
Zhu Y, An B, Luo Y, Hu X, Chen F. Influence of Seasonings and Spice Essential Oils on Acrylamide Production in a Low Moisture Model System. Foods. 2022; 11(24):3967. https://doi.org/10.3390/foods11243967
Chicago/Turabian StyleZhu, Yuchen, Bobo An, Yinghua Luo, Xiaosong Hu, and Fang Chen. 2022. "Influence of Seasonings and Spice Essential Oils on Acrylamide Production in a Low Moisture Model System" Foods 11, no. 24: 3967. https://doi.org/10.3390/foods11243967
APA StyleZhu, Y., An, B., Luo, Y., Hu, X., & Chen, F. (2022). Influence of Seasonings and Spice Essential Oils on Acrylamide Production in a Low Moisture Model System. Foods, 11(24), 3967. https://doi.org/10.3390/foods11243967