Effect of Potato Dietary Fiber on the Quality, Microstructure, and Thermal Stability of Chicken Patty
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. Chicken Patties Preparation and Processing
2.3. Quality
2.3.1. Dimensional Change and Yield
2.3.2. Water- and Fat-Holding Properties
2.3.3. Moisture Migration
2.3.4. Moisture Distribution
2.3.5. Color
2.3.6. Texture Profile Analysis (TPA)
2.4. Microstructure
2.5. Thermal Stability
2.6. Sensory Properties
2.7. Proximate Composition
2.8. Statistical Analysis
3. Results and Discussion
3.1. Quality
3.1.1. Dimensional Change and Yield
3.1.2. Water- and Fat-Holding Properties
3.1.3. Moisture Migration
3.1.4. Moisture Distribution
3.1.5. Color
3.1.6. Texture Profile Analysis (TPA)
3.2. Microstructure
3.3. Thermal Stability
3.4. Sensory Properties
3.5. Proximate Composition
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Eshag Osman, M.F.; Mohamed, A.A.; Mohamed Ahmed, I.A.; Alamri, M.S.; Al Juhaimi, F.Y.; Hussain, S.; Ibraheem, M.A.; Qasem, A.A. Acetylated corn starch as a fat replacer: Effect on physiochemical, textural, and sensory attributes of beef patties during frozen storage. Food Chem. 2022, 388, 132988. [Google Scholar] [CrossRef]
- Kovàcsnè, O.B.; Bayod, E.; Sjöholm, I.; Tornberg, E. The mechanisms controlling heat and mass transfer on frying of beefburgers. Part 2: The influence of the pan temparature and patty diameter. J. Food Eng. 2005, 71, 18–27. [Google Scholar]
- Alakali, J.S.; Irtwange, S.V.; Mzer, M.T. Quality evaluation of beef patties formulated with bambara groundnut (Vigna subterranean L.) seed flour. Meat Sci. 2010, 85, 215–223. [Google Scholar] [CrossRef]
- Hawashin, M.D.; Al-Juhaimi, F.; Mohamed Ahmed, I.A.; Ghafoor, K.; Babiker, E.E. Physicochemical, microbiological and sensory evaluation of beef patties incorporated with destoned olive cake powder. Meat Sci. 2016, 122, 32–39. [Google Scholar] [CrossRef]
- Sánchez-Zapata, E.; Muñoz, C.M.; Fuentes, E.; Fernández-López, J.; Sendra, E.; Sayas, E.; Navarro, C.; Pérez-Alvarez, J.A. Effect of tiger nut fibre on quality characteristics of pork burger. Meat Sci. 2010, 85, 70–76. [Google Scholar] [CrossRef]
- Cao, C.; Yuan, D.X.; Li, X.; Kong, B.; Chen, Q.; Sun, F.; Liu, Q. Reduction of phosphate content in frankfurters by up to 50% using micronized cold-pressed sesame seed cake. Meat Sci. 2022, 185, 108708. [Google Scholar] [CrossRef]
- Zhuang, X.; Han, M.; Kang, Z.; Wang, K.; Bai, Y.; Xu, X.; Zhou, G. Effects of the sugarcane dietary fiber and pre-emulsified sesame oil on low-fat meat batter physicochemical property, texture, and microstructure. Meat Sci. 2016, 113, 107–115. [Google Scholar] [CrossRef]
- Zhuang, X.; Jiang, X.; Zhou, H.; Chen, Y.; Zhao, Y.; Yang, H.; Zhou, G. Insight into the mechanism of physicochemical influence by three polysaccharides on myofibrillar protein gelation. Carbohydr. Polym. 2020, 229, 225449. [Google Scholar] [CrossRef]
- Wang, Z.; Sun, Y.; Dang, Y.; Cao, J.; Pan, D.; Guo, Y.; He, J. Water-insoluble dietary fibers from oats enhance gel properties of duck myofibrillar proteins. Food Chem. 2021, 344, 128690. [Google Scholar] [CrossRef]
- Ma, Y.; Zhao, H.; Ma, Q.; Cheng, D.; Zhang, Y.; Wang, W.; Wang, J.; Sun, J. Development of chitosan/potato peel polyphenols nanoparticles driven extended-release antioxidant films based on potato starch. Food Packag. Shelf 2022, 31, 100793. [Google Scholar] [CrossRef]
- Camire, M.E.; Violette, D.; Dougherty, M.P.; McLaughlin, M.A. Potato peel dietary fiber composition: Effects of peeling and extrusion cooking processes. J. Agric. Food Chem. 1997, 45, 1404–1408. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhao, Y.; Zhu, Y.; Qin, S.; Deng, Y.; Zhao, Y. Effect of dietary fiber-rich fractions on texture, thermal, water distribution, and gluten properties of frozen dough during storage. Food Chem. 2019, 297, 124902. [Google Scholar] [CrossRef] [PubMed]
- Curti, E.; Carini, E.; Diantom, A.; Vittadini, E. The use of potato fibre to improve bread physico-chemical properties during storage. Food Chem. 2016, 195, 64–70. [Google Scholar] [CrossRef] [PubMed]
- Bender, A.B.B.; Speroni, C.S.; Moro, K.I.B.; Morisso, F.D.P.; dos Santos, D.; da Silva, L.P.; Penna, N.G. Effects of micronization on dietary fiber composition, physicochemical properties, phenolic compounds, and antioxidant capacity of grape pomace and its dietary fiber concentrate. LWT Food Sci. Technol. 2020, 117, 108652. [Google Scholar] [CrossRef]
- Pan, N.; Wan, W.; Du, X.; Kong, B.H.; Liu, Q.; Lv, H.; Xia, X.X.; Li, F.F. Mechanisms of change in emulsifying capacity induced by protein denaturation and aggregation in quick-frozen pork patties with different fat levels and freeze-thaw cycles. Foods 2022, 11, 44. [Google Scholar] [CrossRef] [PubMed]
- Pan, N.; Dong, C.; Du, X.; Kong, B.; Sun, J.; Xia, X. Effect of freeze-thaw cycles on the quality of quick-frozen pork patty with different fat content by consumer assessment and instrument-based detection. Meat Sci. 2021, 172, 108313. [Google Scholar] [CrossRef]
- Li, F.F.; Zhong, Q.; Kong, B.H.; Wang, B.; Pan, N.; Xia, X.F. Deterioration in quality of quick-frozen pork patties induced by changes in protein structure and lipid and protein oxidation during frozen storage. Food Res. Int. 2020, 133, 109142. [Google Scholar] [CrossRef]
- Bai, X.; Shi, S.; Kong, B.H.; Chen, Q.; Liu, Q.; Li, Z.H.; Wu, K.R.; Xia, X.F. Analysis of the influencing mechanism of the freeze–thawing cycles on in vitro chicken meat digestion based on protein structural changes. Food Chem. 2023, 399, 134020. [Google Scholar] [CrossRef]
- Wu, C.; Yuan, C.; Chen, S.; Liu, D.; Ye, X.; Hu, Y. The effect of curdlan on the rheological properties of restructured ribbonfish (Trichiurus spp.) meat gel. Food Chem. 2015, 179, 222–231. [Google Scholar] [CrossRef]
- Du, X.; Chang, P.; Tian, J.; Kong, B.; Sun, F.; Xia, X. Effect of ice structuring protein on the quality, thermal stability and oxidation of mirror carp (Cyprinus carpio L.) induced by freeze-thaw cycles. LWT Food Sci. Technol. 2020, 124, 109140. [Google Scholar] [CrossRef]
- AOAC. Offical Methods of Analysis of AOAC International, 17th ed.; AOAC International: Gaithersburg, MD, USA, 2000. [Google Scholar]
- Choi, Y.S.; Sung, J.M.; Park, J.D.; Hwang, K.-E.; Lee, C.-W.; Kim, T.-K.; Jeon, K.-H.; Kim, C.-J.; Kim, Y.-B. Quality and sensory characteristics of reduced-fat chicken patties with pork back fat replaced by dietary fiber from wheat sprout. Korean J. Food Sci. An. 2016, 36, 799–806. [Google Scholar] [CrossRef]
- Kovàcsnè, O.B.; Bayod, E.; Sjöholm, I.; Tornberg, E. The mechanisms controlling heat and mass transfer on frying of beefburgers. III. Mass transfer evolution during frying. J. Food Eng. 2006, 76, 169–178. [Google Scholar] [CrossRef]
- Pan, Z.; Singh, R.P. Physical and thermal properties of ground beef during cooking. LWT Food Sci. Technol. 2001, 34, 437–444. [Google Scholar] [CrossRef]
- Zhuang, X.; Zhang, W.; Liu, R.; Liu, Y.; Xing, L.; Han, M.; Kang, Z.; Xu, X.; Zhou, G. Improved gel functionality of myofibrillar proteins incorporation with sugarcane dietary fiber. Food Res. Int. 2017, 100, 586–594. [Google Scholar] [CrossRef] [PubMed]
- Yasui, T.; Ishioroshi, M.; Nakano, H.; Samejima, K. Changes in shear modulus, ultrastructure and spin-spin relaxation times of water associated with heat-induced gelation of myosin. J. Food Sci. 1979, 44, 1201–1204. [Google Scholar] [CrossRef]
- Du, X.; Wang, B.; Li, H.J.; Liu, H.T.; Shi, S.; Feng, J.; Pan, N.; Xia, X.F. Research progress on quality deterioration mechanism and control technology of frozen muscle foods. Compr. Rev. Food Sci. Food Saf. 2022, 21, 4812–4846. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, C.; Chen, X.; Li, P.; Ma, F.; Lu, Q. Contribution of three ionic types of polysaccharides to the thermal gelling properties of chicken breast myosin. J. Agric. Food Chem. 2014, 62, 2655–2662. [Google Scholar] [CrossRef]
- Li, M.; Li, B.; Zhang, W. Rapid and non-invasive detection and imaging of the hydrocolloid-injected prawns with low-field NMR and MRI. Food Chem. 2018, 242, 16–21. [Google Scholar] [CrossRef]
- Ullah, I.; Hu, Y.; You, J.; Yin, T.; Xiong, S.; Din, Z.-U.; Huang, Q.; Liu, R. Influence of okara dietary fiber with varying particle sizes on gelling properties, water state and microstructure of tofu gel. Food Hydrocoll. 2019, 89, 512–522. [Google Scholar] [CrossRef]
- Petcharat, T.; Benjakul, S. Effect of gellan incorporation on gel properties of bigeye snapper surimi. Food Hydrocoll. 2018, 77, 746–753. [Google Scholar] [CrossRef]
- Varnan, A.H.; Sutherland, J.P. Meat and meat products: Technology, chemistry and microbiology. Meat Sci. 1996, 43, 78–79. [Google Scholar] [CrossRef]
- Ateba, P.; Mittal, G.S. Dynamics of crust formation and kinetics of quality changes during frying of meatballs. J. Food Sci. 1994, 59, 1275–1278. [Google Scholar] [CrossRef]
- Zhao, Y.; Hou, Q.; Zhuang, X.; Wang, Y.; Zhou, G.; Zhang, W. Effect of regenerated cellulose fiber on the physicochemical properties and sensory characteristics of fat-reduced emulsified sausage. LWT Food Sci. Technol. 2018, 97, 157–163. [Google Scholar] [CrossRef]
- Mellema, M. Mechanism and reduction of fat uptake in deep-fat fried foods. Trends Food Sci. Technol. 2003, 14, 364–373. [Google Scholar] [CrossRef]
- Lenaerts, S.; van der Borght, M.; Callens, A.; Campenhout, L.V. Suitability of microwave drying for mealworms (Tenebrio molitor) as alternative to freeze drying: Impact on nutritional quality and colour. Food Chem. 2018, 254, 129–136. [Google Scholar] [CrossRef]
- Zhang, H.; Xiong, Y.; Bakry, A.M.; Xiong, S.; Yin, T.; Zhang, B. Effect of yeast β-glucan on gel properties, spatial structure and sensory characteristics of silver carp surimi. Food Hydrocoll. 2019, 88, 256–264. [Google Scholar] [CrossRef]
- Debusca, A.; Tahergorabi, R.; Beamer, S.K.; Matak, K.E.; Jaczynski, J. Physicochemical properties of surimi gels fortified with dietary fiber. Food Chem. 2014, 148, 70–76. [Google Scholar] [CrossRef]
- Zhuang, X.; Han, M.; Bai, Y.; Liu, Y.; Xing, L.; Xu, X.; Zhou, G. Insight into the mechanism of myofibrillar protein gel improved by insoluble dietary fiber. Food Hydrocoll. 2018, 74, 219–226. [Google Scholar] [CrossRef]
- Shi, S.; Xu, X.W.; Feng, J.; Ren, Y.M.; Bai, X.; Xia, X.F. Preparation of NH3- and H2S- sensitive intelligent pH indicator film from sodium alginate/black soybean seed coat anthocyanins and its use in monitoring meat freshness. Food Packag. Shelf Life 2023, 35, 100994. [Google Scholar] [CrossRef]
- Ali, S.; Zhang, W.; Rajput, N.; Khan, M.A.; Li, C.; Zhou, G. Effect of multiple freeze-thaw cycles on the quality of chicken breast meat. Food Chem. 2015, 173, 808–814. [Google Scholar] [CrossRef]
- Choi, Y.S.; Choi, J.H.; Han, D.J.; Kim, H.Y.; Lee, M.A.; Kim, H.W.; Jeong, J.Y.; Kim, C.J. Effects of rice bran fiber on heat-induced gel prepared with pork salt-soluble meat proteins in model system. Meat Sci. 2011, 88, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Guedes-Oliveira, J.M.; Salgado, R.L.; Costa-Lima, B.R.C.; Guedes-Oliveira, J.; Conte-JuniorMudgil, C.A. Washed cashew apple fiber (Anacardium occidentale L.) as fat replacer in chicken patties. LWT Food Sci. Technol. 2016, 71, 268–273. [Google Scholar] [CrossRef]
- Choi, Y.-S.; Kim, H.-W.; Hwang, K.-E.; Song, D.-H.; Jeong, T.-J.; Kim, Y.-B.; Jeon, K.-H.; Kim, C.-J. Effect of dietary fiber extracted from Algelica keiskei Koidz on the quality characteristics of chicken patties. Korean J. Food Sci. An. 2015, 35, 307–314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mudgil, D.; Barak, S. Composition, properties and health benefits of indigestible carbohydrate polymers as dietary fiber: A review. J. Biol. Macromol. 2013, 61, 1–6. [Google Scholar] [CrossRef] [PubMed]
PDF (%) | T2 (ms) | P2 (%) | ||||
---|---|---|---|---|---|---|
T2b | T21 | T22 | P2b | P21 | P22 | |
0.0 | 0.69 ± 0.02 | 42.5 ± 1.7 a | 349 ± 14 a | 2.08 ± 0.38 | 91.2 ± 0.3 d | 6.76 ± 0.49 a |
1.0 | 0.79 ± 0.07 | 37.9 ± 1.5 b | 318 ± 13 b | 2.17 ± 0.22 | 92.3 ± 0.6 c | 5.54 ± 0.57 b |
2.0 | 0.78 ± 0.06 | 35.3 ± 1.4 b | 318 ± 13 b | 2.26 ± 0.21 | 93.5 ± 0.5 b | 4.23 ± 0.50 c |
3.0 | 0.72 ± 0.04 | 30.1 ± 1.2 c | 297 ± 12 b | 2.41 ± 0.01 | 94.7 ± 0.2 a | 2.91 ± 0.22 d |
4.0 | 0.80 ± 0.06 | 28.7 ± 1.1 c | 258 ± 10 c | 2.41 ± 0.10 | 91.0 ± 1.0 d | 6.55 ± 0.87 ab |
PDF (%) | L* | a* | b* | ∆E |
---|---|---|---|---|
0.0 | 58.3 ± 0.7 d | 14.8 ± 0.5 c | 38.4 ± 0.7 a | - |
1.0 | 58.9 ± 0.4 c | 15.4 ± 0.5 b | 37.6 ± 0.5 b | 1.38 ± 0.38 c |
2.0 | 59.8 ± 0.6 b | 15.7 ± 0.4 ab | 36.0 ± 0.6 c | 3.07 ± 0.54 b |
3.0 | 61.2 ± 0.4 a | 15.9 ± 0.6 a | 35.9 ± 1.2 c | 4.11 ± 1.06 a |
4.0 | 61.6 ± 0.5 a | 14.1 ± 0.4 d | 35.1 ± 0.2 d | 4.71 ± 0.37 a |
PDF (%) | Texture Properties | |||||
---|---|---|---|---|---|---|
Hardness (g) | Springiness (%) | Cohesiveness (%) | Gumminess (g) | Chewiness (g.s) | Resilience (%) | |
0.0 | 1636 ± 34 c | 0.38 ± 0.03 b | 0.45 ± 0.03 b | 736 ± 66 c | 283 ± 46 c | 0.18 ± 0.02 |
1.0 | 1805 ± 159 c | 0.42 ± 0.01 ab | 0.47 ± 0.02 b | 842 ± 88 c | 350 ± 37 b | 0.18 ± 0.01 |
2.0 | 2085 ± 142 b | 0.42 ± 0.01 a | 0.51 ± 0.02 a | 1052 ± 25 b | 470 ± 22 a | 0.19 ± 0.01 |
3.0 | 2441 ± 93 a | 0.42 ± 0.01 a | 0.48 ± 0.01 ab | 1176 ± 29 a | 494 ± 24 a | 0.19 ± 0.01 |
4.0 | 2421 ± 165 a | 0.41 ± 0.01 ab | 0.46 ± 0.01 b | 1118 ± 73 ab | 455 ± 41 a | 0.18 ± 0.01 |
PDF (%) | Thermal Properties | |||||
---|---|---|---|---|---|---|
Tmax1 (°C) | Tmax2 (°C) | Tmax3 (°C) | ΔH1 (J/g) | ΔH2 (J/g) | ΔH3 (J/g) | |
0.0 | 55.6 ± 0.3 a | 64.3 ± 0.1 | 74.3 ± 0.2 a | 0.503 ± 0.011 | 0.291 ± 0.018 | 0.477 ± 0.005 |
1.0 | 55.5 ± 0.3 ab | 64.0 ± 0.4 | 74.3 ± 0.2 a | 0.498 ± 0.013 | 0.289 ± 0.015 | 0.480 ± 0.005 |
2.0 | 55.4 ± 0.3 ab | 64.0 ± 0.2 | 73.6 ± 0.4 b | 0.491 ± 0.012 | 0.286 ± 0.011 | 0.475 ± 0.012 |
3.0 | 55.4 ± 0.4 ab | 63.8 ± 0.4 | 74.2 ± 0.3 ab | 0.487 ± 0.009 | 0.281 ± 0.016 | 0.474 ± 0.005 |
4.0 | 54.9 ± 0.3 b | 64.0 ± 0.1 | 73.6 ± 0.5 b | 0.488 ± 0.008 | 0.280 ± 0.012 | 0.467 ± 0.011 |
PDF (%) | Color | Flavor | Juiciness | Texture | Overall Acceptability |
---|---|---|---|---|---|
0.0 | 5.43 ± 0.52 | 5.33 ± 0.76 a | 5.06 ± 0.54 ab | 5.27 ± 0.38 ab | 5.75 ± 0.72 a |
1.0 | 5.36 ± 0.78 | 5.38 ± 0.66 a | 5.22 ± 0.56 ab | 5.37 ± 0.40 ab | 5.51 ± 0.48 a |
2.0 | 5.31 ± 0.74 | 5.18 ± 0.79 ab | 5.43 ± 0.62 a | 5.53 ± 0.59 a | 5.62 ± 0.64 a |
3.0 | 5.60 ± 0.46 | 5.11 ± 0.61 ab | 5.50 ± 0.44 a | 4.99 ± 0.22 bc | 5.39 ± 0.32 ab |
4.0 | 5.31 ± 0.51 | 4.55 ± 0.50 b | 4.80 ± 0.58 b | 4.73 ± 0.79 c | 4.94 ± 0.57 b |
PDF (%) | Moisture (%) | Fat (%) | Protein (%) | Ash (%) | Carbohydrates (%) | Energy Value (kal/100 g) |
---|---|---|---|---|---|---|
0.0 | 60.8 ± 0.3 c | 16.7 ± 0.8 a | 17.2 ± 0.5 | 2.59 ± 0.06 b | 2.74 ± 0.54 b | 230 ± 3 a |
1.0 | 61.5 ± 0.5 bc | 15.8 ± 0.4 ab | 16.1 ± 0.4 | 2.84 ± 0.10 a | 3.73 ± 0.40 ab | 221 ± 3 b |
2.0 | 62.6 ± 0.2 ab | 14.9 ± 0.8 bc | 15.8 ± 0.7 | 2.83 ± 0.01 a | 3.87 ± 0.56 ab | 212 ± 5 c |
3.0 | 62.9 ± 1.5 a | 14.6 ± 0.3 c | 15.9 ± 1.2 | 2.81 ± 0.04 a | 3.69 ± 0.16 ab | 210 ± 7 c |
4.0 | 63.2 ± 0.1 a | 13.9 ± 0.4 c | 15.6 ± 1.5 | 2.63 ± 0.05 b | 4.64 ± 1.18 a | 206 ± 1 c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, J.; Kong, B.; Sun, F.; Xia, X. Effect of Potato Dietary Fiber on the Quality, Microstructure, and Thermal Stability of Chicken Patty. Foods 2022, 11, 3978. https://doi.org/10.3390/foods11243978
Feng J, Kong B, Sun F, Xia X. Effect of Potato Dietary Fiber on the Quality, Microstructure, and Thermal Stability of Chicken Patty. Foods. 2022; 11(24):3978. https://doi.org/10.3390/foods11243978
Chicago/Turabian StyleFeng, Jia, Baohua Kong, Fangda Sun, and Xiufang Xia. 2022. "Effect of Potato Dietary Fiber on the Quality, Microstructure, and Thermal Stability of Chicken Patty" Foods 11, no. 24: 3978. https://doi.org/10.3390/foods11243978
APA StyleFeng, J., Kong, B., Sun, F., & Xia, X. (2022). Effect of Potato Dietary Fiber on the Quality, Microstructure, and Thermal Stability of Chicken Patty. Foods, 11(24), 3978. https://doi.org/10.3390/foods11243978