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Abstract: This study aims to develop a high-speed and nondestructive mildewed rice grain detec-
tion method. First, a set of microscopic images of rice grains contaminated by Aspergillus niger,
Penicillium citrinum, and Aspergillus cinerea are acquired to serve as samples, and the mildewed
regions are marked. Then, three YOLO-v5 models for identifying regions of rice grain with con-
tamination of Aspergillus niger, Penicillium citrinum, and Aspergillus cinerea in microscopic images
are established. Finally, the relationship between the proportion of mildewed regions and the total
number of colonies is analyzed. The results show that the proposed YOLO-v5 models achieve ac-
curacy levels of 89.26%, 91.15%, and 90.19% when detecting mildewed regions with contamination
of Aspergillus niger, Penicillium citrinum, and Aspergillus cinerea in the microscopic images of the
verification set. The proportion of the mildewed region area of rice grain with contamination of
Aspergillus niger/Penicillium citrinum/Aspergillus cinerea is logarithmically correlated with the loga-
rithm of the total number of colonies (TVC). The corresponding determination coefficients are 0.7466,
0.7587, and 0.8148, respectively. This study provides a reference for future research on high-speed
mildewed rice grain detection methods based on MCV technology.

Keywords: computer vision; microscopic image; convolutional neural network; mildewed rice grain;
rapid detection

1. Introduction

During rice grain storage, the changes in the local temperature and moisture in grain
piles can easily lead to the proliferation of molds of the Aspergillus and Penicillium genera
on the grain surface. The mildewed rice grains have low nutritional value and may contain
mycotoxin [1], which causes serious food safety problems when such problematic rice
products are sold to consumers. Therefore, performing mildew detection on rice grains at
different stages, i.e., from harvesting to retailing, is an important measure to ensure the
nutrition and safety of rice grains and related food products. At present, the microbial
indexes of rice grains are usually determined using the microbial culture method. However,
the traditional microbial culture method is costly and time-consuming and therefore cannot
meet the requirements of on-the-spot detection at the places of grain purchase/selling.
So, a rapid and non-destructive method for evaluating microbial indicators of rice grain
is needed.

Spectroscopic and image-based methods have the advantages of low cost, no pre-
processing and high speed, and have a high application value in grain quality evaluation.

In the research works regarding the utilization of spectrum and hyper spectrum,
Singh et al. (2012) developed a method for detecting fungal infection of wheat ears based
on the hyperspectral imaging technology (near-infrared band) [2]; Zhang et al. (2014) ac-
quired the near-infrared spectrum of rice grains contaminated by molds by using a Fourier
near-infrared analyzer and established an aflatoxin prediction model [3]; Siripatrawan et al.
(2015) devised a method for monitoring the growth of rice molds based on hyperspectral
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imaging technology [4]; Jayme et al. (2017) developed a method for detecting deoxyni-
valenol in wheat grains based on hyperspectral imaging technology (wavelength ranging
from 528–1785 nm) [5]; Shen et al. (2016, 2018) devised a method for detecting rice mildew
caused by brown rice aflatoxin B1 and four mold species based on the analysis of near-
infrared spectrum [6,7]. Chu et al. (2022) used near-infrared hyperspectral images to
identify mildewed corn grains by combining principal component analysis, a continuous
projection algorithm and a support vector machine model. The recognition accuracy was
close to 100% [8]. In the research works regarding the utilization of computer vision,
Wang et al. (2018) developed a method for detecting five mold species on the culture
medium based on the computer vision technology [9]; Sun et al. (2016) used the computer
vision method and a deep learning model of LeNet5 to detect the contamination of five
mold species on rice grains, achieving an accuracy level higher than 90% for all five mold
species [10].

Payman et al. (2018) developed an expert system to detect the size, breakage and
crack of rice, achieving an accuracy of 96%. In this system, a scanner was used to capture
the images of rice and a traditional image processing method was used to extract the
features from the images [11]. Chen et al. (2019) used computer vision combined with
a support vector machine model to evaluate the breakage and chalkiness of red indica
rice, and the accuracy was more than 93% [12]. Shamin et al. (2020) used computer vision
combined with a five-layer convolutional neural network (CNN) to classify rice varieties,
and the accuracy increased by at least 25% compared with conventional machine learning
models [13]. Jeyaraj et al. (2022) developed a real-time scanning system to identify rice
varieties. AlexNet was used to classify the images of different varieties of rice, and the
classification accuracy was above 98% [14].

Among the quality detection methods of grain described above, the phenotyping of
grain, such as size, breakage, and variety of samples, can be accurately detected using
computer vision. However, mildew detection in grain has low sensitivity when using
traditional spectroscopic and image-based methods. For a mildly mildewed rice grain
with a total number of colonies (TVC) of 105–106 CFU/g [15], it is difficult to be identified
using spectroscopic and image-based methods which identify samples according to the
macrophysical and chemical characteristics [10,16]. So, we consider using the microscopic
computer technology (MCV), which can capture the microscopic details of samples, to
solve this problem.

Microscopic computer vision is a technology that is used to analyze and recognize
the features of images acquired by microscopic cameras [17,18]. As compared with the
common computer vision technology used to process the macroscopic images, MCV tech-
nology is more suitable for identifying the image features associated with the growth of
microbacterial colonies on the surface of rice grains. In addition, the latter method achieves
higher mildew detection sensitivity and improves the accuracy of detecting samples with
mild mildew. However, as the microscopic images contain more information and are more
complex than the common images, it is difficult to extract the features from the microscopic
images using conventional image processing techniques, such as threshold segmentation
and feature parameter extraction. Therefore, microscopic images captured using MCV
should be recognized by advanced image recognition methods.

The innovation of image pattern recognition methods promotes the development
of computer vision technology [19,20]. The development of image pattern recognition
technology has undergone a transformation from conventional machine learning methods
to CNN methods [19]. Compared with conventional machine learning models, CNN
models automatically extract the image features from the samples and then classify the
features for performing accurate recognition. Due to the depth of CNN models, they have
strong feature recognition abilities in processing complex images [21,22]. Because the
mildewed regions on rice grains are relatively small, it is difficult to identify the mildewed
rice grain according to the overall information of the image. So, the mildewed regions
on rice grain should be segmented out, and then the mildewed rice grain can be detected
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with the information of the mildewed regions. Therefore, the basic task is mildewed
region segmentation. Due to the complexity of the microscopic image of a rice grain,
conventional threshold segmentation methods cannot obtain a good segmentation result,
while some of the CNN models, such as region-based CNN (R-CNN), Faster R-CNN, Mask
R-CNN, and YOLO (You Look Only Once), can be used to recognize and segment the
interested objects in the image [23]. Among these CNN models, YOLO is a deep learning
algorithm for fast target detection. It detects, classifies, and locates targets in an image
in one go [24]. As compared with R-CNN models, YOLO greatly improves the detection
speed while maintaining sufficient accuracy. Consequently, it has been used in various
applications, such as vehicle recognition, pedestrian counting, face recognition, and grain
recognition [25–28].

In summary, microscopic computer vision can capture the microscopic image of rice
grain, and the YOLO model can be used to identify the small colonies in the microscopic
image of rice grain. However, there is much interference information in the microscopic
image, including the hull edge, glume protection, and fluff. Therefore, in order to detect
mildewed rice grain using the MCV and YOLO models, there are two questions that need
to be studied. (1) Whether the YOLO model can identify the mildew regions without
interference from other information. (2) Whether the mildew degree of rice grain can be
characterized by the mildewed regions identified from the microscopic image.

In order to solve these questions, in this study, a set of microscopic images of single
rice grains with different mildew degrees caused by Aspergillus niger, Penicillium citrinum,
and Aspergillus glaucus are chosen as the samples, and the regions of bacterial colonies are
marked manually. Then, YOLO-v5 models for recognizing bacterial colonies in microscopic
images are established and verified. After that, these models are used to estimate the
proportion of mildewed regions on the surface of a rice grain (MAI) and analyze the
relationship between the MAI value and the TVC value of each rice grain. Finally, a
mildewed rice grain detection method based on the MCV and YOLO-v5 models is obtained.

2. Methods
2.1. Simulated Storage of Rice after Inoculation

A. niger, P. citrinum, and A. glaucus are dominant strains that infect rice grains during
storage. Among them, A. niger and P. citrinum produce ochratoxin and penicillin, which
are very toxic, while Aspergillus aeruginosa can grow in a relatively dry environment. A.
aeruginosa is the precursor strain in the process of the dominant strains during storage,
replacing the dominant strains in the field [29,30]. In this study, we chose the above three
mold strains to perform the experiments. The three mold strains were purchased from
Beina Biotechnology (Zhengzhou, China).

The procedures for mold inoculation and simulated storage are as follows:

(1) Select a certain number of clean and mildew-free rice grains (indica rice, purchased
from Huainan, Anhui Province, China). Put the sample grains into an oven and bake
them at 80 ◦C for 4 h to kill the original field molds attached to the rice grains. Put
the dried sample grains into a set of 90-mm round petri dishes (15 g grains for each
petri dish).

(2) Inoculate the three mold strains into the potato glucose agar (PDA) medium separately
and activate them at 28 ◦C for 3 days. Elute the activated colonies with sterile distilled
water to prepare spore suspension samples, measure the spore concentrations in the
spore suspension samples using the plate counting method, and dilute the spore
suspension samples of three molds to 1.5 × 104 CFU/mL.

(3) Take 30 petri dishes containing 15 g of rice grains. Inoculate 1.5 mL of spore suspension
to the sample grains in each petri dish (each kind of spore suspension will inoculate
10 Petri dishes). Add 1 mL of sterile water into each petri dish and shake the Petri
dish to allow the grains to fully absorb the water. After inoculation, the moisture
content of the rice grains will be greater than 20%, thus creating a suitable condition
for simulating accelerated mold growth in rice grains in a highly humid environment.
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Then, place the inoculated sample grains in a constant temperature and humidity
incubator and simulate rice storage under the conditions of 28 ◦C and 90% relative
humidity. Take out five grain samples randomly from each petri dish every day to test
the degree of mildew. The simulated storage will last 13 days until the grains reach a
high mildew degree. During the course of the simulated storage, 1950 sample rice
grains with different contamination levels of A. niger, P. citrinum, and A. cinerea are
obtained (650 samples for each mold strain).

2.2. Acquisition of Rice Grain Microscopic Image

In order to acquire microscopic images of rice grains, we set up an MCV image
acquisition system, as shown in Figure 1.
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Figure 1. The MCV image acquisition system.

The system is composed of an HD industrial camera, microscope lens, LED ring light
source, sample table, bracket, base, object distance adjustment screw rod, and sample
table translation screw rod. The HD industrial camera is a Dahua A7A20MU30 color area
array industrial camera (Huaray Technology Inc., Hangzhou, China) with a 1.2-inch target
surface and a resolution of 4096 × 3000 pixels. The microscope lens is a Lapson high-power
lens, which supports 9X optical amplification. The LED ring light source has a power of
10 W and a color temperature of 6500 K. In addition, its light divergence is uniform, and it
will not produce a shadow when irradiating the sample grains. The sample table is square,
on which petri dishes of different sizes can be placed and fixed. The light source is fixed at
the position of 20 mm on the sample table. The height of the microscope lens and industrial
camera can be adjusted based on the object distance by using the screw rod controlled
by the computer, thus enabling automatic focusing during shooting. Two-dimensional
translational movement of the sample table is realized through the action of the translation
screw rod controlled by the computer.

The procedure for acquiring microscopic images of rice grains is as follows. First, turn
on the ring light source. Then, place a single rice grain on the sample table and adjust the
position of the sample table until the rice grain is at the center of the camera’s field of vision.
Start the automatic adjustment of the object distance to obtain a clear image and acquire the
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microscopic image of the rice grain. Turn the rice grain over along its central axis and adjust
the position of the sample table and the object distance to obtain a clear picture before
acquiring the image of the second side of the rice grain. Thus, two microscopic images
are acquired for each rice grain (as shown in Figure 2). The image acquisition parameters
include an exposure time of 20 ms, a gain of 1 dB, and automatic white balance. The size
of the captured images is 4096 × 3000 pixels, and the spatial resolution of a single pixel is
about 0.01 mm. The above parameter settings ensure that a whole rice grain is contained in
a single image and all the details can be captured clearly.
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Figure 2. Microscopic images of a rice grain (two sides of the same rice grain).

2.3. Pre-Process of Microscopic Images of Rice Grains

Each rice grain image contains a large portion of background, and the orientation of
the grain placed on the sample table is not fixed (see Figure 2). These factors create some
difficulties for the subsequent analysis. Therefore, it is necessary to perform preprocessing
on the acquired microscopic images of rice grains. The preprocessing is performed using
MATLAB 2014b (Mathworks Inc., Natick, MA, USA). The steps are as follows: (1) the
color space of the original image (Figure 3A) is converted to the lab mode. There is a
large difference between the gray-scale values of rice grain and the background in the B-
component. Therefore, the B-component gray image (Figure 3B) is extracted for segmenting
the rice grain region. Then, the B-component gray image is segmented using the automatic
bimodal threshold segmentation method to obtain the binary image of the grain area
(Figure 3C). (2) The background of the original image is removed by using the binary image
of the grain area as the template. Then, the minimum circumscribed rectangle of the grain in
the binary image is calculated, and the angle between the long side of the rectangle and the
horizontal direction is calculated. (3) The area within the minimum circumscribed rectangle
of the grain is cropped from the original image and is then rotated in the horizontal direction
(Figure 3E). Finally, the cropped grain image is placed at the center of a black image of size
3000 × 1000 pixels to obtain the preprocessed image (Figure 3F). After preprocessing, the
size of the microscopic image is reduced from 4096 × 3000 pixels to 3000 × 1000 pixels.
Finally, all the microscopic images of rice grains are the same size, and the grains in the
images have the same orientation.
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2.4. Image Marking

The YOLO model is a deep learning method that learns in a supervised manner. It
requires manual marking of the mildewed regions in the rice images. As shown in Figure 4,
the mildewed regions in all microscopic images are marked using the LabelImg 1.8.6
(Tzutalin, Vancouver, BS, Canada) image marking tool developed using Python. In this
study, single category marking is used to mark the mildewed regions without grading
the degree of mildew at each mildewed region. In order to obtain more data and more
accurate mildewed regions, it is necessary to draw the marking box as close to the outline
of the mildewed region as possible, and the size of the bounding boxes does not exceed
200 × 200 pixels.
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2.5. Model Establishment

The fifth generation of the YOLO model (YOLO-v5) is used to establish the model
for identifying the mildewed regions on the surface of rice grains. The model architecture
is shown in Figure 5. The function of the backbone is to extract features from the image,
the function of the neck is to aggregate the image features, and the function of the head
is to calculate the model output according to the aggregated image features produced by
the neck. The software platform used to establish the model includes Pycharm 2021.3.1
(JetBrains, Prague, Czech Republic). The toolbox used in experiments includes YOLOv5-
master, the YOLO-v5 official toolbox based on PyTorch’s deep learning library. The graphics
card is an Nvidia RTX 2060 with 6 GB of video memory.
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In this study, the three YOLO-v5 models for identifying mildewed regions in the
microscopic images of rice grains contaminated by A. niger, P. citrinum, and A. cinerea are
established in the following way. 1050 rice grain samples are taken from the prepared
rice grains contaminated with A. niger, P. citrinum, and A. cinerea (350 samples for each
mold strain). The microscopic images of the samples are acquired (700 images for each
mold strain), and the mildewed regions are marked. In the end, 70,497, 62,355, and
50,689 mildewed regions are marked in the microscopic images of rice grains contaminated
by A. niger, P. citrinum, and A. cinerea, respectively. The microscopic images of rice grains
contaminated by the three mold strains are randomly divided into a training set and a
verification set according to the ratio of 6:4 for establishing the models for recognizing
mildewed regions of rice grains contaminated by the three mold strains. In order to improve
the training speed and reduce memory occupation, we chose the YOLO-v5 s model (a
simplified YOLO-v5 model), which has a relatively small number of layers and small
number of nodes, for establishing the mildewed region recognition model. The learning
rate is set to 0.01. Mosaic enhancement (mosaic), image right-left flipping (Fliplr), and
image up-down flipping (Flipud) strategies are used for image data enhancement. The
classification model of the COCO dataset is used as the pre-trained model. As many marked
mildewed regions are tiny mildew spots (about 20 × 20 pixels), it is difficult for the model
to detect such tiny mildew spots if the input resolution of the image is too low. Therefore,
the input image size is set to 1280 × 448 pixels. The batch size is set to 4 so as to save the
video memory, and the number of training epochs is set to 100 during the training process.
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In order to reduce the chance of the model misjudging the background and improve the
degree of fit between the model output boundary box and the mildewed region, we set
both the confidence threshold and intersection-over-union threshold of the model to 0.3.
After training is completed, the best model is selected according to the variation in box loss
during the training. The method for calculating box loss is shown in Equation (1):

Box loss = 1− A ∩ B
A ∪ B

(1)

where A∩ B is the number of pixels in the intersection area of the model-predicted boundary
box and the manually marked box, and A ∪ B is the number of pixels in the union area of
model-predicted boundary box and the manually marked box.

Then, the confusion matrix of the recognition results yielded by the model in detecting
mildewed regions in the image of rice grains contaminated by molds was calculated to
evaluate the accuracy of the model’s detection. Finally, the feature images output by the
three C3 modules (marked with red boxes in Figure 5) in the second, fourth, and sixth
stages of the backbone part of the model were collected to analyze the effectiveness of the
model in extracting the features of mildewed regions of rice grains.

2.6. Analysis of the Relationship between MAI and TVC of Rice Grain

Nine hundred rice grain samples were taken from the rice grains contaminated by A.
niger, P. citrinum, and A. cinerea (300 samples for each mold strain), and the microscopic
images of these samples were acquired. After the microscopic images were preprocessed,
the proposed model was used to identify the mildewed regions in the images. After the
mildewed regions were identified, the MAI value of each rice grain was calculated. The
calculation method is shown in Equation (2):

MAI =
1
2

(
MA

SA
+

MB

SB

)
(2)

where, MAI is the proportion of mildewed regions. Let the two sides of each rice grain
be called side A and side B, then MA is the total area of mildewed regions identified in
the microscopic image of side A of the rice grain, MB is the total area of mildewed regions
identified in the microscopic image of side B of the rice grain, SA is the total area of side A
of the rice grain in the microscopic image, and SB is the total area of side B of the rice grain
in the microscopic image.

After the microscopic images of the sample rice grains were acquired, the TVC of
each rice grain was obtained using the colony plate counting method in the following
way. First, weigh the mass of the rice grain, and then put it in the test tube. Add 10 mL of
sterile, distilled water into the test tube. Then, put the test tube into a shaking table and
let the shaking table work for 1 h at a speed of 150 R/min so as to fully elute the mold
spores on the grain surface. After the operation of the shaking table is over, dilute the
resulting bacterial suspension 10 times, 100 times, and 1000 times to obtain three suspension
samples of different dilution ratios. Inoculate the original bacterial suspension and the
bacterial suspensions of different dilution ratios separately into the PDA medium added
with chloramphenicol. For each dilution ratio, two petri dishes are provided for inoculation,
and 0.5 mL of bacterial suspension is inoculated in each Petri dish. After inoculation in
each Petri dish is completed, shake the petri dish to ensure full mixing, and put the petri
dish into the constant temperature and humidity incubator for cultivation at 28 ◦C for 48 h.
After that, take out the petri dish and calculate the TVC value of the rice grain and perform
regression analysis on the TVC and MAI values.
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3. Results
3.1. Variation of Box Loss during Model Training

It can be seen from Figure 6 that during the process of establishing the three mildewed
region recognition models, the variation of box loss is consistent. At the initial stage of
training, the box losses of the training set and the prediction set decrease rapidly. After
30 epochs, the box loss of the verification set tends to be stable, while the box loss of the
training set continues to decline, indicating that the model has started to over-fit. Therefore,
the best identification model can be obtained after about 30 training epochs, and the box
loss is around 0.08. After 30 epochs, an excessive number of training epochs will lead to
over-fitting of the model.
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3.2. Accuracy of Mildewed Region Detection Model

Table 1 shows the confusion matrices of the recognition results yielded by the three
YOLO-v5 models in detecting mildewed regions in the microscopic images of rice grains
contaminated by the corresponding mold strains. For the training and verification sets of
the microscopic images of rice grains contaminated by A. niger, the recognition accuracies
of mildewed regions (the number of correctly identified pixels in the marked mildewed
regions/total number of pixels in the marked mildewed regions) are 90.23% and 89.26%,
respectively. For the training and verification sets of the microscopic images of rice grains
contaminated by P. citrinum, the recognition accuracies of mildewed regions are 91.45% and
91.15%, respectively. For the training and verification sets of the microscopic images of rice
grains contaminated by A. cinerea, the recognition accuracies of mildewed regions are 91.16%
and 90.19%, respectively. For the training and verification sets of the microscopic images
of rice grains contaminated by A. niger, the recognition accuracies of the background area
(the number of correctly identified pixels in the background area/total number of pixels in
the background area) are 96.10% and 95.72%, respectively. For the training and verification
sets of the microscopic images of rice grains contaminated by P. citrinum, the recognition
accuracies of background area are 94.16% and 93.96%, respectively. For the training and
verification sets of the microscopic images of rice grains contaminated by A. cinerea, the
recognition accuracies of the background area are 91.20% and 91.93%, respectively. Figure 7
shows the microscopic images of two groups of rice grains contaminated by molds before
and after model recognition. The grains of one group have mild mildew (TVC is in
the range of 105–106 CFU/g), and the grains of the other group have severe mildew
(TVC > 106 CFU/g). It can be seen from the figure that the mildewed region in the image
can be effectively recognized by the model without being affected by other information in
the image. Moreover, the recognition speed of YOLO-v5 models is very fast. After timing,
the recognition time of one single image is about 0.04 s.
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Table 1. Confusion matrix of the mildewed region detection model for rice grains contaminated by
three kinds of mold.

Mildewed Region
(×103 Pixels)

Normal Region
(×103 Pixels) Accuracy Overall Accuracy

A. niger
Training set Mildewed region 40,886 4426 90.23%

95.44%Background area 13,805 340,526 96.10%

Verification set
Mildewed region 29,599 3562 89.26%

94.93%Background area 10,195 228,245 95.72%

P. citrinum
Training set Mildewed region 64,657 6015 91.45%

93.73%Background area 21,477 346,273 94.16%

Verification set
Mildewed region 49,429 4801 91.15%

93.76%Background area 15,015 233,549 93.96%

A. cinerea
Training set Mildewed region 62,591 6071 91.16%

91.19%Background area 19,252 199,554 91.20%

Verification set
Mildewed region 40,747 4431 90.19%

91.52%Background area 11,556 131,715 91.93%
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images of rice grains contaminated by three mold strains.

3.3. Analysis of Feature Images in the Middle Layer of the Model

As shown in Figures 5 and 8, the feature images of the C3 module in stage 2 of the
model are obtained by convolution and feature extraction and fusion (performed on the
original images). There are 64 feature images (the first four images are shown in Figure 8),
with a resolution of 320 × 80 pixels. The feature images of the C3 module in stage 4 are
obtained by convolution (performed on the feature images of the C3 module in stage 2)
and feature extraction and fusion. There are 128 feature images (eight images are shown in
Figure 8), with a resolution of 160× 40 pixels. The feature images of the C3 module in stage
6 are obtained by convolution (performed on the feature images of the C3 module in stage
4) and feature extraction and fusion. There are 256 feature images (16 images are shown in
Figure 8), with a resolution of 80 × 20 pixels. The feature images of the deeper network
modules have very low resolution and poor readability, so they are not shown here.
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(B) P. citrinum; (C) A. cinerea. Feature images of C3, in which the mildewed region is well extracted,
are highlighted by red boxes.

The feature images of the C3 module in stage 2 indicate that the whole rice grain, grain
edge, high-frequency information of the grain, and information on mildewed regions can
be obtained after the model executes the C3 module in stage 2. However, the information
about mildewed regions cannot be extracted separately and completely. The feature images
of the C3 module in stage 4 indicate that more information about mildewed regions can
be extracted after the model executes the C3 module in stage 4, and there is significantly
less interference information. The feature images of the C3 module in stage 6 indicate
that the interference during the process of mildew information extraction diminishes after
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the model executes the C3 module in stage 6. For some images, the extracted features of
mildewed regions already fit very well with the final recognition results. In summary, after
the execution of the C3 module in stage 6, the features of the mildewed regions in the rice
grain image are obtained.

3.4. Analysis of Relationship between TVC and MAI of Rice Grain

Figure 9 shows the relationship between TVC and MAI of rice grains contaminated
by A. niger, P. citrinum, and A. cinerea. The MAI of rice grains contaminated by A. niger, P.
citrinum, and A. cinerea is logarithmically correlated with the logarithm of the TVC of the
grains. The corresponding determination coefficients of the regression model are 0.7466,
0.7587, and 0.8148, respectively. Specifically, 110 grains among 121 rice grains with an
extremely low level (TVC < 105 CFU/g) of A. niger contamination have MAI values lower
than 0.03 (90.9%), and 90 grains among the 93 rice grains with a mild (105 ≤ TVC < 106

CFU/g) A. niger contamination have MAI values greater than 0.03 (96.8%). Similarly, 96
grains among the 99 rice grains with an extremely low level of P. citrinum contamination
have MAI values lower than 0.02 (96.9%), and 31 grains among the 33 rice grains with
mild P. citrinum contamination have MAI values greater than 0.02 (93.9%). Lastly, 70 grains
among the 75 rice grains with an extremely low level of A. cinerea contamination have MAI
values lower than 0.015 (93.3%), and 31 grains among the 36 rice grains with mild A. cinerea
contamination have MAI values greater than 0.015 (86.1%). It can be seen that there is a
clear threshold value that distinguishes the MAI values of the rice grains with an extremely
low mildew degree from those of the rice grains with a mild mildew degree. However, the
threshold value changes with the change in the mold species. On the contrary, there is no
clear threshold value to distinguish the MAI values of the rice grains with a high mildew
degree (TVC > 106 CFU/g) from those of the rice grains with a mild mildew degree. There
is only a weak correlation between the logarithm of the TVC value of the rice grains with
high mildew degree and the MAI values of those grains.
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4. Discussion

Until now, not much research has been conducted to explore the methods for testing
the quality of grain-based food products based on the MCV technology. Bhupendra et al.
(2022) acquired some images of various rice grains using a camera with 4.5× optical
magnification lens and established a model for grading rice grain impairments [31]. In this
study, a camera with 2× optical magnification lens was used for image acquisition. For
digital microscopic images, the resolution of the camera used to acquire images also has
a great impact on the spatial resolution of the final image. The resolution of the camera
used in this study is 4096 × 3000, and the spatial resolution is 0.01 mm/pixel when the
object is a single rice grain. Such resolution meets the requirements of image recognition. If
the magnification continues to increase, the field of view of each image is reduced, which
seriously affects the practicability of this method.

In most studies in which the YOLO is used to establish the target recognition model,
the researchers consider the box loss and object loss of the model as well as the recall
rate and average precision calculated from the former two indicators when evaluating
the accuracy of the model [25,32]. In this study, the YOLO-v5 model is trained based on
reducing the box loss without considering the object loss of the model. This is because
mildewed regions on rice grain images usually have fuzzy and irregular boundaries, and
obvious and isolated colonies are rare. In order to get the bounding box as close to the
outline of the real mildewed region as much as possible in the process of image marking,
we adopt a method that uses multiple small boxes (smaller than 200 × 200 pixels) for
marking due to the infeasibility of using larger marking boxes. As a result, the marking
boxes only contain texture features formed by mildew and lack obvious morphological
features. This means different marking boxes do not represent independent mildewed
regions, thus making it impossible to achieve convergence of object loss during model
training. In contrast, in the study of the defect detection for bulk grain and soybean [33,34],
lower object loss can be obtained using the CNN model because the objects segmented are
intact bean grains, the shape of recognition targets is close to a circle, and the boundary
delineation is clear. With an increase in the number of training epochs, the box loss of
the model continuously decreases, and the degree of coincidence between the mildewed
region resulting from the superposition of the output marker boxes and the manually
marked mildewed region continues to improve. This indicates that the failure of target
loss convergence does not affect the model’s performance in identifying mildewed regions
of rice grains. The role of the YOLO model in this study is similar to image segmen-
tation, i.e., divide the image into mildewed regions and background areas. Therefore,
we use the confusion matrix of the recognition results yielded by the model in detecting
mildewed regions and background areas in rice grain images to evaluate the accuracy of
the model.

As shown by the MAI values of the rice grain samples calculated using the proposed
mildewed region detection model, rice grains with an extremely low level of contamination
of A. niger, P. citrinum, and A. cinerea, and the rice grains with mild contamination of the
three mold strains can be accurately distinguished using MAI. However, the threshold value
of MAI for distinguishing mildew degrees changes with the change in mold strain, which
may be attributed to the differences between mold strains in diffusion ability and visibility
during the process of rice grain mildewing. Some rice grains with mild contamination of
A. cinerea can be easily misjudged as grains with an extremely low mildew degree. This is
because A. cinerea only exhibits itself in the form of tiny, light-colored hyphae in the early
stages of proliferation on the surface of rice grains, making it difficult to detect this mold
using a computer vision system.

Through this study, it was found that the established YOLO convolutional neural
network model can effectively identify the mildewed regions on a single rice grain, and
the proportion of the mildewed regions identified has the potential to discriminate mildly
mildewed rice grains. However, the following studies need to be conducted before this
method can be practically applied to mildewed rice grain detection: (1) this study only built
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the recognition model of the mildewed region of a single rice grain, and the recognition
model of grouped rice sample needs to be established by transfer learning in the future;
(2) this study only used three kinds of mold, but rice grains can be contaminated by other
mold or multiple kinds of mold. Thus, more mildewed rice grain samples need to be
collected to establish the recognition models; (3) Compared with conventional computer
vision [10], microscopic image capture will inevitably lead to a reduced field of view for
sample observation, and how to acquire representative microscopic images for grouped
rice grain samples needs further study.

5. Conclusions

In this paper, we developed a YOLO-v5 convolutional neural network model for
identifying mildewed regions in microscopic images of rice grain contaminated with A.
niger, Penicillium oryzae, and Aspergillus griseofulgens and studied the detection effect of
mildewed rice grain based on the CVT and YOLO-v5 models. The following conclusions
are drawn.

(1) YOLO-v5 models for identifying mildewed regions in the microscopic images
of rice grains contaminated by A. niger, P. citrinum, and A. cinerea are established. The
proposed models achieve quite good results in an experiment performed using a set of
prepared rice grain samples. The accuracies of identifying the mildewed regions with
contamination of A. niger, P. citrinum, and A. cinerea in the microscopic images of the
verification set are 89.26%, 91.15%, and 90.19%, respectively. (2) An accurate feature image
of the mildewed region can be obtained after the model executes the C3 module in stage
6. (3) The MAI values of rice grains contaminated by A. niger, P. citrinum, and A. cinerea
are logarithmically correlated with the logarithms of the TVC values of the grains. The
corresponding determination coefficients are 0.7466, 0.7587, and 0.8148, respectively. The
rice grains with an extremely low mildew degree and the grains with a mild mildew degree
can be distinguished using an MAI threshold. The MAI threshold is 0.3 in the case of
A. niger contamination, 0.2 in the case of P. citrinum contamination, and 0.15 in the case of
A. cinerea contamination.

Author Contributions: K.S. analyzed data, wrote the main manuscript text, and prepared all figures
and tables; Y.-J.Z., S.-Y.T. and M.-D.T. conducted the experiments; C.-B.W. designed the experiment.
All authors have read and agreed to the published version of the manuscript.

Funding: This work was financially supported by the Natural Science Foundation of Anhui Province,
China: 2008085QC143 (Project leader: Ke Sun) and Anhui Provincial Key Laboratory of Molecular
Enzymology and Mechanism of Major Diseases (fzmx202011).

Institutional Review Board Statement: No human or animal is used in this study.

Informed Consent Statement: No humans or animals is used in this study.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to the large size of image data, which
make it difficult to upload.

Acknowledgments: The authors acknowledge all of the support received.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Fredlund, E.; Thim, A.M.; Gidlund, A.; Brostedt, S.; Nyberg, M.; Olsen, M. Moulds and mycotoxins in rice from the Swedish retail

market. Food Addit. Contam. 2009, 26, 527–533. [CrossRef] [PubMed]
2. Singh, C.B.; Jayas, D.S.; Paliwal, J.; White, N. Fungal damage detection in wheat using short-wave near-infrared hyperspectral

and digital colour imaging. Int. J. Food Prop. 2012, 15, 11–24. [CrossRef]
3. Zhang, Q.; Liu, C.; Sun, J.; Cui, Y.; Li, Q.; Jia, F.; Zheng, X. Rapid Non-destructive Detection for Molds Colony of Paddy Rice

Based on Near Infrared Spectroscop. J. Northeast Agric. Univ. 2014, 21, 54–60.

http://doi.org/10.1080/02652030802562912
http://www.ncbi.nlm.nih.gov/pubmed/19680928
http://doi.org/10.1080/10942911003687223


Foods 2022, 11, 4031 15 of 16

4. Siripatrawan, U.; Makino, Y. Monitoring fungal growth on brown rice grains using rapid and non-destructive hyperspectral
imaging. Int. J. Food Microbiol. 2015, 199, 93–100. [CrossRef] [PubMed]

5. Barbedo, J.G.A.; Tibola, C.S.; Lima, M.I.P.L. Deoxynivalenol screening in wheat kernels using hyperspectral imaging. Biosyst. Eng.
2017, 155, 24–32. [CrossRef]

6. Shen, F.; Wu, Q.; Tang, P.; Shao, X.; Jiang, D. Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR)
for Rapid Detection of Aflatoxin B1 in Brown Rice. J. Food Sci. 2016, 37, 187–191.

7. Shen, F.; Wei, Y.; Zhang, B.; Shao, X.; Song, W.; Yang, H. Rapid Detection of Harmful Mold Infection in Rice by Near Infrared
Spectroscopy. Spectrosc. Spect. Anal. 2018, 38, 3748–3752.

8. Chu, X.; Wang, W.; Ni, X.; Li, C.; Li, Y. Classifying maize kernels naturally infected by fungi using near-infrared hyperspectral
imaging. Infrared Phys. Technol. 2020, 105, 103242. [CrossRef]

9. Wang, Z.; Sun, K.; Du, L.; Yuan, J.; Tu, K.; Pan, L. Identification and classification of fungal colonies in moldy paddy based on
computer vision. Trans. ASABE 2018, 61, 1497–1504. [CrossRef]

10. Sun, K.; Wang, Z.; Tu, K.; Wang, S.; Pan, L. Recognition of mould colony on unhulled paddy based on computer vision using
conventional machine-learning and deep learning techniques. Sci. Rep. 2016, 6, 37994. [CrossRef]

11. Payman, S.H.; Bakhshipour, A.; Zareiforoush, H. Development of an expert vision-based system for inspecting rice quality indices.
Qual. Assur. Saf. Crops 2018, 10, 103–114. [CrossRef]

12. Chen, S.; Xiong, J.; Guo, W.; Bu, R.; Zheng, Z.; Chen, Y.; Yang, Z.; Lin, R. Colored rice quality inspection system using machine
vision. J. Cereal Sci. 2019, 88, 87–95. [CrossRef]

13. Shamim, M.I.; Pal, B.; Arora, A.S.; Pial, M.A. A deep convolutional neural network approach to rice grain purity analysis. Progress
in Computing Analytics and Networking. In Proceedings of ICCAN 2019: Progress in Computing, Analytics and Networking; Springer:
Singapore, 2020; Volume 1119, pp. 179–189.

14. Jeyaraj, P.R.; Asokan, S.P.; Samuel Nadar, E.R. Computer-assisted real-time rice variety learning using deep learning network.
Rice Sci. 2022, 29, 489–498. [CrossRef]

15. Zhou, J.; Ju, X.; Sun, X.; Jin, H.; Yao, M.; Shen, H. Succession of Mould Flora for Paddy in Different Storage Conitions. J. Chin.
Cereals Oils Assoc. 2008, 23, 133–136.

16. Yang, S.; Cao, Y.; Zhao, H.; Fei, M. Research progress of rapid detection technology in grain mildew. J. Chin. Cereals Oils Assoc.
2018, 31, 21–23.

17. Barsanti, L.; Birindelli, L.; Gualtieri, P. Water monitoring by means of digital microscopy identification and classification of
microalgae. Environ. Sci. Process. Impacts 2021, 23, 1443–1457. [CrossRef] [PubMed]

18. Suhail, K.; Brindha, D. A review on various methods for recognition of urine particles using digital microscopic images of urine
sediments. Biomed. Signal Process. 2021, 68, 102806.

19. Patericio, D.I.; Rieder, R. Computer vision and artificial intelligence in precision agriculture for grain crops: A systematic review.
Comput. Elecron. Agric. 2018, 153, 69–81. [CrossRef]

20. Velesaca, H.O.; Suarez, P.L.; Mira, R.; Sappa, A.D. Computer vision based food grain classification: A comprehensive survey.
Comput. Elecron. Agric. 2021, 187, 106287. [CrossRef]

21. Voulodimos, A.; Doulamis, N.; Doulamis, A.; Protopapadakis, E. Deep learning for computer vision: A brief review. Comput.
Intell. Neurosci. 2018, 2018, 7068349. [CrossRef]

22. Mu, R.; Zeng, X. A review of deep learning research. KSII Trans. Internet Inf. Syst. 2019, 13, 1738–1764.
23. Wang, Y.; Su, W. Convolutional neural networks in computer vision for grain crop phenotyping: A review. Agronomy 2022, 12, 2659.

[CrossRef]
24. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the

2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788.
25. Wang, Z.; Zhang, X.; Li, J.; Luan, K. A Yolo-based target detection model for offshore unmanned aerial vehicle data. Sustainability

2021, 13, 12980. [CrossRef]
26. Ren, P.; Wang, L.; Fang, W.; Song, S.; Djahel, S. A novel squeeze YOLO-based real-time people counting approach. Int. J. Bio-Inspir.

Comput. 2020, 16, 94–101. [CrossRef]
27. Chen, W.; Huang, H.; Peng, S.; Zhou, C.; Zhang, C. YOLO-face: A real-time face detector. Vis. Comput. 2020, 37, 805–813.

[CrossRef]
28. Liu, Z.; Wang, S. Broken Corn Detection Based on an Adjusted YOLO With Focal Loss. IEEE Access 2019, 7, 68281–68289.

[CrossRef]
29. Tang, F.; Cheng, S.; Wu, S. Growth of spoilage fungi in stored paddy. J. Chin. Cereals Oils Assoc. 2009, 24, 98–101.
30. Atungulu, G.G.; Zhong, H.M.; Thote, S.; Okeyo, A.; Couch, A. Microbial prevalence on freshly-harvested long-grain pureline,

hybrid, and medium-grain rice cultivars. Appl. Eng. Agric. 2015, 31, 949–956.
31. Bhupendra; Mose, K.; Miglani, A.; Kankar, P.K. Deep CNN-based damage classification of milled rice grains using a high-

magnification image dataset. Comput. Electron. Agric. 2022, 195, 106811. [CrossRef]
32. Qi, C.; Gao, J.; Pearson, S.; Harman, H.; Chen, K.; Shu, L. Tea chrysanthemum detection under unstructured environments using

the TC-YOLO model. Expert Syst. Appl. 2022, 193, 116473. [CrossRef]

http://doi.org/10.1016/j.ijfoodmicro.2015.01.001
http://www.ncbi.nlm.nih.gov/pubmed/25662486
http://doi.org/10.1016/j.biosystemseng.2016.12.004
http://doi.org/10.1016/j.infrared.2020.103242
http://doi.org/10.13031/trans.12797
http://doi.org/10.1038/srep37994
http://doi.org/10.3920/QAS2017.1109
http://doi.org/10.1016/j.jcs.2019.05.010
http://doi.org/10.1016/j.rsci.2022.02.003
http://doi.org/10.1039/D1EM00258A
http://www.ncbi.nlm.nih.gov/pubmed/34549767
http://doi.org/10.1016/j.compag.2018.08.001
http://doi.org/10.1016/j.compag.2021.106287
http://doi.org/10.1155/2018/7068349
http://doi.org/10.3390/agronomy12112659
http://doi.org/10.3390/su132312980
http://doi.org/10.1504/IJBIC.2020.109674
http://doi.org/10.1007/s00371-020-01831-7
http://doi.org/10.1109/ACCESS.2019.2916842
http://doi.org/10.1016/j.compag.2022.106811
http://doi.org/10.1016/j.eswa.2021.116473


Foods 2022, 11, 4031 16 of 16

33. Assadzadeh, S.; Walker, C.K.; Panozzo, J.F. Deep learning segmentation in bulk grain images for prediction of grain market
quality. Food Bioprocess Technol. 2022, 15, 1615–1628. [CrossRef]

34. Yang, S.; Zheng, L.; He, P.; Wu, T.; Sun, S.; Wang, M. High-throughput soybean seeds phenotyping with convolutional neural
networks and transfer learning. Plant Methods 2021, 17, 50. [CrossRef] [PubMed]

http://doi.org/10.1007/s11947-022-02840-1
http://doi.org/10.1186/s13007-021-00749-y
http://www.ncbi.nlm.nih.gov/pubmed/33952294

	Introduction 
	Methods 
	Simulated Storage of Rice after Inoculation 
	Acquisition of Rice Grain Microscopic Image 
	Pre-Process of Microscopic Images of Rice Grains 
	Image Marking 
	Model Establishment 
	Analysis of the Relationship between MAI and TVC of Rice Grain 

	Results 
	Variation of Box Loss during Model Training 
	Accuracy of Mildewed Region Detection Model 
	Analysis of Feature Images in the Middle Layer of the Model 
	Analysis of Relationship between TVC and MAI of Rice Grain 

	Discussion 
	Conclusions 
	References

