Health Effects of Whole Grains: A Bibliometric Analysis
Abstract
:1. Introduction
2. Methods and Data
3. Research Tendencies and Progress Analysis by Bibliometrics
3.1. Evolution of Publications and Regional Distribution
3.2. Collaboration and Competition in Research
3.3. The Distribution of Research Hotspots
3.4. Evolution of Research Trends
4. Progress and Future Direction of Whole Grain Health Effects
4.1. Research Gaps Need to Be Filled on Molecular Level and within Different Subtypes of Whole Grains
4.2. Scientific Consensus on Whole Grains and Health Should Be Boosted Based on Epidemiological and Intervention Studies
4.3. Standard and Recommended Intakes Are the Key to the Health Effects of Whole Grain Foods
4.4. Breaking the Negative Correlation between Taste and Nutritional Value Plays Important Role in the Promotion of Whole Grain Foods
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vos, T.; Lim, S.S.; Abbafati, C.; Abbas, K.M.; Abbasi, M.; Abbasifard, M.; Abbasi-Kangevari, M.; Abbastabar, H.; Abd-Allah, F.; Abdelalim, A.; et al. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 1204–1222. [Google Scholar] [CrossRef] [PubMed]
- Slavin, J. Whole grains and human health. Nutr. Res. Rev. 2004, 17, 99–110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kissock, K.; Neale, E.; Beck, E. Whole grain food definition effects on determining associations of whole grain intake and body weight changes: A systematic review. Adv. Nutr. 2021, 12, 693–707. [Google Scholar] [CrossRef]
- Kelly, S.; Hartley, L.; Loveman, E.; Colquitt, J.; Jones, H.; Al-Khudairy, L.; Clar, C.; Germano, R.; Lunn, H.; Frost, G.; et al. Whole grain cereals for the primary or secondary prevention of cardiovascular disease. Cochrane Database Syst. Rev. 2017, 8, CD005051. [Google Scholar] [CrossRef] [Green Version]
- Aberg, S.; Mann, J.; Neumann, S.; Ross, A.; Reynolds, A. Whole-grain processing and glycemic control in type 2 diabetes: A randomized crossover trial. Diabetes Care 2020, 43, 1717–1723. [Google Scholar] [CrossRef] [PubMed]
- Gaesser, G. Whole grains, refined grains, and cancer risk: A systematic review of meta-analyses of observational studies. Nutrients 2020, 12, 3756. [Google Scholar] [CrossRef]
- Garutti, M.; Nevola, G.; Mazzeo, R.; Cucciniello, L.; Totaro, F.; Bertuzzi, C.; Caccialanza, R.; Pedrazzoli, P.; Puglisi, F. The impact of cereal grain composition on the health and disease outcomes. Front. Nutr. 2022, 9, 888974. [Google Scholar] [CrossRef] [PubMed]
- Bjorck, I.; Ostman, E.; Kristensen, M.; Anson, N.; Price, R.; Haenen, G.; Havenaar, R.; Knudsen, K.; Frid, A.; Mykkanen, H.; et al. Cereal grains for nutrition and health benefits: Overview of results from in vitro, animal and human studies in the HEALTHGRAIN project. Trends Food Sci. Technol. 2012, 25, 87–100. [Google Scholar] [CrossRef]
- Curtain, F.; Grafenauer, S. Historical and global perspectives on grains and whole grains within dietary guidelines. Cereal Foods World 2020, 65, 1–8. [Google Scholar] [CrossRef]
- Mathews, R.; Chu, Y. Global review of whole grain definitions and health claims. Nutr. Rev. 2020, 78, 98–106. [Google Scholar] [CrossRef]
- van der Kamp, J.; Jones, J.; Miller, K.; Ross, A.; Seal, C.; Tan, B.; Beck, E. Consensus, global definitions of whole grain as a food ingredient and of whole-grain foods presented on behalf of the whole grain initiative. Nutrients 2022, 14, 138. [Google Scholar] [CrossRef] [PubMed]
- Saleh, A.S.M. Technologies for enhancement of bioactive components and potential health benefits of cereal and cereal-based foods: Research advances and application challenges. Crit. Rev. Food Sci. Nutr. 2019, 59, 207–227. [Google Scholar] [CrossRef] [PubMed]
- Knudsen, K.; Norskov, N.; Bolvig, A.; Hedemann, M.; Laerke, H. Dietary fibers and associated phytochemicals in cereals. Mol. Nutr. Food Res. 2017, 61, 1600518. [Google Scholar] [CrossRef] [PubMed]
- Cantu-Jungles, T.; Hamakera, B. New view on dietary fiber selection for predictable shifts in gut microbiota. mBio 2020, 11, e02179-19. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Zhang, S.; Nie, Q.; He, H.; Tan, H.; Geng, F.; Ji, H.; Hu, J.; Nie, S. Gut firmicutes: Relationship with dietary fiber and role in host homeostasis. Crit. Rev. Food Sci. Nutr. 2022, 12, 1–16. [Google Scholar] [CrossRef]
- Călinoiu, L.F.; Vodnar, D.C. Whole grains and phenolic acids: A review on bioactivity, functionality, health benefits and bioavailability. Nutrients 2018, 10, 1615. [Google Scholar] [CrossRef] [Green Version]
- Godin, B. On the origins of bibliometrics. Scientometrics 2006, 68, 109–133. [Google Scholar] [CrossRef]
- Ninkov, A.; Frank, J.; Maggio, L. Bibliometrics: Methods for studying academic publishing. Perspect. Med. Educ. 2022, 11, 173–176. [Google Scholar] [CrossRef]
- Ellegaard, O.; Wallin, J. The bibliometric analysis of scholarly production: How great is the impact? Scientometrics 2015, 105, 1809–1831. [Google Scholar] [CrossRef] [Green Version]
- Miller, K. Review of whole grain and dietary fiber recommendations and intake levels in different countries. Nutr. Rev. 2020, 78, 29–36. [Google Scholar] [CrossRef]
- Stroup, D.; Berlin, J.; Morton, S.; Olkin, I.; Williamson, G.; Rennie, D.; Moher, D.; Becker, B.; Sipe, T.; Thacker, S.; et al. Meta-analysis of observational studies in epidemiology—A proposal for reporting. JAMA 2000, 283, 2008–2012. [Google Scholar] [CrossRef] [PubMed]
- Liberati, A.; Altman, D.; Tetzlaff, J.; Mulrow, C.; Gotzsche, P.; Ioannidis, J.; Clarke, M.; Devereaux, P.; Kleijnen, J.; Moher, D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: Explanation and elaboration. BMJ 2009, 339, b2700. [Google Scholar] [CrossRef] [Green Version]
- Afshin, A.; Sur, P.; Fay, K.; Cornaby, L.; Ferrara, G.; Salama, J.; Mullany, E.; Abate, K.; Abbafati, C.; Abebe, Z.; et al. Health effects of dietary risks in 195 countries, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2019, 393, 1958–1972. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwingshackl, L.; Schwedhelm, C.; Galbete, C.; Hoffmann, G. Adherence to mediterranean diet and risk of cancer: An updated systematic review and meta-analysis. Nutrients 2017, 9, 1063. [Google Scholar] [CrossRef] [PubMed]
- Ananthakrishnan, A.; Khalili, H.; Konijeti, G.; Higuchi, L.; De Silva, P.; Korzenik, J.; Fuchs, C.; Willett, W.; Richter, J.; Chan, A. A prospective study of long-term intake of dietary fiber and risk of crohn’s disease and ulcerative colitis. Gastroenterology 2013, 145, 970–977. [Google Scholar] [CrossRef] [Green Version]
- Slavin, J. Fiber and prebiotics: Mechanisms and health benefits. Nutrients 2013, 5, 1417–1435. [Google Scholar] [CrossRef] [Green Version]
- Martinez, I.; Lattimer, J.; Hubach, K.; Case, J.; Yang, J.; Weber, C.; Louk, J.; Rose, D.; Kyureghian, G.; Peterson, D.; et al. Gut microbiome composition is linked to whole grain-induced immunological improvements. ISME J. 2013, 7, 269–280. [Google Scholar] [CrossRef] [Green Version]
- Aune, D.; Keum, N.; Giovannucci, E.; Fadnes, L.; Boffetta, P.; Greenwood, D.; Tonstad, S.; Vatten, L.; Riboli, E.; Norat, T. Whole grain consumption and risk of cardiovascular disease, cancer, and all cause and cause specific mortality: Systematic review and dose-response meta-analysis of prospective studies. BMJ 2016, 353, i2716. [Google Scholar] [CrossRef] [Green Version]
- Reynolds, A.; Mann, J.; Cummings, J.; Winter, N.; Mete, E.; Te Morenga, L. Carbohydrate quality and human health: A series of systematic reviews and meta-analyses. Lancet 2019, 393, 434–445. [Google Scholar] [CrossRef] [Green Version]
- Ye, E.; Chacko, S.; Chou, E.; Kugizaki, M.; Liu, S. Greater whole-grain intake is associated with lower risk of type 2 diabetes, cardiovascular disease, and weight gain. J. Nutr. 2012, 142, 1304–1313. [Google Scholar] [CrossRef] [Green Version]
- Aune, D.; Norat, T.; Romundstad, P.; Vatten, L. Whole grain and refined grain consumption and the risk of type 2 diabetes: A systematic review and dose-response meta-analysis of cohort studies. Eur. J. Epidemiol. 2013, 28, 845–858. [Google Scholar] [CrossRef] [PubMed]
- Song, M.; Garrett, W.; Chan, A. Nutrients, foods, and colorectal cancer prevention. Gastroenterology 2015, 148, 1244–1260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fulgoni, V.; Brauchla, M.; Fleige, L.; Chu, Y. Oatmeal-containing breakfast is associated with better diet quality and higher intake of key food groups and nutrients compared to other breakfasts in children. Nutrients 2019, 11, 964. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koo, H.; Poh, B.; Talib, R. The GReat-Child Trial: A quasi-experimental intervention on whole grains with healthy balanced diet to manage childhood obesity in kuala lumpur, malaysia. Nutrients 2018, 10, 156. [Google Scholar] [CrossRef] [Green Version]
- Lin, B.; Guthrie, J.; Smith, T. Dietary guidance and new school meal standards: Schoolchildren’s whole grain consumption over 1994–2014. Am. J. Prev. Med. 2019, 57, 57–67. [Google Scholar] [CrossRef]
- Liu, R.H. Whole grain phytochemicals and health. J. Cereal Sci. 2007, 46, 207–219. [Google Scholar] [CrossRef]
- Okarter, N.; Liu, R.H. Health benefits of whole grain phytochemicals. Crit. Rev. Food Sci. Nutr. 2010, 50, 193–208. [Google Scholar] [CrossRef] [PubMed]
- Sang, S.; Idehen, E.; Zhao, Y.; Chu, Y. Emerging science on whole grain intake and inflammation. Nutr. Rev. 2020, 78, 21–28. [Google Scholar] [CrossRef]
- Rahmani, S.; Sadeghi, O.; Sadeghian, M.; Sadeghi, N.; Larijani, B.; Esmaillzadeh, A. The effect of whole-grain intake on biomarkers of subclinical inflammation: A comprehensive meta-analysis of randomized controlled trials. Adv. Nutr. 2020, 11, 52–65. [Google Scholar] [CrossRef]
- Anderson, J.; Baird, P.; Davis, R.; Ferreri, S.; Knudtson, M.; Koraym, A.; Waters, V.; Williams, C. Health benefits of dietary fiber. Nutr. Rev. 2009, 67, 188–205. [Google Scholar] [CrossRef]
- Guan, Z.; Yu, E.; Feng, Q. Soluble dietary fiber, one of the most important nutrients for the gut microbiota. Molecules 2021, 26, 6802. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Wang, Z.; Wang, D.; Kan, J. Effects of resistant starch III on the serum lipids levels and gut microbiota of Kunming mice under high-fat diet. Food Sci. Hum. Wellness 2023, 12, 575–583. [Google Scholar] [CrossRef]
- Xiang, J.; Apea-Bah, F.; Ndolo, V.; Katundu, M.; Beta, T. Profile of phenolic compounds and antioxidant activity of finger millet varieties. Food Chem. 2019, 275, 361–368. [Google Scholar] [CrossRef] [PubMed]
- Smith, C.; Van Haute, M.; Xian, Y.; Munoz, R.; Liu, S.; Schmaltz, R.; Ramer-Tait, A.; Rose, D. Carbohydrate utilization by the gut microbiome determines host health responsiveness to whole grain type and processing methods. Gut Microbes 2022, 14, 2126275. [Google Scholar] [CrossRef]
- Zhang, Y.; Wei, X.; Sun, Q.; Qian, W.; Liu, X.; Li, J.; Long, Y.; Wan, X. Different types and functional effects of probiotics on human health through regulating glucose homeostasis. J. Agric. Food Chem. 2021, 69, 14781–14791. [Google Scholar] [CrossRef]
- Qian, W.; Zhang, Y.; Long, Y.; Yang, W.; Hu, R.; Li, J.; Leng, Y.; Liu, X.; Li, Q.; Wan, X.; et al. Probiotic Lactobacillus brevis CLB3 prevents azoxymethane/dextran sulfate sodium-induced colon carcinogenesis in mice by reducing amino acid transport and IL-17A levels and repressing the IL-6/AKT/p-STAT3 signaling pathway. J. Food Saf. 2022, 6, fyac038. [Google Scholar] [CrossRef]
- Hu, R.; Zhang, Y.; Qian, W.; Leng, Y.; Long, Y.; Liu, X.; Li, J.; Wan, X.; Wei, X. Pediococcus acidilactici Promotes the Longevity of C. elegans by Regulating the Insulin/IGF-1 and JNK/MAPK Signaling, Fat Accumulation and Chloride Ion. Front. Nutr. 2022, 9, 821685. [Google Scholar] [CrossRef]
- Roager, H.M.; Vogt, J.K.; Kristensen, M.; Hansen, L.B.S.; Ibrügger, S.; Nielsen, R.L.; Frøki, H.; Ross, A.B.; Brix, S.; Holck, J.; et al. Whole grain-rich diet reduces body weight and systemic low-grade inflammation without inducing major changes of the gut microbiome: A randomised cross-over trial. Gut 2019, 68, 83–93. [Google Scholar] [CrossRef] [Green Version]
- Seidelmann, S.; Claggett, B.; Cheng, S.; Henglin, M.; Shah, A.; Steffen, L.; Folsom, A.; Rimm, E.; Willett, W.; Solomon, S. Dietary carbohydrate intake and mortality: A prospective cohort study and meta-analysis. Lancet Public Health 2018, 3, E419–E428. [Google Scholar] [CrossRef] [Green Version]
- Huebner, F.; Arendt, E.K. Germination of cereal grains as a way to improve the nutritional value: A review. Crit. Rev. Food Sci. Nutr. 2013, 53, 853–861. [Google Scholar] [CrossRef]
- Benincasa, P.; Falcinelli, B.; Lutts, S.; Stagnari, F.; Galieni, A. Sprouted grains: A comprehensive review. Nutrients 2019, 11, 421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brouns, F.; van Rooy, G.; Shewry, P.; Rustgi, S.; Jonkers, D. Adverse reactions to wheat or wheat components. Compr. Rev. Food Sci. Food Saf. 2019, 18, 1437–1452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Long, Y.; Wei, X.; Wu, S.; Wu, N.; Li, Q.X.; Tan, B.; Wan, X. Plant molecular farming, a tool for functional food production. J. Agric. Food Chem. 2022, 70, 2108–2116. [Google Scholar] [CrossRef]
- Liu, C.; Ma, T.; Yuan, D.; Zhou, Y.; Long, Y.; Li, Z.; Dong, Z.; Duan, M.; Yu, D.; Jing, Y.; et al. The OsEIL1-OsERF115-target gene regulatory module controls grain size and weight in rice. Plant Biotechnol. J. 2022, 20, 1470–1486. [Google Scholar] [CrossRef] [PubMed]
- Lowe, N.M. The global challenge of hidden hunger: Perspectives from the field. Proc. Nutr. Soc. 2021, 80, 283–289. [Google Scholar] [CrossRef] [PubMed]
- Lenaerts, B.; Demont, M. The global burden of chronic and hidden hunger revisited: New panel data evidence spanning 1990–2017. Glob. Food Secur. 2021, 28, 100480. [Google Scholar] [CrossRef]
- Godecke, T.; Stein, A.; Qaim, M. The global burden of chronic and hidden hunger: Trends and determinants. Glob. Food Secur. 2018, 17, 21–29. [Google Scholar] [CrossRef]
- Eggersdorfer, M.; Akobundu, U.; Bailey, R.; Shlisky, J.; Beaudreault, A.; Bergeron, G.; Blancato, R.; Blumberg, J.; Bourassa, M.; Gomes, F.; et al. Hidden hunger: Solutions for america’s aging populations. Nutrients 2018, 10, 1210. [Google Scholar] [CrossRef] [Green Version]
- Slavin, J.L. Whole grains, refined grains and fortified refined grains: What’s the difference? Asia Pac. J. Clin. Nutr. 2000, 9, S23–S27. [Google Scholar] [CrossRef]
- Dunford, E.K.; Miles, D.R.; Popkin, B.; Ng, S.W. Whole grain and refined grains: An examination of US household grocery store purchases. J. Nutr. 2022, 152, 550–558. [Google Scholar] [CrossRef]
- Milani, P.; Torres-Aguilar, P.; Hamaker, B.; Manary, M.; Abushamma, S.; Laar, A.; Steiner, R.; Ehsani, M.; de la Parra, J.; Skaven-Ruben, D.; et al. The whole grain manifesto: From green revolution to grain evolution. Glob. Food Secur. 2022, 34, 100649. [Google Scholar] [CrossRef]
- Hoffman, D.J.; Powell, T.L.; Barrett, E.S.; Hardy, D.B. Developmental origins of metabolic diseases. Physiol. Rev. 2021, 101, 739–795. [Google Scholar] [CrossRef] [PubMed]
- Saeedi, P.; Petersohn, I.; Salpea, P.; Malanda, B.; Karuranga, S.; Unwin, N.; Colagiuri, S.; Guariguata, L.; Motala, A.; Ogurtsova, K.; et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the international diabetes federation diabetes atlas, 9th edition. Diabetes Res. Clin. Pract. 2019, 157, 107843. [Google Scholar] [CrossRef] [Green Version]
- Holloender, P.; Ross, A.; Kristensen, M. Whole-grain and blood lipid changes in apparently healthy adults: A systematic review and meta-analysis of randomized controlled studies. Am. J. Clin. Nutr. 2015, 102, 556–572. [Google Scholar] [CrossRef] [Green Version]
- Guo, H.; Ding, J.; Liang, J.; Zhang, Y. Associations of whole grain and refined grain consumption with metabolic syndrome. A meta-analysis of observational studies. Front. Nutr. 2021, 8, 695620. [Google Scholar] [CrossRef] [PubMed]
- Hajihashemi, P.; Azadbakht, L.; Hashemipour, M.; Kelishadi, R.; Saneei, P.; Esmaillzadeh, A. The effects of whole grain intake on anthropometric measures in overweight and obese children: A crossover randomised clinical trial. Br. J. Nutr. 2021, 126, 1459–1465. [Google Scholar] [CrossRef]
- Xu, D.; Fu, L.; Pan, D.; Lu, Y.; Yang, C.; Wang, Y.; Wang, S.; Sun, G. Role of whole grain consumption in glycaemic control of diabetic patients: A systematic review and meta-analysis of randomized controlled trials. Nutrients 2022, 14, 109. [Google Scholar] [CrossRef] [PubMed]
- Monro, J.; Mishra, S. In Vitro Digestive Analysis of Digestible and Resistant Starch Fractions, with Concurrent Glycemic Index Determination, in Whole Grain Wheat Products Minimally Processed for Reduced Glycaemic Impact. Foods 2022, 11, 1904. [Google Scholar] [CrossRef]
- Walker, A.W.; Ince, J.; Duncan, S.H.; Webster, L.M.; Holtrop, G.; Ze, X.; Brown, D.; Stares, M.D.; Scott, P.; Bergerat, A.; et al. Dominant and diet-responsive groups of bacteria within the human colonic microbiota. ISME J. 2011, 5, 220–230. [Google Scholar] [CrossRef]
- Zhou, Y.; Lu, H.; Zhao, S.; Yan, B.; Wang, H.; Zhou, X.; Xiao, Y. The beneficial effects of Tartary buckwheat (Fagopyrum tataricum Gaertn.) on diet-induced obesity in mice are related to the modulation of gut microbiota composition. Food Sci. Hum. Wellness 2023, 12, 1323–1330. [Google Scholar] [CrossRef]
- Dobranowski, P.; Stintzi, A. Resistant starch, microbiome, and precision modulation. Gut Microbes 2021, 13, 1926842. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Chang, R.; Ma, R.; Zhan, J.; Lu, X.; Tian, Y. Effects of structure and physical chemistry of resistant starch on short-term satiety. Food Hydrocoll. 2022, 132, 107828. [Google Scholar] [CrossRef]
- Qi, X.; Tester, R. Utilisation of dietary fibre (non-starch polysaccharide and resistant starch) molecules for diarrhoea therapy: A mini-review. Int. J. Biol. Macromol. 2019, 122, 572–577. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.; Chung, M.; Kang, N.; Kim, M.; Park, O. Effect of resistant starch from corn or rice on glucose control, colonic events, and blood lipid concentrations in streptozotocin-induced diabetic rats. J. Nutr. Biochem. 2003, 14, 166–172. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Wang, P.; Xiao, Z. Resistant starch prevents tumorigenesis of dimethylhydrazine-induced colon tumors via regulation of an ER stress-mediated mitochondrial apoptosis pathway. Int. J. Mol. Med. 2018, 41, 1887–1898. [Google Scholar] [CrossRef]
- Ren, X.; Wang, L.; Chen, Z.; Zhang, M.; Hou, D.; Xue, Y.; Diao, X.; Liu, R.; Shen, Q. Foxtail millet supplementation improves glucose metabolism and gut microbiota in rats with high-fat diet/streptozotocin-induced diabetes. Food Sci. Hum. Wellness 2022, 11, 119–128. [Google Scholar] [CrossRef]
- Tryggvadottir, E.; Halldorsson, T.; Landberg, R.; Hrolfsdottir, L.; Birgisdottir, B.; Magnusdottir, O.; Hreidarsdottir, I.; Hardardottir, H.; Gunnarsdottir, I. Higher alkylresorcinol concentrations, a consequence of whole-grain intake, are inversely associated with gestational diabetes mellitus in iceland. J. Nutr. 2021, 151, 1159–1166. [Google Scholar] [CrossRef]
- Reynolds, A.; Akerman, A.; Kumar, S.; Pham, H.; Coffey, S.; Mann, J. Dietary fibre in hypertension and cardiovascular disease management: Systematic review and meta-analyses. BMC Med. 2022, 20, 139. [Google Scholar] [CrossRef]
- Borneo, R.; León, A.E. Whole grain cereals: Functional components and health benefits. Food Funct. 2012, 3, 110–119. [Google Scholar] [CrossRef]
- Chung, S.; Hwang, J.-T.; Park, S.-H. Physiological effects of bioactive compounds derived from whole grains on cardiovascular and metabolic diseases. Appl. Sci. 2022, 12, 658. [Google Scholar] [CrossRef]
- Tullio, V.; Gasperi, V.; Catani, M.; Savini, I. The impact of whole grain intake on gastrointestinal tumors: A focus on colorectal, gastric, and esophageal cancers. Nutrients 2021, 13, 81. [Google Scholar] [CrossRef] [PubMed]
- Xie, M.; Liu, J.; Tsao, R.; Wang, Z.; Sun, B.; Wang, J. Whole grain consumption for the prevention and treatment of breast cancer. Nutrients 2019, 11, 1769. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ross, A.; Kristensen, M.; Seal, C.; Jacques, P.; McKeown, N. Recommendations for reporting whole-grain intake in observational and intervention studies. Am. J. Clin. Nutr. 2015, 101, 903–907. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, G.; Tong, X.; Xu, J.; Han, S.; Wan, Z.; Qin, J.; Qin, L. Whole-grain intake and total, cardiovascular, and cancer mortality: A systematic review and meta-analysis of prospective studies. Am. J. Clin. Nutr. 2016, 104, 164–172. [Google Scholar] [CrossRef] [Green Version]
- Korczak, R.; Slavin, J. Definitions, regulations, and new frontiers for dietary fiber and whole grains. Nutr. Rev. 2020, 78, 6–12. [Google Scholar] [CrossRef]
- Kamar, M.; Evans, C.; Hugh-Jones, S. Factors influencing adolescent whole grain intake: A theory-based qualitative study. Appetite 2016, 101, 125–133. [Google Scholar] [CrossRef] [Green Version]
- Barrett, E.M.; Foster, S.I.; Beck, E.J. Whole grain and high-fibre grain foods: How do knowledge, perceptions and attitudes affect food choice? Appetite 2020, 149, 104630. [Google Scholar] [CrossRef]
- Slavin, J.; Sanders, L.; Stallings, V. Opportunities to increase whole grain intake within the Special Supplemental Nutrition Program for Women, Infants, and Children (WIC). Cereal Chem. 2022, 1–8. [Google Scholar] [CrossRef]
- Mellette, T.; Yerxa, K.; Therrien, M.; Camire, M. Whole grain muffin acceptance by young adults. Foods 2018, 7, 91. [Google Scholar] [CrossRef] [Green Version]
- Awobusuyi, T.; Pillay, K.; Siwela, M. Consumer acceptance of biscuits supplemented with a sorghum-insect meal. Nutrients 2020, 12, 895. [Google Scholar] [CrossRef]
- Smith, B.; Ramsay, S.; Roe, A.; Ferrante, M.; Brooks, S. Reducing visual differences in whole grain bread prepared with hard red and hard white wheat: Application for sensory studies. J. Food Sci. 2019, 84, 2325–2329. [Google Scholar] [CrossRef] [PubMed]
- Johnston, R.; Martin, J.; Vetch, J.; Byker-Shanks, C.; Finnie, S.; Giroux, M. Controlled sprouting in wheat increases quality and consumer acceptability of whole-wheat bread. Cereal Chem. 2019, 96, 866–877. [Google Scholar] [CrossRef]
Rank | Journal | Np 1 | Nc 2 | H-Index | IF (2021) |
---|---|---|---|---|---|
1 | Food Chem. | 195 | 11,550 | 62 | 9.231 |
2 | Nutrients | 168 | 4479 | 28 | 6.706 |
3 | J. Agr. Food Chem. | 135 | 9614 | 56 | 5.895 |
4 | Am. J. Clin. Nutr. | 115 | 13,917 | 64 | 8.472 |
5 | J. Nutr. | 111 | 6502 | 44 | 4.735 |
6 | Brit. J. Dermatol. | 95 | 4851 | 37 | 4.125 |
7 | J. Cereal. Sci. | 87 | 3898 | 33 | 4.075 |
8 | LWT-Food Sci. Technol. | 80 | 2238 | 27 | 6.056 |
9 | Eur. J. Clin. Nutr. | 72 | 3418 | 34 | 4.884 |
10 | Cereal Chem. | 67 | 1022 | 20 | 2.534 |
Ranking | Title | Issue | Journal | Citations | Year |
---|---|---|---|---|---|
1st | Health effects of dietary risks in 195 countries, 1990–2017: a systematic analysis for the global burden of disease study 2017 | This study evaluated the impact of dietary risk factors on the mortality rate of non-communicable diseases, including high sodium, low whole grain, low fruit intake. | The Lancet | 1607 | 2019 |
2nd | Fiber and prebiotics: mechanisms and health benefits | This review summarizes the benefits of dietary fiber as prebiotics to promote the reproduction of gastrointestinal probiotics and maintain human health. | Nutrients | 999 | 2013 |
3rd | Whole grain consumption and risk of cardiovascular disease, cancer, and all-cause and cause-specific mortality: systematic review and dose-response meta-analysis of prospective studies | This meta-analysis demonstrates that whole grain intake is associated with reduced risk of coronary heart disease, cardiovascular disease and total cancer and all-cause mortality. | BMJ-British Medical Journal | 538 | 2016 |
4th | Carbohydrate quality and human health: a series of systematic reviews and meta-analyses | Prospective studies and clinical trials have found that relatively high dietary fiber and whole grain intakes reduce all-cause and cardiovascular-related mortality, the incidence of type 2 diabetes and colorectal cancer, body weight, systolic blood pressure and total cholesterol, and there is dose-response evidence. The relationship with several non-communicable diseases may be causal. | The Lancet | 533 | 2019 |
5th | Greater whole grain intake is associated with lower risk of type 2 diabetes, cardiovascular disease, and weight gain | This meta-analysis shows that whole grain and high fiber intake can prevent vascular disease and reduce the risk of type 2 diabetes and weight gain. | Journal of Nutrition | 485 | 2012 |
6th | Gut microbiome composition is linked to whole grain-induced immunological improvements | This study shows that short-term intake of whole grains can cause changes in intestinal microflora. Whole wheat barley and brown rice increase the abundance of probiotics and improve immune response. | ISME Journal | 343 | 2013 |
7th | Whole grain and refined grain consumption and the risk of type 2 diabetes: a systematic review and dose-response meta-analysis of cohort studies | This systematic review and dose-response meta-analysis showed that whole wheat bread, whole wheat cereals, wheat bran, and brown rice were negatively associated with type 2 diabetes, and white rice increased the risk of diabetes. | European Journal of Epidemiology | 329 | 2013 |
8th | Nutrients, foods, and colorectal cancer prevention | This review focuses on diets to prevent colorectal cancer caused by immune reactivity and risk factors for inflammation, overnutrition, and obesity. Calcium, fiber, milk, and whole grains reduce colorectal cancer risk. | Gastroenterology | 315 | 2015 |
9th | A prospective study of long-term intake of dietary fiber and risk of Crohn’s disease and ulcerative colitis | Long-term intake of dietary fiber, particularly fruit fiber, is associated with a lower risk of Crohn’s disease, but not ulcerative colitis. Fiber from grains, whole grains or legumes does not change disease risk. | Gastroenterology | 304 | 2013 |
10th | Adherence to Mediterranean diet and risk of cancer: an updated systematic review and meta-analysis | In this systematic review and meta-analysis, reduced risk of cancer death appears to be most attributable to fruits, vegetables and whole grains, especially colorectal cancer. | Nutrients | 299 | 2017 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, X.; Yang, W.; Wang, J.; Zhang, Y.; Wang, Y.; Long, Y.; Tan, B.; Wan, X. Health Effects of Whole Grains: A Bibliometric Analysis. Foods 2022, 11, 4094. https://doi.org/10.3390/foods11244094
Wei X, Yang W, Wang J, Zhang Y, Wang Y, Long Y, Tan B, Wan X. Health Effects of Whole Grains: A Bibliometric Analysis. Foods. 2022; 11(24):4094. https://doi.org/10.3390/foods11244094
Chicago/Turabian StyleWei, Xun, Wei Yang, Jianhui Wang, Yong Zhang, Yaxuan Wang, Yan Long, Bin Tan, and Xiangyuan Wan. 2022. "Health Effects of Whole Grains: A Bibliometric Analysis" Foods 11, no. 24: 4094. https://doi.org/10.3390/foods11244094
APA StyleWei, X., Yang, W., Wang, J., Zhang, Y., Wang, Y., Long, Y., Tan, B., & Wan, X. (2022). Health Effects of Whole Grains: A Bibliometric Analysis. Foods, 11(24), 4094. https://doi.org/10.3390/foods11244094