Bioactive Compounds from Cardoon as Health Promoters in Metabolic Disorders
Abstract
:1. Introduction
2. Cynara cardunculus L.
3. Nutritional and Chemical Composition
3.1. Macronutrients
3.1.1. Carbohydrates
Nutrient (Unit) | Raw |
---|---|
Basic chemical composition | |
Water (g/100 g) | 94 |
Energy (kcal/100 g) | 17 |
Energy (kJ/100 g) | 71 |
Macronutrients | |
Total protein (g/100 g) | 0.7 |
Total lipids (g/100 g) | 0.1 |
Fatty acids, total saturated (g/100 g) | 0.011 |
SFA 16:0 (g/100 g) | 0.009 |
SFA 18:0 (g/100 g) | 0.002 |
Fatty acids, total monounsaturated (g/100 g) | 0.018 |
MUFA 16:1 (g/100 g) | 0 |
MUFA 18:1 (g/100 g) | 0.018 |
MUFA 20:1 (g/100 g) | 0 |
Fatty acids, total polyunsaturated (g/100 g) | 0.041 |
PUFA 18:2 (g/100 g) | 0.041 |
Carbohydrates (g/100 g) (by difference) | 4.07 |
Total ash (g/100 g) | 1.13 |
Total dietary fiber (g/100 g) | 1.6 |
Total sugars (g/100 g) | 4.07 |
Micronutrients | |
Minerals | |
Calcium, Ca (mg/100 g) | 70 |
Iron, Fe (mg/100 g) | 0.7 |
Magnesium, Mg (mg/100 g) | 42 |
Phosphorus, P (mg/100 g) | 23 |
Potassium, K (mg/100 g) | 400 |
Sodium, Na (mg/100 g) | 170 |
Zinc, Zn (mg/100 g) | 0.17 |
Cooper, Cu (mg/100 g) | 0.23 |
Manganese, Mn (mg/100 g) | 0.256 |
Fluoride, F (µg/100 g) | 0.2 |
Vitamins | |
Vitamin C (mg/100 g) | 2 |
Thiamin (mg/100 g) | 0.02 |
Riboflavin (mg/100 g) | 0.03 |
Niacin (mg/100 g) | 0.3 |
Pantothenic acid (mg/100 g) | 0.338 |
Vitamin B6 (mg/100 g) | 0.116 |
Folate, total (µg/100 g) | 68 |
Folate, DFE (µg/100 g) | 68 |
Folate, food (µg/100 g) | 68 |
Vitamin A, RAE (µg/100 g) | 0 |
Vitamin A, IU (IU/100 g) | 0 |
Vitamin B12 (µg/100 g) | 0 |
Vitamin D (D2 + D3) IU (IU/100 g) | 0 |
Vitamin D (D2 + D3) (µg/100 g) | 0 |
Free Sugars (g/100 g d.w.) | Raw A | Roots B | Flowers C | Seeds D | Bracts E | Heads F |
---|---|---|---|---|---|---|
Fructose | - | 0.1–6.47 | - | n.d.–1.94 | 0.14–1.41 | 0.013–0.51 |
Glucose | - | 0.07–4.54 | 2.47–4.69 | n.d.–0.78 | 0.10–0.557 | 0.0–2.02 |
Sucrose | - | 0.16–4.39 | - | 0.30–8.77 | 0.12–4.970 | n.d.–2.39 |
Trehalose | - | - | - | 0.16–36.44 | 0.24–1.16 | 0.23–0.98 |
Raffinose | - | - | - | n.d-1.31 | n.d.–2.13 | 0.0–2.62 |
Rhamnose | 0.75–1.1 | - | 1.10–1.19 | - | - | - |
Arabinose | 1.17–2.7 | - | 4.23–6.03 | - | - | - |
Xylose | 21.49–27.0 | - | 2.12–2.61 | - | - | - |
Mannose | 1.1–1.8 | - | 0.44–0.52 | - | - | - |
Galactose | 1.35–2.5 | - | 1.27–1.82 | - | - | - |
Inulin | - | 22.4–49.6 * | - | - | - | - |
Fiber (g/100 g d.w.) | Raw A | Stems B | Stalks C | Leaves D | Flowers E |
---|---|---|---|---|---|
Hemicellulose | 12.8–18.19 | 18.7–19.1 | 47.3–55.2 | 4.6–11.3 | 16.30–17.16 |
Cellulose | 30.52–41.9 | 50.4–51.7 | 17.9–27.0 | 29.0–34.3 | 10.33–17.73 |
Lignin | 14.21–18.9 | 10.7–11.9 | 13.3–28.8 | 8.7–12.5 | 7.60–10.73 |
3.1.2. Proteins and Amino Acids
3.1.3. Fatty Acids and Sterols
Fatty Acid (Relative Percentage, %) | Raw A | Flowers B | Seeds C | Bracts D | Heads E |
---|---|---|---|---|---|
C6:0 | n.d.–0.40 | 0.019–16.3 | 0.0094–0.05 | 0.082–3.710 | |
C8:0 | - | 0.014–3.0 | 0.0086–0.0429 | 0.057–1.314 | |
C10:0 | - | 0.015–0.151 | 0.00122–0.044 | 0.186–0.473 | |
C11:0 | 0.85–1.98 | 0.027–0.67 | 0.025–0.092 | 0.16–0.579 | |
C12:0 | - | 0.015–0.18 | 0.0073–0.2502 | 0.326–2.57 | |
C13:0 | 1.05–1.17 | - | n.d.–0.0105 | 0.0–0.084 | |
C14:0 | 0.11 | 1.08–1.15 | 0.103–0.59 | 0.037–0.335 | 0.58–2.69 |
C14:1 | - | - | n.d.–0.0083 | 0.0–0.54 | |
C15:0 | - | 0.032–0.125 | 0.016–0.092 | 0.0–0.48 | |
C15:1 | - | - | 0.0026–1.5197 | 0.0–1.36 | |
C16:0 | 0.009–10.8 | 40.87–45.45 | 11–55.948 | 0.0367–6.183 | 14.62–43.8 |
C16:1 | n.d.–0.02 | n.d.–1.46 | 0.02–0.78 | 0.0076–0.039 | 0.317–12.76 |
C17:0 | 0.06 | - | 0.062–0.33 | 0.0184–0.0915 | 0.313–0.779 |
C18:0 | 0.002–3.6 | 4.83–6.28 | 3.289–16.39 | 0.209–1.775 | 2.687–6.0 |
C18:1n9c | 0.018–27.3 | 2.09–3.33 | 0.58–3.77 | 0.195–0.903 | 4.48–46.6 |
C18:2n6c | 0.041–56.8 | 25.10–29.91 | 1.7–83.3 | 0.054–2.208 | 0.748–30.6 |
C18:3n6 | 0.17 | 3.67–7.12 | 60.15–70.41 | - | 0.0–0.176 |
C18:3n3 | - | 0.037–4.060 | 0.0076–0.543 | 0.3675–7.5 | |
C20:0 | 0.37 | 3.10–3.76 | 0.112–1.8 | 0.0049–0.3693 | 0.377–3.225 |
C20:1 | 0 | - | 0.08–0.49 | 0.0042–0.032 | 0.0–4.52 |
C20:2 | - | 0.18–0.24 | n.d.–0.022 | 0.0–0.31 | |
C21:0 | - | 0.064–0.079 | n.d.–0.07 | 0.070–0.324 | |
C20:3n6 | - | 0.012–0.015 | n.d.–0.1018 | 0.0–8.6 | |
C20:3n3 | - | - | n.d.–0.156 | 0.0–1.38 | |
C22:0 | 0.12 | - | - | 0.063–0.447 | 0.0–2.6365 |
C22:1 | 0.15 | - | 0.103–0.19 | 0.0036–0.032 | 0.12–4.9505 |
C20:5n3 | - | - | 0.0039–0.06 | 0.0–0.6285 | |
C22:2 | 1.58–2.88 | - | n.d.–0.669 | 0.0–0.30 | |
C23:0 | 1.32–1.77 | 0.17–1.51 | n.d.–0.06 | 0.26–1.61 | |
C24:0 | 0.19 | - | 0.199–0.66 | n.d.–0.128 | 0.0–7.411 |
Total variation | |||||
SFA | 0.861–15.27 | 57.07–64.99 | 15.5–95.5 | 1.074–9.167 | 22.9–61.9 |
MUFA | 0.168–27.47 | 3.33–3.55 | 0.84–19.39 | 0.242–2.034 | 5.61–52.1 |
PUFA | 0.211–56.8 | 31.66–38.61 | 1.9–83.7 | 0.076–2.955 | 1.895–47.7 |
Tocopherols (mg/100 g d.w.) | Stalks A | Leaves B | Flowers C | Seeds D | Bracts and Receptacle E | Heads F |
---|---|---|---|---|---|---|
α-Tocopherol | n.d. | 39.9–100.7 | n.d. | 1.210–29.620 | n.d.–0.062 | 0.25–0.619 |
γ-Tocopherol | - | - | - | n.d. | n.d.–0.120 | n.d. |
Cholesterol | 1.0–1.3 | 27.6 | - | - | n.d. | - |
24-Methylenecholesterol | 0.7–1.7 | n.d.-19.3 | - | 5.4–6.5 | n.d. | - |
Campesterol | 2.6–5.6 | 15.1–24.8 | - | 15.0–17.0 | 8.1–11.7 | - |
Stigmasterol | 12.9–32.4 | 33.8–58.8 | 45.9–46.1 | - | 52.3–54.2 | - |
β-Sitosterol | 13.1–25.7 | 63.9–171.6 | 49.8–70.8 | - | 39.2–63.7 | - |
β-Sitostanol | 2.5–4.0 | n.d. | n.d. | - | nd-10.6 | - |
Δ5-Avenasterol | n.d. | 20.0–32.5 | 23.9–28.0 | - | n.d. | - |
3.1.4. Organic Acids
Organic Acid (g/100 g d.w.) | Seeds A | Bracts B | Heads C |
---|---|---|---|
Oxalic | 0.079–0.304 | 0.093–9.5 | 0.324–12.1 |
Quinic | tr–0.07 | tr–4.82 | 0.017–3.3 |
Malic | tr–0.086 | tr–1.87 | n.d.–2.31 |
Citric | n.d.–0.33 | n.d.–1.9 | n.d.–0.86 |
Fumaric | tr | n.d.–0.0076 | n.d.–0.0542 |
Total variation | 0.03–6.54 | 1.96–15.6 | 0.89–15.7 |
3.2. Micronutrients
3.2.1. Minerals
3.2.2. Vitamins
Vitamins (per 100 g Edible Portion) | Cardoon Raw | Artichoke Raw |
---|---|---|
Vitamin C (mg) | 2.0 | 11.7 |
Thiamin (mg) | 0.02 | 0.07 |
Riboflavin (mg) | 0.03 | 0.07 |
Niacin (mg) | 0.3 | 0.9 |
Pantothenic acid (mg) | 0.338 | 0.34 |
Vitamin B6 (mg) | 0.116 | 0.12 |
Total folate (µg) | 68.0 | 68.0 |
Vitamin A µg) | 0 | 8.0 |
Vitamin E (mg) | - | 0.19 |
3.3. Phytochemicals
3.3.1. Volatile Compounds
Volatile Organic Compounds | Vegetal Parts | References |
---|---|---|
Aromatic compounds | ||
Benzoic acid | Stalks, receptacles and bracts, florets, leaves | [44] |
Vanillin | Stalks, receptacles and bracts, leaves | [44] |
Syringaldehyde | Stalks, receptacles and bracts, florets, leaves | [44] |
2,6-Dimethoxyhydroquinone | Stalks, receptacle and bracts, florets | [44] |
3-Vanillylpropanol | Stalks, florets, leaves | [44] |
Vanillylpropanoic acid | Florets | [44] |
Scopolin | Florets | [44] |
Benzaldehyde | Stalks, leaves | [33,99] |
Furfural | Leaves | [33,99] |
(E)-2-Hexanal | Leaves | [99] |
1-Octen-3-one | Leaves | [99] |
6-Methyl-5-hepten-2-one | Leaves | [99] |
Octanal | Leaves | [99] |
Benzene acetaldehyde | Leaves | [99] |
(E)-2-Octenal | Leaves | [99] |
Acethophenone | Leaves | [99] |
(E,E)-3,5-Octadien-2-one Nonanal | Leaves | [99] |
Leaves | [99] | |
(E)-6-Methyl-3,5-heptadien-2-one | Leaves | [99] |
Phenetyl alcohol | Leaves | [99] |
Isophorone | Leaves | [99] |
3-Nonen-2-one | Leaves | [99] |
(E,Z)-2,6-Nonadienal 4-Methyl-Acephenone | Leaves | [99] |
Leaves | [99] | |
Safranal | Leaves | [99] |
Decanal | Leaves | [99] |
β-Ciclocitral | Leaves | [99] |
Neral | Leaves | [99] |
β-Homocyclocitral | Leaves | [99] |
Geranial | Leaves | [99] |
p-Vinylguaiacol | Leaves | [33,99] |
Eugenol | Leaves | [33,99] |
γ-Nonalactone | Leaves | [99] |
(E)-β-Damascenone | Leaves | [99] |
Geranyl acetone | Leaves | [99] |
β-Ionone | Leaves | [99] |
Dicyclohexyl-methanone | Leaves | [99] |
Dihydroactinidiolide | Leaves | [99] |
Phytone | Leaves | [99] |
Fatty acids | ||
Saturated | [44] | |
Tetradecanoic acid | Stalks, receptacle and bracts, florets, leaves | [44] |
Pentadecanoic acid | Stalks, receptacle and bracts, florets, leaves | [44] |
Hexadecanoic acid | Stalks, receptacle and bracts, florets, leaves | [44] |
Heptadecanoic acid | Stalks, receptacle and bracts, florets, leaves | [44] |
Octadecanoic acid | Stalks, receptacle and bracts, florets, leaves | [44] |
Nonadecanoic acid | Stalks, receptacle and bracts, florets, leaves | [44] |
Eicosanoic acid | Stalks, receptacle and bracts, florets, leaves | [44] |
Heneicosanoic acid | Stalks, receptacle and bracts, florets, leaves | [44] |
Docosanoic acid | Stalks, receptacle and bracts, florets, leaves | [44] |
Tricosanoic acid | Stalks, receptacle and bracts, florets, leaves | [44] |
Tetracosanoic acid | Stalks, receptacle and bracts, florets, leaves | [44] |
Pentacosanoic acid | Stalks, receptacle and bracts, florets | [44] |
Hexacosanoic acid | Stalks, florets, leaves | [44] |
Octacosanoic acid | Stalks, florets, leaves | [44] |
Unsaturated | ||
cis-9-Hexadecenoic acid | Stalks, receptacle and bracts, florets, leaves | [44] |
trans-9-Hexadecenoic acid | Stalks, receptacle and bracts, florets, leaves | [44] |
9,12-Octadecadienoic acid | Stalks, receptacle and bracts, florets, leaves | [44] |
9,12,15-Octadecatrienoic acid | Stalks, receptacle and bracts, florets, leaves | [44] |
cis-9-Octadecenoic acid | Stalks, receptacle and bracts, florets | [44] |
trans-9-Octadecenoic acid | Stalks, receptacle and bracts, florets | [44] |
Hydroxy fatty acids | Stalks, florets | [44] |
2-Hydroxyheptanoic acid | Stalks | [44] |
2-Hydroxyundecanoic acid | Florets | [44] |
Long-chain aliphatic alcohols | ||
Hexadecanol-1-ol | Stalks, receptacle and bracts, florets, leaves | [44] |
cis-9-Octadecen-1-ol | Stalks, receptacle and bracts, florets | [44] |
Octadecan-1-ol | Stalks, receptacle and bracts, florets, leaves | [44] |
Eicosan-1-ol | Stalks, receptacle and bracts, florets | [44] |
Docosan-1-ol | Stalks, receptacle and bracts, florets, leaves | [44] |
Tetracosan-1-ol | Stalks, receptacle and bracts, florets, leaves | [44] |
Hexacosan-1-ol | Stalks, receptacle and bracts, florets, leaves | [44] |
Octocosan-1-ol | Stalks, florets, leaves | [44] |
Sesquiterpene lactones | ||
Grosheimin | Stalks, leaves | [44] |
Deacylcynaropicrin | Stalks, receptacle and bracts, leaves | [44] |
Cynaropicrin | Stalks, receptacle and bracts, leaves | [44] |
Pentacyclic triterpenes | ||
β-Amyrin | Stalks, receptacle and bracts, florets, leaves | [44] |
α-Amyrin | Stalks, receptacle and bracts, florets, leaves | [44] |
β-Amyrin-acetate | Stalks, receptacle and bracts, florets, leaves | [44] |
α-Amyrin acetate | Stalks, receptacle and bracts, florets, leaves | [44] |
Lupenyl acetate | Stalks, receptacle and bracts, florets, leaves | [44] |
Ψ -Taraxasterol | Stalks, receptacle and bracts, florets, leaves | [44] |
Taraxasterol | Stalks, receptacle and bracts, florets, leaves | [44] |
Ψ -Taraxasterol acetate | Stalks, receptacle and bracts, florets, leaves | [44] |
Taraxasteryl acetate | Stalks, receptacle and bracts, florets, leaves | [44] |
Others | ||
Inositol | Stalks, receptacle and bracts, florets, leaves | [44] |
2,3-Dihydroxypropyl hexadecanoate | Stalks, receptacle and bracts, florets, leaves | [44] |
trans-Squalene | Leaves | [44] |
3.3.2. Phenolic Compounds (Flavonoids and Non-Flavonoids)
4. Cynara cardunculus and Its Effect on Metabolic Disorders
4.1. Hepatoprotective Activity
Plant Variety | Intervention | Study Type | Model | Results | Ref. |
---|---|---|---|---|---|
var. scolymus L. Fiori | Aqueous infusion of flower heads | in vitro | CCl4-induced damage in HepG2 cells | The aqueous infusion of separate flower heads of C. scolymus, fruit of Ficus carica L., and fruit of Morus nigra L. presented reduced levels of liver enzymes and a higher level of antioxidant enzymes. The mixture of the three plants decreased AST and ALT levels and increased GSH and SOD when compared to CCl4-treated cells. | [134] |
Ethanol extract from leaves | in vivo | Wistar Rats with high-fat diet (HFD)-induced obesity | The administration of artichoke extract caused a decrease in pancreatic lipase compared to the HFD group and reduced organ weight. In addition, the serum lipid profile and the values of the hepatic enzymes were restored. | [142] | |
Hydroethanolic extract from leaves | in vivo | Wistar Rats with phenylhydrazine-induced hemolytic anemia | The groups treated with Cynara scolymus extracts exhibited a decrease in the serum liver enzymes levels and, consequently, an improvement of the liver tissue damage. | [143] | |
Ethanolic extracts from artichoke (plant part) | in vivo | ICR mice with acute alcohol-induced liver injury | The pretreatment with 1.6 g/kg BW of artichoke had a preventive effect due to its ability to reduce the lipidic profile and MDA while increasing SOD and GSH, as well as the inhibition of the inflammatory pathway by suppressing the expression levels of TLR4 and NF-κB. | [137] | |
Methanol extract from leaves | in vivo | Mice infected with Schistosoma mansoni | Upon treatment with ALE either alone or in conjugation with praziquantel, there was an improvement of the liver enzymes. In addition, ALE-treated groups exhibited a reduction in the granuloma size due to the increase in hepatic stellate cell recruitment, ultimately improving liver fibrosis. | [144] | |
Aqueous leaf extract | in vivo | High-fat and high-cholesterol diet-induced steatohepatitis and liver damage in mice | After ALE treatment, there was a reduction of the hepatic triglyceride level and inflammation, as well as a suppression of the liver damage induced by high-fat and high-cholesterol diet in mice. | [145] | |
var. scolymus L. Fiori | Ethanol extract from receptacle, stem, inner bract, outer bract, and leaves | in vivo | Sprague–Dawley rats with paracetamol-induced hepatotoxicity and nephrotoxicity | There were no significant changes in ALT and AST levels after the treatment with the different parts from artichoke; however, the histopathological data showed that the receptacle and stem extracts of Cynara scolymus significantly improved the pathological changes induced by paracetamol in both organs. | [146] |
var. scolymus L. Fiori | Aqueous extract from heads and leaves | in vivo | Sprague–Dawley rats with diethylnitrosamine (DEN)-induced hepatocellular carcinoma | The treatment with fish oil 10% or 1 g of artichoke leaves led to better improvement of DEN-induced changes in the biochemical parameters, such as antioxidant enzymes, angiogenic growth factors, liver function enzymes, and other substances produced by the liver. | [147] |
Ethanol extract from leaves | in vivo | Albino mice of C57BL/6 with acetaminophen-induced hepatotoxicity | After the treatment with ALE, silymarin, or their conjugation, there was an improvement of the serum liver enzymes, a decrease in MDA levels, an increase in glutathione reductase, and a decrease in PCNA expression. Thus, both plant extracts had hepatoprotective activity against acetaminophen. | [136] | |
Hydroethanolic extract from leaves | in vivo | Wistar rats with acutediazinon-induced liver injury | The treatment with ALE caused a reduction in serum ALP, AST, ALT, MDA, TNF-α, and protein carbonyl and enhanced liver histopathological changes and hepatic CAT and SOD activities. | [130] | |
Aqueous extract from leaves | in vivo | Sprague–Dawley rats with paracetamol-induced hepatotoxicity | Pretreatment with ALE (1.5 g/kg) reduced ALT and AST levels. In addition, the hepatic lipid peroxidation and NO levels also exhibited a reduction, whereas SOD and antioxidant enzymes activity increased. Furthermore, the pretreated group presented a reduction in DNA damage. | [135] | |
Ethanol extract from leaves | in vivo | Wistar Rats with cadmium (Cd) toxicity-induced oxidative organ damage | The ALE-treated rats exhibited a significant reduction in the oxidative stress in the Cd-exposed rats. Furthermore, ALE alone increased the GSH and CAT activity levels in rat liver and reduced liver lesions. | [148] | |
var. scolymus L. Fiori | Ethanol extract from leaves | in vivo | Sprague–Dawley rats with carbon tetrachloride-induced oxidative stress and hepatic injury | After treating rats with ALE, the levels of AST and ALT were decreased by 40% and 52%, respectively, in the curative group compared to the CCl4 group, normalized to the antioxidant system, due to the decrease in SOD and MDA levels. | [149] |
Luteolin-enriched artichoke leaves | in vivo | C57BL/6N mice with HFD-induced obesity | Luteolin-enriched artichoke leaves and luteolin treatments significantly decreased the hepatic PAP enzyme activity and increased the activity of hepatic CPT. | [150] | |
Hydroethanolic extract of artichoke | in vivo | Wistar rats with lead acetate-induced toxicity | Upon the treatment with the ALE, there was a decrease in the lipid profile levels and lead serum levels. | [151] | |
var. altilis DC. | Aqueous extract from leaves | in vivo | Rats with 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced colitis | After treating the mice with the extract, there was no significant variation in the ALT values comparing with the TNBS-treated mice. | [152] |
Butanolic extract from aerial parts | in vivo | Male albino rats with paracetamol induced liver injury | After 10 days, rats pretreated with the extract (300 mg/kg) prevented the increase in AST, ALT, and ALP caused by paracetamol. | [153] | |
var. scolymus L. Fiori | Hydroethanolic Extract from Leaves | in vivo | Liver damage induced by deltamethrin in weanling male rats | After 28 days of supplementation with an herbal syrup (sucrose, extract from C. scolymus, and chicory), there was an increase in the oxidative stress enzymes and an improvement of the serum liver enzymes. | [154] |
var. altilis DC. | Leaves extract encapsulated in capsules | Clinical trial | Adult patients with a history of at least 12 months of T2DM and NAFLD | After 16 weeks, the patients supplemented with C. altilis alone exhibited a reduction in AST and ALT levels. However, the combination of Citrus bergamia and C. altilis had a more significant reduction, leading to liver protection. | [138] |
var. scolymus L. Fiori | Cynarol® (Leaves extract) | Clinical trial | Subjects with nonalcoholic fatty liver disease | After the treatment with ALE the hepatic vein flow increased, and portal vein diameter and liver size decreased when compared with placebo. Furthermore, the treatment also reduced both AST and ALT, as well as traditional liver markers and serum lipid profile. | [155] |
- | Clinical trial | Patients with nonalcoholic steatohepatitis | After the treatment with C. scolymus L. extract, there was a decrease in ALT and AST, while it also reduced the serum lipid profile. | [141] |
4.2. Hypolipidemic Activity
Variety/Species | Intervention | Study Type | Model | Result | Ref. |
---|---|---|---|---|---|
var. scolymus L. Fiori | Ethanol extract from Leaves | in vivo | HFD-induced cellular obesity and cardiac damage in Wistar Rats | Oral administration of ALE at two doses 200 and 400 mg/kg decreased lipase pancreatic activity, improved the lipid profile, significantly decreased the cardiac markers, and improved the antioxidant activity and oxidative stress markers. | [159] |
Ethanol extract from leaves | in vivo | HFD-induced obesity in Wistar rats | After the treatment, there was a normalization of serum lipid profile, a decrease in urea, uric acid, and creatinine, a reduction in the formation of lipid accumulation and AOPP, and an increment in the antioxidant activity. | [164] | |
Aqueous extract from Leaves | in vivo | Golden Syrian hamsters | After 42 days, the ALE fed hamsters exhibited a decrease in TC, non-HDL, and TG. In addition, there was an increase in the excretion of bile acids and neutral sterols. | [165] | |
Aqueous extract from Leaves | in vivo | Wistar rats fed on high-cholesterol diet | The rats fed on high-cholesterol diet treated with ALE exhibited a decrease in the serum lipidic profile. | [166] | |
Extract from Leaves | in vivo | C57BL/6N mice with HFD-Induced Obesity | When treated with ALE and luteolin-enriched ALE, there was a decrease in the plasma, hepatic, and fecal lipid profile, as well as a decrease in the hepatic PAP enzyme activity. | [150] | |
var. sylvestris (Lank) Fiori | Hydroalcoholic extract from leaves | in vivo | Insulin resistance, hyperlipidemia, and NAFLD in Sprague–Dawley rats fed a hyperlipidemic diet | After the treatment with ALE, the rats on a high-fat diet exhibited a decrease in the serum lipid profile in a dose-dependent manner. | [160] |
var. scolymus L. Fiori | Ethanol extract from leaf | in vivo | DNA damage and atherosclerosis in Wistar albino rats fed an atherogenic diet | TG and HDL-c showed a significant decrease in the ALE-treated rats, when compared to the control group. | [167] |
var. scolymus L. Fiori | Aqueous extract from leaves | in vivo | Hepatic and cardiac oxidative stress in Wistar rats fed on high-cholesterol diet | Hypercholesterolemic rats treated with ALE exhibited a decrease in the serum TC and TG levels; however, in the liver, there was no change. On the other hand, this treatment reduced the MDA and diene conjugate levels in the liver and heart tissues, and there was an increase in hepatic vitamin E levels and GSH-Px activities. | [168] |
Aqueous extract from leaves and aqueous extract from stems | in vivo | Rats fed with HFD and vitamin C supplement | Both extracts reduced the lipid profile levels, as well as GOT and GTP values. | [169] | |
Red yeast rice extract, policosanol, and var. scolymus L. Fiori | Limicol® (w/200 mg of Cynara scolymus L. leaf extract) | in situ and clinical trial | Wistar rats and subjects with untreated hypercholesterolemia | After 4 weeks of supplementation, LDL-c and TC were significantly lower in the supplemented group than in the placebo. | [170] |
var. scolymus L. Fiori | Hydroalcoholic extract from leaves | Clinical trial | Women with metabolic syndrome | After 12 weeks of treatment with ALE, the carriers of A allele of FTO-rs9939609 exhibited a significant decrease in serum TG level compared with the controls. However, there was no genotype–intervention interaction for the TCF7L2-rs7903146 polymorphism. | [171] |
Red yeast rice extract, policosanol and var. scolymus L. Fiori | Limicol® (w/200 mg of C. scolymus Leaf extract) | Clinical trial | Subjects with moderate hypercholesterolemia | LDL-c and TC were reduced by, respectively, 21.4% and 14.1% at week 16 in the supplemented group compared with baseline. Furthermore, triglyceride levels decreased by 12.2% after 16 weeks in the supplemented group. | [172] |
Subjects with moderate untreated hypercholesterolemia | The group treated with a supplement of red yeast rice, policosanols, and artichoke leaf extracts exhibited a significant decrease in LDL-c, TC, and apo B in healthy subjects with moderate hypercholesterolemia. On the other hand, no effect was demonstrated on other lipid concentrations, and there was no alteration in liver and renal function markers and in the muscle breakdown. | [173] | |||
var. scolymus L. Fiori | Extract from leaves | Clinical trial | Patients with nonalcoholic steatohepatitis | After the treatment with ALE, the AST and ALT levels decreased, as well as the TG and TC levels. | [141] |
Extract from leaves | Clinical trial | Subjects with primary mild hypercholesterolemia | The supplemented group exhibited a significant decrease in TC, LDL-c, and LDL/HDL compared with the placebo. Furthermore, the supplementation caused an increase in HDL-c, which might have clinical interest owing to its protective role in cardiovascular disease. | [161] |
4.3. Antidiabetic Activity
Variety/Species | Intervention | Study Type | Model | Result | Ref. |
---|---|---|---|---|---|
var. scolymus L. Fiori | Ethanolic and aqueous extract from outer bracts and the stems | in vitro | - | Both ethanolic and aqueous extracts were capable of inhibiting fructosamine formation and antiglycative agents. Moreover, the aqueous extract had a better performance against the systems containing glucose and fructose; on the contrary, the ethanolic extract demonstrated a better activity to inhibit AGE formation when ribose or MGO acted as precursors. | [183] |
Methanolic extract from inedible floral stems | in vitro and in vivo | Suisse albino mice with alloxan-induced diabetes | The administration of the extract resulted in a decrease in the serum profile levels and blood glucose. | [184] | |
var. altilis DC. | Aqueous extract | in vitro and in vivo | Wistar rats with STZ-induced diabetes | Both plant extracts presented good anti-glucosidase, antiglycation, and antihyperglycemic properties. In addition, the experiments on isolated aortas exhibited an improvement of vascular dilatory functions in diabetic animals. | [177] |
var. scolymus L. Fiori | Ethanolic extract from leaves | in vitro and in vivo | Wistar rats with alloxan-induced diabetes | Both doses of the extract from C. scolymus decreased the activity of α-amylase, consequently reducing the blood glucose rate. | [176] |
Methanol extract of cereal-based chips enriched with omega-3-rich fish oil and artichoke bracts | in vitro and in vivo | Suisse Albino mice with alloxan-induced diabetes | In diabetic mice, the enriched chips normalized the levels of blood glucose and serum markers such as alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, urea, and creatinine. Furthermore, there was an improvement of the serum lipid profile. | [185] | |
Butanolic extract from leaves | in vivo | Albino rats with streptozotocin (STZ)-induced hyperglycemia | The treatment caused a decrease in the blood sugar levels in the diabetes induced-rats, compared with the STZ diabetic rats. | [186] | |
Hydroalcoholic extract from leaves | in vivo | Wistar rats with STZ-induced diabetes | In the groups with the administration of artichoke extract, compared with the diabetic group, there was an increase in insulin levels, while the serum concentrations of glucagon and glucose were reduced. | [187] | |
var. scolymus L. Fiori | Ethanolic extract | in vivo | Wistar rats with STZ-induced diabetes | When compared with glibenclamide, the use of artichoke extract decreased the lipid profile, increased HLD-c, and decreased HbA1C. However, compared with the group treated with glibenclamide, fasting blood glucose levels were elevated. | [188] |
var. altilis DC. | Aqueous extract from leaves | in vivo | Sprague–Dawley albino rats with induced hypercholesterolemia | The hypercholesterolemia-induced rats treated with both doses of ALE exhibited a decrease in fasting blood glucose, creatinine, uric acid, and urea. These results show that artichoke extracts can be used as a complementary treatment for renal damage and diabetes. | [189] |
var. scolymus L. Fiori | Hydroalcoholic extract from flowering head | in vivo | Wistar rats and obese Zucker rats | Cynara scolymus flowering head extract had the capacity to lower the glycemia in both rat strains; however, the extract had a higher efficacy in Wistar rats than in Zucker rats. | [190] |
Luteolin-enriched artichoke leaves | in vivo | C57BL/6N mice with high-fatdiet-induced obesity | The treatment with ALE and luteolin-enriched ALE reduced the levels of insulin and glucose. | [150] | |
Hydroalcoholic extract from flowering head | in vivo | Wistar rats | The combination of both plants extract resulted in a reduction in the food intake, mainly due to the P. vulgaris extract, and a decrease in the glycemia. | [181] | |
var. altilis DC. | Hydroalcoholic extract from leaves | in vivo | Sprague–Dawley rats with nonalcoholic fatty liver disease induced by high-fat diet | The administration of the extract in a high-fat diet reduced the levels of serum glucose, serum lipid profile, and MDA. Moreover, the 20 mg/kg dose was more effective in completely and significantly restoring OCTN1 and OCTN2 expression in rats fed a high-fat diet. | [160] |
var. scolymus L. Fiori | Hydroalcoholic extract from leaves | Clinical trial | Patients with metabolic syndrome | The administration of the Cynara extract resulted in a decrease in insulin and in HOMA-IR values in patients with the TT genotype of TCF7L2-rs7903146 polymorphism. However, this supplementation did not have any effect toward the blood glucose levels. | [179] |
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vinagre, C.; Vinagre, S.; Carrilho, E. The use of medicinal plants by the population from the Protected Landscape of “Serra de Montejunto”, Portugal. J. Ethnobiol. Ethnomed. 2019, 15, 30. [Google Scholar] [CrossRef] [PubMed]
- Alirezalu, K.; Pateiro, M.; Yaghoubi, M.; Alirezalu, A.; Peighambardoust, S.H.; Lorenzo, J.M. Phytochemical constituents, advanced extraction technologies and techno-functional properties of selected Mediterranean plants for use in meat products. A comprehensive review. Trends Food Sci. Technol. 2020, 100, 292–306. [Google Scholar] [CrossRef]
- Ożarowski, M.; Karpiński, T.M.; Szulc, M.; Wielgus, K.; Kujawski, R.; Wolski, H.; Seremak-Mrozikiewicz, A. Plant Phenolics and Extracts in Animal Models of Preeclampsia and Clinical Trials-Review of Perspectives for Novel Therapies. Pharmaceuticals 2021, 14, 269. [Google Scholar] [CrossRef] [PubMed]
- Newman, D.J.; Cragg, G.M. Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019. J. Nat. Prod. 2020, 83, 770–803. [Google Scholar] [CrossRef]
- Gonçalves, A.C.; Nunes, A.R.; Falcão, A.; Alves, G.; Silva, L.R. Dietary Effects of Anthocyanins in Human Health: A Comprehensive Review. Pharmaceuticals 2021, 14, 690. [Google Scholar] [CrossRef]
- D’Antuono, I.; Carola, A.; Sena, L.M.; Linsalata, V.; Cardinali, A.; Logrieco, A.F.; Colucci, M.G.; Apone, F. Artichoke Polyphenols Produce Skin Anti-Age Effects by Improving Endothelial Cell Integrity and Functionality. Molecules 2018, 23, 2729. [Google Scholar] [CrossRef] [Green Version]
- Mandim, F.; Petropoulos, S.A.; Fernandes, Â.; Santos-Buelga, C.; Ferreira, I.C.F.R.; Barros, L. Chemical Composition of Cynara Cardunculus L. var. altilis Heads: The Impact of Harvesting Time. Agronomy 2020, 10, 1088. [Google Scholar] [CrossRef]
- Zayed, A.; Serag, A.; Farag, M.A. Cynara cardunculus L.: Outgoing and potential trends of phytochemical, industrial, nutritive and medicinal merits. J. Funct. Foods 2020, 69, 103937. [Google Scholar] [CrossRef]
- Ben Salem, M.; Affes, H.; Ksouda, K.; Dhouibi, R.; Sahnoun, Z.; Hammami, S.; Zeghal, K.M. Pharmacological Studies of Artichoke Leaf Extract and Their Health Benefits. Plant Foods Hum. Nutr. 2015, 70, 441–453. [Google Scholar] [CrossRef]
- Gominho, J.; Curt, M.D.; Lourenço, A.; Fernández, J.; Pereira, H. Cynara cardunculus L. as a biomass and multi-purpose crop: A review of 30 years of research. Biomass Bioenergy 2018, 109, 257–275. [Google Scholar] [CrossRef]
- Conceição, C.; Martins, P.; Alvarenga, N.; Dias, J.; Lamy, E.; Garrido, L.; Gomes, S.; Freitas, S.; Belo, A.; Brás, T.; et al. Cynara cardunculus: Use in cheesemaking and pharmaceutical applications. In Technological Approaches for Novel Applications in Dairy Processing; Intech Open: London, UK, 2016; Volume 1, pp. 73–107. [Google Scholar]
- Dias, M.I.; Barros, L.; Barreira, J.C.M.; Alves, M.J.; Barracosa, P.; Ferreira, I. Phenolic profile and bioactivity of cardoon (Cynara cardunculus L.) inflorescence parts: Selecting the best genotype for food applications. Food Chem. 2018, 268, 196–202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gouveia, S.C.; Castilho, P.C. Phenolic composition and antioxidant capacity of cultivated artichoke, Madeira cardoon and artichoke-based dietary supplements. Food Res. Int. 2012, 48, 712–724. [Google Scholar] [CrossRef]
- Pagano, I.; Piccinelli, A.L.; Celano, R.; Campone, L.; Gazzerro, P.; De Falco, E.; Rastrelli, L. Chemical profile and cellular antioxidant activity of artichoke by-products. Food Funct. 2016, 7, 4841–4850. [Google Scholar] [CrossRef] [PubMed]
- Gostin, A.-I.; Waisundara, V.Y. Edible flowers as functional food: A review on artichoke (Cynara cardunculus L.). Trends Food Sci. Technol. 2019, 86, 381–391. [Google Scholar] [CrossRef]
- Marques, P.; Marto, J.; Gonçalves, L.M.; Pacheco, R.; Fitas, M.; Pinto, P.; Serralheiro, M.L.M.; Ribeiro, H. Cynara scolymus L.: A promising Mediterranean extract for topical anti-aging prevention. Ind. Crops Prod. 2017, 109, 699–706. [Google Scholar] [CrossRef]
- Christaki, E.; Bonos, E.; Florou-Paneri, P. Nutritional and Functional Properties of Cynara Crops (Globe Artichoke and Cardoon) and Their Potential Applications: A Review. Int. J. Appl. Sci. Technol. 2012, 2, 64–70. [Google Scholar]
- Pesce, G.R.; Mauromicale, G. Cynara cardunculus L.: Historical and Economic Importance, Botanical Descriptions, Genetic Resources and Traditional Uses. Compend. Plant Genomes 2019, 1–19. [Google Scholar] [CrossRef]
- Fernández, J.; Curt, M.D.; Aguado, P.L. Industrial applications of Cynara cardunculus L. for energy and other uses. Ind. Crops Prod. 2006, 24, 222–229. [Google Scholar] [CrossRef]
- Claus, T.; Maruyama, S.A.; Palombini, S.V.; Montanher, P.F.; Bonafé, E.G.; de Oliveira Santos Junior, O.; Matsushita, M.; Visentainer, J.V. Chemical characterization and use of artichoke parts for protection from oxidative stress in canola oil. LWT Food Sci. Technol. 2015, 61, 346–351. [Google Scholar] [CrossRef] [Green Version]
- Sonnante, G.; Pignone, D.; Hammer, K. The Domestication of Artichoke and Cardoon: From Roman Times to the Genomic Age. Ann. Bot. 2007, 100, 1095–1100. [Google Scholar] [CrossRef] [Green Version]
- Ben Amira, A.; Besbes, S.; Attia, H.; Blecker, C. Milk-clotting properties of plant rennets and their enzymatic, rheological, and sensory role in cheese making: A review. Int. J. Food Prop. 2017, 20, S76–S93. [Google Scholar] [CrossRef] [Green Version]
- Gomes, S.; Belo, A.T.; Alvarenga, N.; Dias, J.; Lage, P.; Pinheiro, C.; Pinto-Cruz, C.; Brás, T.; Duarte, M.F.; Martins, A.P.L. Characterization of Cynara cardunculus L. flower from Alentejo as a coagulant agent for cheesemaking. Int. Dairy J. 2019, 91, 178–184. [Google Scholar] [CrossRef]
- Pari, L.; Alfano, V.; Mattei, P.; Santangelo, E. Pappi of cardoon (Cynara cardunculus L.): The use of wetting during the harvesting aimed at recovering for the biorefinery. Ind. Crops Prod. 2017, 108, 722–728. [Google Scholar] [CrossRef]
- Cajarville, C.; González, J.; Repetto, J.L.; Alvir, M.R.; Rodríguez, C.A. Nutritional evaluation of cardoon (Cynara cardunculus) seed for ruminants. Anim. Feed Sci. Technol. 2000, 87, 203–213. [Google Scholar] [CrossRef]
- Ferrero, F.; Dinuccio, E.; Rollé, L.; Tabacco, E.; Borreani, G. Suitability of cardoon (Cynara cardunculus L.) harvested at two stages of maturity to ensiling and methane production. Biomass Bioenergy 2020, 142, 105776. [Google Scholar] [CrossRef]
- Encinar, J.M.; González, J.F.; Rodríguez, J.J.; Tejedor, A. Biodiesel Fuels from Vegetable Oils: Transesterification of Cynara cardunculus L. Oils with Ethanol. Energy Fuels 2002, 16, 443–450. [Google Scholar] [CrossRef]
- Scavo, A.; Rial, C.; Varela, R.M.; Molinillo, J.M.G.; Mauromicale, G.; Macias, F.A. Influence of Genotype and Harvest Time on the Cynara cardunculus L. Sesquiterpene Lactone Profile. J. Agric. Food Chem. 2019, 67, 6487–6496. [Google Scholar] [CrossRef]
- Restuccia, C.; Lombardo, M.; Scavo, A.; Mauromicale, G.; Cirvilleri, G. Combined application of antagonistic Wickerhamomyces anomalus BS91 strain and Cynara cardunculus L. leaf extracts for the control of postharvest decay of citrus fruit. Food Microbiol. 2020, 92, 103583. [Google Scholar] [CrossRef]
- Mandim, F.; Petropoulos, S.A.; Dias, M.I.; Pinela, J.; Kostic, M.; Soković, M.; Santos-Buelga, C.; Ferreira, I.C.F.R.; Barros, L. Seasonal variation in bioactive properties and phenolic composition of cardoon (Cynara cardunculus var. altilis) bracts. Food Chem. 2021, 336, 127744. [Google Scholar] [CrossRef]
- Mandim, F.; Petropoulos, S.A.; Giannoulis, K.D.; Dias, M.I.; Fernandes, Â.; Pinela, J.; Kostic, M.; Soković, M.; Barros, L.; Santos-Buelga, C.; et al. Seasonal variation of bioactive properties and phenolic composition of Cynara cardunculus var. altilis. Food Res. Int. 2020, 134, 109281. [Google Scholar] [CrossRef]
- Raccuia, S.A.; Melilli, M. Seasonal dynamics of biomass, inulin, and water-soluble sugars in roots of Cynara cardunculus L. Field Crops Res. 2010, 116, 147–153. [Google Scholar] [CrossRef]
- Lourenço, A.; Neiva, D.M.; Gominho, J.; Curt, M.D.; Fernández, J.; Marques, A.V.; Pereira, H. Biomass production of four Cynara cardunculus clones and lignin composition analysis. Biomass Bioenergy 2015, 76, 86–95. [Google Scholar] [CrossRef]
- Ierna, A.; Mauromicale, G. Cynara cardunculus L. genotypes as a crop for energy purposes in a Mediterranean environment. Biomass Bioenergy 2010, 34, 754–760. [Google Scholar] [CrossRef]
- Francaviglia, R.; Bruno, A.; Falcucci, M.; Farina, R.; Renzi, G.; Russo, D.E.; Sepe, L.; Neri, U. Yields and quality of Cynara cardunculus L. wild and cultivated cardoon genotypes. A case study from a marginal land in Central Italy. Eur. J. Agron. 2016, 72, 10–19. [Google Scholar] [CrossRef]
- Foti, S.; Mauromicale, G.; Raccuia, S.A.; Fallico, B.; Fanella, F.; Maccarone, E. Possible alternative utilization of Cynara spp.: I. Biomass, grain yield and chemical composition of grain. Ind. Crops Prod. 1999, 10, 219–228. [Google Scholar] [CrossRef]
- Lattanzio, V.; Kroon, P.A.; Linsalata, V.; Cardinali, A. Globe artichoke: A functional food and source of nutraceutical ingredients. J. Funct. Foods 2009, 1, 131–144. [Google Scholar] [CrossRef]
- Petropoulos, S.A.; Pereira, C.; Ntatsi, G.; Danalatos, N.; Barros, L.; Ferreira, I.C.F.R. Nutritional value and chemical composition of Greek artichoke genotypes. Food Chem. 2018, 267, 296–302. [Google Scholar] [CrossRef]
- Pari, L.; Alfano, V.; Stefanoni, W.; Latterini, F.; Liuzzi, F.; De Bari, I.; Valerio, V.; Ciancolini, A. Inulin Content in Chipped and Whole Roots of Cardoon after Six Months Storage under Natural Conditions. Sustainability 2021, 13, 3902. [Google Scholar] [CrossRef]
- Raccuia, S.A.; Melilli, M. Cynara cardunculus L., a potential source of inulin in the Mediterranean environment: Screening of genetic variability. Crop Pasture Sci. 2004, 55, 693–698. [Google Scholar] [CrossRef]
- Paris, R.R.; Moyse, H. Matière Médicale; Massons & Cie: Paris, France, 1971. [Google Scholar]
- Cavalaglio, G.; Gelosia, M.; Giannoni, T.; Barros Lovate Temporim, R.; Nicolini, A.; Cotana, F.; Bertini, A. Acid-catalyzed steam explosion for high enzymatic saccharification and low inhibitor release from lignocellulosic cardoon stalks. Biochem. Eng. J. 2021, 174, 108121. [Google Scholar] [CrossRef]
- Mandim, F.; Petropoulos, S.A.; Giannoulis, K.D.; Santos-Buelga, C.; Ferreira, I.C.F.R.; Barros, L. Chemical Composition of Cynara cardunculus L. var. altilis Bracts Cultivated in Central Greece: The Impact of Harvesting Time. Agronomy 2020, 10, 1976. [Google Scholar] [CrossRef]
- Ramos, P.A.; Guerra, Â.R.; Guerreiro, O.; Freire, C.S.; Silva, A.M.; Duarte, M.F.; Silvestre, A.J. Lipophilic extracts of Cynara cardunculus L. var. altilis (DC): A source of valuable bioactive terpenic compounds. J. Agric. Food Chem. 2013, 61, 8420–8429. [Google Scholar] [CrossRef] [PubMed]
- Ben Amira, A.; Blecker, C.; Richel, A.; Arias, A.A.; Fickers, P.; Francis, F.; Besbes, S.; Attia, H. Influence of the ripening stage and the lyophilization of wild cardoon flowers on their chemical composition, enzymatic activities of extracts and technological properties of cheese curds. Food Chem. 2018, 245, 919–925. [Google Scholar] [CrossRef] [PubMed]
- Mandim, F.; Petropoulos, S.A.; Pinela, J.; Dias, M.I.; Giannoulis, K.D.; Kostić, M.; Soković, M.; Queijo, B.; Santos-Buelga, C.; Ferreira, I.C.F.R.; et al. Chemical composition and biological activity of cardoon (Cynara cardunculus L. var. altilis) seeds harvested at different maturity stages. Food Chem. 2022, 369, 130875. [Google Scholar] [CrossRef]
- Petropoulos, S.; Fernandes, Â.; Pereira, C.; Tzortzakis, N.; Vaz, J.; Soković, M.; Barros, L.; Ferreira, I.C.F.R. Bioactivities, chemical composition and nutritional value of Cynara cardunculus L. seeds. Food Chem. 2019, 289, 404–412. [Google Scholar] [CrossRef]
- USDA. Available online:https://fdc.nal.usda.gov/ (accessed on 22 September 2021).
- Carreiro, A.L.; Dhillon, J.; Gordon, S.; Higgins, K.A.; Jacobs, A.G.; McArthur, B.M.; Redan, B.W.; Rivera, R.L.; Schmidt, L.R.; Mattes, R.D. The Macronutrients, Appetite, and Energy Intake. Annu. Rev. Nutr. 2016, 36, 73–103. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Diet, Nutrition and the Prevention of Chronic Diseases; WHO Technical Report; WHO: Geveva, Switzerland, 2003. [Google Scholar]
- Stein, O.; Granot, D. An Overview of Sucrose Synthases in Plants. Front Plant Sci. 2019, 10, 95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niness, K.R. Inulin and oligofructose: What are they? J. Nutr. 1999, 129, 1402s–1406s. [Google Scholar] [CrossRef] [Green Version]
- López-Molina, D.; Navarro-Martínez, M.D.; Rojas Melgarejo, F.; Hiner, A.N.; Chazarra, S.; Rodríguez-López, J.N. Molecular properties and prebiotic effect of inulin obtained from artichoke (Cynara scolymus L.). Phytochemistry 2005, 66, 1476–1484. [Google Scholar] [CrossRef]
- Mensink, M.A.; Frijlink, H.W.; van der Voort Maarschalk, K.; Hinrichs, W.L.J. Inulin, a flexible oligosaccharide I: Review of its physicochemical characteristics. Carbohydr. Polym. 2015, 130, 405–419. [Google Scholar] [CrossRef] [Green Version]
- Martínez, C.M.; Adamovic, T.; Cantero, D.A.; Cocero, M.J. Ultrafast hydrolysis of inulin in supercritical water: Fructooligosaccharides reaction pathway and Jerusalem artichoke valorization. Ind. Crops Prod. 2019, 133, 72–78. [Google Scholar] [CrossRef]
- Lv, S.; Wang, R.; Xiao, Y.; Li, F.; Mu, Y.; Lu, Y.; Gao, W.; Yang, B.; Kou, Y.; Zeng, J.; et al. Growth, yield formation, and inulin performance of a non-food energy crop, Jerusalem artichoke (Helianthus tuberosus L.), in a semi-arid area of China. Ind. Crops Prod. 2019, 134, 71–79. [Google Scholar] [CrossRef]
- Clauser, N.M.; González, G.; Mendieta, C.M.; Kruyeniski, J.; Area, M.C.; Vallejos, M.E. Biomass Waste as Sustainable Raw Material for Energy and Fuels. Sustainability 2021, 13, 794. [Google Scholar] [CrossRef]
- Fernandes, M.C.; Ferro, M.D.; Paulino, A.F.C.; Mendes, J.A.S.; Gravitis, J.; Evtuguin, D.V.; Xavier, A.M.R.B. Enzymatic saccharification and bioethanol production from Cynara cardunculus pretreated by steam explosion. Bioresour. Technol. 2015, 186, 309–315. [Google Scholar] [CrossRef]
- Shatalov, A.A.; Morais, A.R.C.; Duarte, L.C.; Carvalheiro, F. Selective single-stage xylan-to-xylose hydrolysis and its effect on enzymatic digestibility of energy crops giant reed and cardoon for bioethanol production. Ind. Crops Prod. 2017, 95, 104–112. [Google Scholar] [CrossRef]
- Giannoni, T.; Gelosia, M.; Bertini, A.; Fabbrizi, G.; Nicolini, A.; Coccia, V.; Iodice, P.; Cavalaglio, G. Fractionation of Cynara cardunculus L. by Acidified Organosolv Treatment for the Extraction of Highly Digestible Cellulose and Technical Lignin. Sustainability 2021, 13, 8714. [Google Scholar] [CrossRef]
- Mauromicale, G.; Sortino, O.; Pesce, G.R.; Agnello, M.; Mauro, R.P. Suitability of cultivated and wild cardoon as a sustainable bioenergy crop for low input cultivation in low quality Mediterranean soils. Ind. Crops Prod. 2014, 57, 82–89. [Google Scholar] [CrossRef]
- Bertini, A.; Gelosia, M.; Cavalaglio, G.; Barbanera, M.; Giannoni, T.; Tasselli, G.; Nicolini, A.; Cotana, F. Production of Carbohydrates from Cardoon Pre-Treated by Acid-Catalyzed Steam Explosion and Enzymatic Hydrolysis. Energies 2019, 12, 4288. [Google Scholar] [CrossRef] [Green Version]
- Shatalov, A.A.; Pereira, H. Dissolving grade eco-clean cellulose pulps by integrated fractionation of cardoon (Cynara cardunculus L.) stalk biomass. Chem. Eng. Res. Des. 2014, 92, 2640–2648. [Google Scholar] [CrossRef]
- Vergara, P.; Ladero, M.; García-Ochoa, F.; Villar, J.C. Valorization of Cynara cardunculus crops by ethanol-water treatment: Optimization of operating conditions. Ind. Crops Prod. 2018, 124, 856–862. [Google Scholar] [CrossRef]
- Shokri, J.; Adibkia, K. Application of Cellulose and Cellulose Derivatives in Pharmaceutical Industries; Ven, T.V.D., Godbout, L., Eds.; IntechOpen: London, UK, 2013; Available online: https://www.intechopen.com/chapters/45635 (accessed on 22 September 2021).
- Stewart, D. Lignin as a base material for materials applications: Chemistry, application and economics. Ind. Crops Prod. 2008, 27, 202–207. [Google Scholar] [CrossRef]
- Dale, B.E. A New Industry Has Been Launched: The Cellulosic Biofuels Ship (Finally) Sails. Biofuels Bioprod. Biorefining 2015, 9, 1–3. [Google Scholar] [CrossRef]
- Hou, Y.; Yin, Y.; Wu, G. Dietary essentiality of “nutritionally non-essential amino acids” for animals and humans. Exp. Biol. Med. 2015, 240, 997–1007. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hou, Y.; Wu, G. Nutritionally Essential Amino Acids. Adv. Nutr. 2018, 9, 849–851. [Google Scholar] [CrossRef] [PubMed]
- Alavi, F.; Momen, S. Aspartic proteases from thistle flowers: Traditional coagulants used in the modern cheese industry. Int. Dairy J. 2020, 107, 104709. [Google Scholar] [CrossRef]
- Sarmento, A.C.; Lopes, H.; Oliveira, C.S.; Vitorino, R.; Samyn, B.; Sergeant, K.; Debyser, G.; Van Beeumen, J.; Domingues, P.; Amado, F.; et al. Multiplicity of aspartic proteinases from Cynara cardunculus L. Planta 2009, 230, 429–439. [Google Scholar] [CrossRef] [PubMed]
- Barros, R.M.; Malcata, F.X. Modeling the kinetics of whey protein hydrolysis brought about by enzymes from Cynara cardunculus. J. Agric. Food Chem. 2002, 50, 4347–4356. [Google Scholar] [CrossRef] [PubMed]
- Veríssimo, P.; Esteves, C.; Faro, C.; Pires, E. The vegetable rennet of Cynara cardunculus L. contains two proteinases with chymosin and pepsin-like specificities. Biotechnol. Lett. 1995, 17, 621–626. [Google Scholar] [CrossRef]
- Vairo Cavalli, S.; Lufrano, D.; Colombo, M.L.; Priolo, N. Properties and applications of phytepsins from thistle flowers. Phytochemistry 2013, 92, 16–32. [Google Scholar] [CrossRef]
- Kaur, N.; Chugh, V.; Gupta, A.K. Essential fatty acids as functional components of foods- a review. J. Food Sci. Technol. 2014, 51, 2289–2303. [Google Scholar] [CrossRef] [Green Version]
- Caporusso, A.; De Bari, I.; Valerio, V.; Albergo, R.; Liuzzi, F. Conversion of cardoon crop residues into single cell oils by Lipomyces tetrasporus and Cutaneotrichosporon curvatus: Process optimizations to overcome the microbial inhibition of lignocellulosic hydrolysates. Ind. Crops Prod. 2021, 159, 113030. [Google Scholar] [CrossRef]
- Godard, A.; De Caro, P.; Thiebaud-Roux, S.; Vedrenne, E.; Mouloungui, Z. New Environmentally Friendly Oxidative Scission of Oleic Acid into Azelaic Acid and Pelargonic Acid. J. Am. Oil Chem. Soc. 2013, 90, 133–140. [Google Scholar] [CrossRef]
- Silva, L.R.; Azevedo, J.; Pereira, M.J.; Carro, L.; Velazquez, E.; Peix, A.; Valentão, P.; Andrade, P.B. Inoculation of the nonlegume Capsicum annuum L. with Rhizobium strains. 2. Changes in sterols, triterpenes, fatty acids, and volatile compounds. J. Agric. Food Chem. 2014, 62, 565–573. [Google Scholar] [CrossRef] [PubMed]
- Silva, L.R.; Pereira, M.J.; Azevedo, J.; Gonçalves, R.F.; Valentão, P.; de Pinho, P.G.; Andrade, P.B. Glycine max (L.) Merr., Vigna radiata L. and Medicago sativa L. sprouts: A natural source of bioactive compounds. Food Res. Int. 2013, 50, 167–175. [Google Scholar] [CrossRef]
- Kritchevsky, D.; Chen, S.C. Phytosterols—Health benefits and potential concerns: A review. Nutr. Res. 2005, 25, 413–428. [Google Scholar] [CrossRef]
- García-Fraile, P.; Silva, L.R.; Sánchez-Márquez, S.; Velázquez, E.; Rivas, R. Plums (Prunus domestica L.) are a good source of yeasts producing organic acids of industrial interest from glycerol. Food Chem. 2013, 139, 31–34. [Google Scholar] [CrossRef]
- Biesalski Hans, K.; Jana, T. Micronutrients in the life cycle: Requirements and sufficient supply. NFS J. 2018, 11, 1–11. [Google Scholar] [CrossRef]
- Gonçalves, A.C.; Campos, G.; Pinto, E.; Oliveira, A.S.; Almeida, A.; de Pinho, P.G.; Alves, G.; Silva, L.R. Essential and non-essential elements, and volatile organic compounds for the discrimination of twenty-three sweet cherry cultivars from Fundão, Portugal. Food Chem. 2022, 367, 130503. [Google Scholar] [CrossRef]
- Barea-Álvarez, M.; Delgado-Andrade, C.; Haro, A.; Olalla, M.; Seiquer, I.; Rufián-Henares, J.Á. Subtropical fruits grown in Spain and elsewhere: A comparison of mineral profiles. J. Food Compos. Anal. 2016, 48, 34–40. [Google Scholar] [CrossRef]
- Li, Y.; Yang, C.; Ahmad, H.; Maher, M.; Fang, C.; Luo, J. Benefiting others and self: Production of vitamins in plants. J. Integr. Plant Biol. 2021, 63, 210–227. [Google Scholar] [CrossRef]
- Liu, R.; Carballo-Arce, A.-F.; Singh, R.; Saleem, A.; Rocha, M.; Mullally, M.; Otarola-Rojas, M.; Alvarrez, L.P.; Sanchez-Vindas, P.; Garcia, M.; et al. A Selective Ion HPLC-APCI-MS Method for the Quantification of Pentacyclic Triterpenes in an Anxiolytic Botanical Dietary Supplement for the Animal Health Market. Nat. Prod. Commun. 2019, 14. [Google Scholar] [CrossRef]
- Li, Y.; Schellhorn, H.E. New developments and novel therapeutic perspectives for vitamin C. J. Nutr. 2007, 137, 2171–2184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carr, A.C.; Frei, B. Toward a new recommended dietary allowance for vitamin C based on antioxidant and health effects in humans. Am. J. Clin. Nutr. 1999, 69, 1086–1107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, J.; Bai, W. Bioactive phytochemicals. Crit. Rev. Food Sci. Nutr. 2019, 59, 827–829. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, A.P.; Silva, L.R.; Guedes de Pinho, P.; Gil-Izquierdo, A.; Valentão, P.; Silva, B.M.; Pereira, J.A.; Andrade, P.B. Volatile profiling of Ficus carica varieties by HS-SPME and GC–IT-MS. Food Chem. 2010, 123, 548–557. [Google Scholar] [CrossRef]
- Vivaldo, G.; Masi, E.; Taiti, C.; Caldarelli, G.; Mancuso, S. The network of plants volatile organic compounds. Sci. Rep. 2017, 7, 11050. [Google Scholar] [CrossRef] [Green Version]
- Barbosa, C.H.; Andrade, M.A.; Vilarinho, F.; Castanheira, I.; Fernando, A.L.; Loizzo, M.R.; Sanches Silva, A. A New Insight on Cardoon: Exploring New Uses besides Cheese Making with a View to Zero Waste. Foods 2020, 9, 564. [Google Scholar] [CrossRef]
- Fardella, G.; Chiappini, I.; Ambrogi, V.; Grandolini, G. Thiol Gel as a Matrix for Binding-Release of α,β-Unsaturated Sesquiterpene Lactones. Arch. Der Pharm. 1999, 332, 431–434. [Google Scholar] [CrossRef]
- Brás, T.; Neves, L.A.; Crespo, J.G.; Duarte, M.F. Effect of extraction methodologies and solvent selection upon cynaropicrin extraction from Cynara cardunculus leaves. Sep. Purif. Technol. 2020, 236, 116283. [Google Scholar] [CrossRef]
- Elsebai, M.F.; Mocan, A.; Atanasov, A.G. Cynaropicrin: A Comprehensive Research Review and Therapeutic Potential as an Anti-Hepatitis C Virus Agent. Front Pharm. 2016, 7, 472. [Google Scholar] [CrossRef] [Green Version]
- Kabir, Y. Health Benefits of Octacosanol and Other Long-Chain Aliphatic Fatty Alcohols from Plants. In Herbal Medicine in India: Indigenous Knowledge, Practice, Innovation and Its Value; Sen, S., Chakraborty, R., Eds.; Springer: Singapore, 2020; pp. 413–425. [Google Scholar]
- Zieniuk, B.; Groborz, K.; Wołoszynowska, M.; Ratusz, K.; Białecka-Florjańczyk, E.; Fabiszewska, A. Enzymatic Synthesis of Lipophilic Esters of Phenolic Compounds, Evaluation of Their Antioxidant Activity and Effect on the Oxidative Stability of Selected Oils. Biomolecules 2021, 11, 314. [Google Scholar] [CrossRef] [PubMed]
- Christaki, E.; Bonos, E.; Giannenas, I.; Florou-Paneri, P. Aromatic Plants as a Source of Bioactive Compounds. Agriculture 2012, 2, 228–243. [Google Scholar] [CrossRef] [Green Version]
- Saucier, C.; Polidoro, A.d.S.; dos Santos, A.L.; Schneider, J.K.; Caramão, E.B.; Jacques, R.A. Comprehensive two-dimensional gas chromatography with mass spectrometry applied to the analysis of volatiles in artichoke (Cynara scolymus L.) leaves. Ind. Crops Prod. 2014, 62, 507–514. [Google Scholar] [CrossRef]
- Gonçalves, C.A.; Bento, C.; Silva, B.; Simões, M.; Silva, R.L. Nutrients, Bioactive Compounds and Bioactivity: The Health Benefits of Sweet Cherries (Prunus avium L.). Curr. Nutr. Food Sci. 2019, 15, 208–227. [Google Scholar] [CrossRef]
- Fürstenberg-Hägg, J.; Zagrobelny, M.; Bak, S. Plant defense against insect herbivores. Int. J. Mol. Sci. 2013, 14, 10242–10297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pandino, G.; Lombardo, S.; Mauromicale, G.; Williamson, G. Phenolic acids and flavonoids in leaf and floral stem of cultivated and wild Cynara cardunculus L. genotypes. Food Chem. 2011, 126, 417–422. [Google Scholar] [CrossRef]
- Pandino, G.; Lombardo, S.; Williamson, G.; Mauromicale, G. Polyphenol profile and content in wild and cultivated Cynara cardunculus L. Ital. J. Agron. 2012, 7, e35. [Google Scholar] [CrossRef] [Green Version]
- Russo, A.; Perri, M.; Cione, E.; Di Gioia, M.L.; Nardi, M.; Cristina Caroleo, M. Biochemical and chemical characterization of Cynara cardunculus L. extract and its potential use as co-adjuvant therapy of chronic myeloid leukemia. J. Ethnopharmacol. 2017, 202, 184–191. [Google Scholar] [CrossRef]
- Cho, A.S.; Jeon, S.M.; Kim, M.J.; Yeo, J.; Seo, K.I.; Choi, M.S.; Lee, M.K. Chlorogenic acid exhibits anti-obesity property and improves lipid metabolism in high-fat diet-induced-obese mice. Food Chem. Toxicol. Int. J. Publ. Br. Ind. Biol. Res. Assoc. 2010, 48, 937–943. [Google Scholar] [CrossRef]
- Zhu, X.; Zhang, H.; Lo, R. Phenolic Compounds from the Leaf Extract of Artichoke (Cynara scolymus L.) and Their Antimicrobial Activities. J. Agric. Food Chem. 2004, 52, 7272–7278. [Google Scholar] [CrossRef]
- Kukić, J.; Popović, V.; Petrović, S.; Mucaji, P.; Ćirić, A.; Stojković, D.; Soković, M. Antioxidant and antimicrobial activity of Cynara cardunculus extracts. Food Chem. 2008, 107, 861–868. [Google Scholar] [CrossRef] [Green Version]
- Falleh, H.; Ksouri, R.; Chaieb, K.; Karray-Bouraoui, N.; Trabelsi, N.; Boulaaba, M.; Abdelly, C. Phenolic composition of Cynara cardunculus L. organs, and their biological activities. Comptes Rendus Biol. 2008, 331, 372–379. [Google Scholar] [CrossRef] [PubMed]
- Scavo, A.; Pandino, G.; Restuccia, C.; Parafati, L.; Cirvilleri, G.; Mauromicale, G. Antimicrobial activity of cultivated cardoon (Cynara cardunculus L. var. altilis DC.) leaf extracts against bacterial species of agricultural and food interest. Ind. Crops Prod. 2019, 129, 206–211. [Google Scholar] [CrossRef]
- Kammoun, M.; Koubaa, I.; Ben Ali, Y.; Jarraya, R.; Gargouri, Y.; Damak, M.; Bezzine, S. Inhibition of Pro-inflammatory Secreted Phospholipase A2 by Extracts from Cynara cardunculus L. Appl. Biochem. Biotechnol. 2010, 162, 662–670. [Google Scholar] [CrossRef]
- Mileo, A.M.; Di Venere, D.; Linsalata, V.; Fraioli, R.; Miccadei, S. Artichoke polyphenols induce apoptosis and decrease the invasive potential of the human breast cancer cell line MDA-MB231. J. Cell. Physiol. 2012, 227, 3301–3309. [Google Scholar] [CrossRef]
- Velez, Z.; Campinho, M.A.; Guerra, Â.R.; García, L.; Ramos, P.; Guerreiro, O.; Felício, L.; Schmitt, F.; Duarte, M. Biological Characterization of Cynara cardunculus L. Methanolic Extracts: Antioxidant, Anti-proliferative, Anti-migratory and Anti-angiogenic Activities. Agriculture 2012, 2, 472–492. [Google Scholar] [CrossRef]
- Pinelli, P.; Agostini, F.; Comino, C.; Lanteri, S.; Portis, E.; Romani, A. Simultaneous quantification of caffeoyl esters and flavonoids in wild and cultivated cardoon leaves. Food Chem. 2007, 105, 1695–1701. [Google Scholar] [CrossRef]
- Ramos, P.A.B.; Santos, S.A.O.; Guerra, Â.R.; Guerreiro, O.; Freire, C.S.R.; Rocha, S.M.; Duarte, M.F.; Silvestre, A.J.D. Phenolic composition and antioxidant activity of different morphological parts of Cynara cardunculus L. var. altilis (DC). Ind. Crops Prod. 2014, 61, 460–471. [Google Scholar] [CrossRef]
- Pandino, G.; Lombardo, S.; Lo Monaco, A.; Mauromicale, G. Choice of time of harvest influences the polyphenol profile of globe artichoke. J. Funct. Foods 2013, 5, 1822–1828. [Google Scholar] [CrossRef]
- Pandino, G.; Courts, F.L.; Lombardo, S.; Mauromicale, G.; Williamson, G. Caffeoylquinic Acids and Flavonoids in the Immature Inflorescence of Globe Artichoke, Wild Cardoon, and Cultivated Cardoon. J. Agric. Food Chem. 2010, 58, 1026–1031. [Google Scholar] [CrossRef]
- Huarte, E.; Juániz, I.; Cid, C.; de Peña, M.-P. Impact of blanching and frying heating rate/time on the antioxidant capacity and (poly)phenols of cardoon stalks (Cynara cardunculus L. var. altilis DC). Int. J. Gastron. Food Sci. 2021, 26, 100415. [Google Scholar] [CrossRef]
- Pistón, M.; Machado, I.; Branco, C.S.; Cesio, V.; Heinzen, H.; Ribeiro, D.; Fernandes, E.; Chisté, R.C.; Freitas, M. Infusion, decoction and hydroalcoholic extracts of leaves from artichoke (Cynara cardunculus L. subsp. cardunculus) are effective scavengers of physiologically relevant ROS and RNS. Food Res. Int 2014, 64, 150–156. [Google Scholar] [CrossRef] [PubMed]
- Shakib, Z.; Shahraki, N.; Razavi, B.M.; Hosseinzadeh, H. Aloe vera as an herbal medicine in the treatment of metabolic syndrome: A review. Phytother. Res. 2019, 33, 2649–2660. [Google Scholar] [CrossRef] [PubMed]
- Tajmohammadi, A.; Razavi, B.M.; Hosseinzadeh, H. Silybum marianum (milk thistle) and its main constituent, silymarin, as a potential therapeutic plant in metabolic syndrome: A review. Phytother. Res. 2018, 32, 1933–1949. [Google Scholar] [CrossRef]
- Qi, Z.; Kelley, E. The WHO Traditional Medicine Strategy 2014–2023: A perspective. Science 2014, 346, S5–S6. [Google Scholar]
- Nyakudya, T.T.; Tshabalala, T.; Dangarembizi, R.; Erlwanger, K.H.; Ndhlala, A.R. The Potential Therapeutic Value of Medicinal Plants in the Management of Metabolic Disorders. Molecules 2020, 25, 2669. [Google Scholar] [CrossRef]
- Martín Ortega, A.M.; Segura Campos, M.R. Chapter 13—Bioactive Compounds as Therapeutic Alternatives. In Bioactive Compounds; Campos, M.R.S., Ed.; Woodhead Publishing: Sawston, UK, 2019; pp. 247–264. [Google Scholar] [CrossRef]
- Nouraei, S.; Rahimmalek, M.; Saeidi, G. Variation in polyphenolic composition, antioxidants and physiological characteristics of globe artichoke (Cynara cardunculus var. scolymus Hayek L.) as affected by drought stress. Sci. Hortic. 2018, 233, 378–385. [Google Scholar] [CrossRef]
- Shallan, M.A.; Ali, M.A.; Meshrf, W.A.; Marrez, D.A. In vitro antimicrobial, antioxidant and anticancer activities of globe artichoke (Cynara cardunculus var. scolymus L.) bracts and receptacles ethanolic extract. Biocatal. Agric. Biotechnol. 2020, 29, 101774. [Google Scholar] [CrossRef]
- Khaldi, S.; Naouari, M.; Ben Jemaa, A. Cardoon (Cynara cardunculus L.) oil from cultivated and wild Tunisian populations and its antimicrobial activity. Ind. Crops Prod. 2021, 171, 113852. [Google Scholar] [CrossRef]
- Mandim, F.; Dias, M.I.; Pinela, J.; Barracosa, P.; Ivanov, M.; Stojković, D.; Soković, M.; Santos-Buelga, C.; Barros, L.; Ferreira, I. Chemical composition and in vitro biological activities of cardoon (Cynara cardunculus L. var. altilis DC.) seeds as influenced by viability. Food Chem. 2020, 323, 126838. [Google Scholar] [CrossRef]
- Kollia, E.; Markaki, P.; Zoumpoulakis, P.; Proestos, C. Antioxidant activity of Cynara scolymus L. and Cynara cardunculus L. extracts obtained by different extraction techniques. Nat. Prod. Res. 2017, 31, 1163–1167. [Google Scholar] [CrossRef] [PubMed]
- Brás, T.; Rosa, D.; Gonçalves, A.C.; Gomes, A.C.; Alves, V.D.; Crespo, J.G.; Duarte, M.F.; Neves, L.A. Development of bioactive films based on chitosan and Cynara cardunculus leaves extracts for wound dressings. Int. J. Biol. Macromol. 2020, 163, 1707–1718. [Google Scholar] [CrossRef] [PubMed]
- Ahmadi, A.; Heidarian, E.; Ghatreh-Samani, K. Modulatory effects of artichoke (Cynara scolymus L.) leaf extract against oxidative stress and hepatic TNF-α gene expression in acute diazinon-induced liver injury in rats. J. Basic Clin. Physiol. Pharmacol. 2019, 30. [Google Scholar] [CrossRef]
- Mohammed, E.T.; Radi, A.M.; Aleya, L.; Abdel-Daim, M.M. Cynara scolymus leaves extract alleviates nandrolone decanoate-induced alterations in testicular function and sperm quality in albino rats. Environ. Sci. Pollut. Res. 2020, 27, 5009–5017. [Google Scholar] [CrossRef] [PubMed]
- Mazzoleni, G.; Steimberg, N. New Models for the In Vitro Study of Liver Toxicity: 3D Culture Systems and the Role of Bioreactors. In The Continuum of Health Risk Assessments; IntechOpen: London, UK, 2012. [Google Scholar]
- Bischoff, K.; Mukai, M.; Ramaiah, S. Liver Toxicity. In Veterinary Toxicology: Basic and Clinical Principles, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 239–257. [Google Scholar] [CrossRef]
- Youssef, F.S.; Labib, R.M.; Eldahshan, O.A.; Singab, A.N.B. Synergistic Hepatoprotective and Antioxidant Effect of Artichoke, Fig, Blackberry Herbal Mixture on HepG2 Cells and Their Metabolic Profiling Using NMR Coupled with Chemometrics. Chem. Biodivers. 2017, 14, e1700206. [Google Scholar] [CrossRef] [PubMed]
- El Morsy, E.M.; Kamel, R. Protective effect of artichoke leaf extract against paracetamol-induced hepatotoxicity in rats. Pharm. Biol. 2015, 53, 167–173. [Google Scholar] [CrossRef]
- Elsayed Elgarawany, G.; Abdou, A.G.; Maher Taie, D.; Motawea, S.M. Hepatoprotective effect of artichoke leaf extracts in comparison with silymarin on acetaminophen-induced hepatotoxicity in mice. J. Immunoass. Immunochem. 2020, 41, 84–96. [Google Scholar] [CrossRef]
- Tang, X.; Wei, R.; Deng, A.; Lei, T. Protective Effects of Ethanolic Extracts from Artichoke, an Edible Herbal Medicine, against Acute Alcohol-Induced Liver Injury in Mice. Nutrients 2017, 9, 1000. [Google Scholar] [CrossRef] [Green Version]
- Musolino, V.; Gliozzi, M.; Bombardelli, E.; Nucera, S.; Carresi, C.; Maiuolo, J.; Mollace, R.; Paone, S.; Bosco, F.; Scarano, F.; et al. The synergistic effect of Citrus bergamia and Cynara cardunculus extracts on vascular inflammation and oxidative stress in non-alcoholic fatty liver disease. J. Tradit. Complementary Med. 2020, 10, 268–274. [Google Scholar] [CrossRef]
- Santos, H.O.; Bueno, A.A.; Mota, J.F. The effect of artichoke on lipid profile: A review of possible mechanisms of action. Pharmacol. Res. 2018, 137, 170–178. [Google Scholar] [CrossRef]
- Adzet, T.; Camarasa, J.; Laguna, J.C. Hepatoprotective Activity of Polyphenolic Compounds from Cynara scolymus Against CCl4 Toxicity in Isolated Rat Hepatocytes. J. Nat. Prod. 1987, 50, 612–617. [Google Scholar] [CrossRef] [PubMed]
- Rangboo, V.; Noroozi, M.; Zavoshy, R.; Rezadoost, S.A.; Mohammadpoorasl, A. The Effect of Artichoke Leaf Extract on Alanine Aminotransferase and Aspartate Aminotransferase in the Patients with Nonalcoholic Steatohepatitis. Int. J. Hepatol. 2016, 2016, 4030476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ben Salem, M.; Ksouda, K.; Dhouibi, R.; Charfi, S.; Turki, M.; Hammami, S.; Ayedi, F.; Sahnoun, Z.; Zeghal, K.M.; Affes, H. LC-MS/MS Analysis and Hepatoprotective Activity of Artichoke (Cynara scolymus L.) Leaves Extract against High Fat Diet-Induced Obesity in Rats. BioMed Res. Int. 2019, 2019, 4851279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allahmoradi, M.; Alimohammadi, S.; Cheraghi, H. Protective Effect of Cynara scolymus L. on Blood Biochem- ical Parameters and Liver Histopathological Changes in Phenylhydrazine-Induced Hemolytic Anemia in Rats. Pharm. Biomed. Res. 2019, 5, 53–62. [Google Scholar] [CrossRef]
- Sharaf El-Deen, S.A.; Brakat, R.M.; Mohamed, A. Artichoke leaf extract protects liver of Schistosoma mansoni infected mice through modulation of hepatic stellate cells recruitment. Exp. Parasitol. 2017, 178, 51–59. [Google Scholar] [CrossRef]
- Liao, G.-C.; Jhuang, J.-H.; Yao, H.-T. Artichoke leaf extract supplementation lowers hepatic oxidative stress and inflammation and increases multidrug resistance-associated protein 2 in mice fed a high-fat and high-cholesterol diet. Food Funct. 2021, 12, 7239–7249. [Google Scholar] [CrossRef]
- Sümer, E.; Senturk, G.E.; Demirel, Ö.U.; Yesilada, E. Comparative biochemical and histopathological evaluations proved that receptacle is the most effective part of Cynara scolymus against liver and kidney damages. J. Ethnopharmacol. 2020, 249, 112458. [Google Scholar] [CrossRef]
- Metwally, N.S.; Kholeifr, Z.; Farrag, A.R.; Ammar, N.M.; Abdel-Hamid, A.H. The protective effects of fish oil and artichoke on hepatocellular carcinoma in rats. Eur. Rev. Med. Pharmacol. Sci. 2011, 15, 1429–1444. [Google Scholar]
- El-Boshy, M.; Ashshi, A.; Gaith, M.; Qusty, N.; Bokhary, T.; AlTaweel, N.; Abdelhady, M. Studies on the protective effect of the artichoke (Cynara scolymus) leaf extract against cadmium toxicity-induced oxidative stress, hepatorenal damage, and immunosuppressive and hematological disorders in rats. Environ. Sci. Pollut. Res. Int. 2017, 24, 12372–12383. [Google Scholar] [CrossRef]
- Colak, E.; Ustuner, M.C.; Tekin, N.; Colak, E.; Burukoglu, D.; Degirmenci, I.; Gunes, H.V. The hepatocurative effects of Cynara scolymus L. leaf extract on carbon tetrachloride-induced oxidative stress and hepatic injury in rats. SpringerPlus 2016, 5, 216. [Google Scholar] [CrossRef] [Green Version]
- Kwon, E.Y.; Kim, S.Y.; Choi, M.S. Luteolin-Enriched Artichoke Leaf Extract Alleviates the Metabolic Syndrome in Mice with High-Fat Diet-Induced Obesity. Nutrients 2018, 10, 979. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heidarian, E.; Rafieian-Kopaei, M. Protective effect of artichoke (Cynara scolymus) leaf extract against lead toxicity in rat. Pharm. Biol. 2013, 51, 1104–1109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mateus, V.; Estarreja, J.; Silva, I.; Barracosa, P.; Teixeira-Lemos, E.; Pinto, R. Effect of Cynara cardunculus L. var. altilis (DC) in Inflammatory Bowel Disease. Appl. Sci. 2021, 11, 1629. [Google Scholar] [CrossRef]
- Baali, N.; Belloum, Z.; Menad, A.; Souad, A.; Benayache, F.; Samir, B. Antioxydant and protective effect of Cynara cardunculus against paracetamol induced liver mitochondria oxidative stress. Int. J. Phytomed. 2014, 6, 601–607. [Google Scholar]
- Mohafrash, S.M.M.; Mossa, A.H. Herbal syrup from chicory and artichoke leaves ameliorate liver damage induced by deltamethrin in weanling male rats. Environ. Sci. Pollut. Res. Int. 2020, 27, 7672–7682. [Google Scholar] [CrossRef]
- Panahi, Y.; Kianpour, P.; Mohtashami, R.; Atkin, S.L.; Butler, A.E.; Jafari, R.; Badeli, R.; Sahebkar, A. Efficacy of artichoke leaf extract in non-alcoholic fatty liver disease: A pilot double-blind randomized controlled trial. Phytother. Res. 2018, 32, 1382–1387. [Google Scholar] [CrossRef]
- Liu, J.; Rajendram, R.; Zhang, L. Effects of Oleanolic Acid and Maslinic Acid on Glucose and Lipid Metabolism: Implications for the Beneficial Effects of Olive Oil on Health. In Olives and Olive Oil in Health and Disease Prevention; Elsevier: Amsterdam, The Netherlands, 2010; pp. 1423–1429. [Google Scholar] [CrossRef]
- Avci, E.; Dolapoglu, A.; Akgun, D. Role of Cholesterol as a Risk Factor in Cardiovascular Diseases; IntechOpen: London, UK, 2018. [Google Scholar] [CrossRef] [Green Version]
- Nirosha, K.; Divya, M.; Vamsi, S.; Sadiq, M. A review on hyperlipidemia. Int. J. Novel Trends Pharm. Sci. 2014, 4, 81–92. [Google Scholar]
- Ben Salem, M.; Affes, H.; Dhouibi, R.; Charfi, S.; Turki, M.; Hammami, S.; Ayedi, F.; Sahnoun, Z.; Zeghal, K.M.; Ksouda, K. Effect of Artichoke (cynara scolymus) on cardiac markers, lipid profile and antioxidants levels in tissue of HFD-induced obesity. Arch. Physiol. Biochem. 2019, 1–11. [Google Scholar] [CrossRef]
- Oppedisano, F.; Muscoli, C.; Musolino, V.; Carresi, C.; Macrì, R.; Giancotta, C.; Bosco, F.; Maiuolo, J.; Scarano, F.; Paone, S.; et al. The Protective Effect of Cynara Cardunculus Extract in Diet-Induced NAFLD: Involvement of OCTN1 and OCTN2 Transporter Subfamily. Nutrients 2020, 12, 1435. [Google Scholar] [CrossRef]
- Rondanelli, M.; Giacosa, A.; Opizzi, A.; Faliva, M.A.; Sala, P.; Perna, S.; Riva, A.; Morazzoni, P.; Bombardelli, E. Beneficial effects of artichoke leaf extract supplementation on increasing HDL-cholesterol in subjects with primary mild hypercholesterolaemia: A double-blind, randomized, placebo-controlled trial. Int. J. Food Sci. Nutr. 2013, 64, 7–15. [Google Scholar] [CrossRef]
- Sahebkar, A.; Pirro, M.; Banach, M.; Mikhailidis, D.P.; Atkin, S.L.; Cicero, A.F.G. Lipid-lowering activity of artichoke extracts: A systematic review and meta-analysis. Crit. Rev. Food Sci. Nutr. 2018, 58, 2549–2556. [Google Scholar] [CrossRef] [PubMed]
- Davidson, M.H.; Maki, K.C. Effects of Dietary Inulin on Serum Lipids. J. Nutr. 1999, 129, 1474S–1477S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ben Salem, M.; Affes, H.; Dhouibi, R.; Charfi, S.; Turki, M.; Hammami, S.; Ayedi, F.; Sahnoun, Z.; Zeghal, K.M.; Ksouda, K. Preventive effect of Artichoke (Cynara scolymus L.) in kidney dysfunction against high fat-diet induced obesity in rats. Arch. Physiol. Biochem. 2019, 1–7. [Google Scholar] [CrossRef]
- Qiang, Z.; Lee, S.-O.; Ye, Z.; Wu, X.; Hendrich, S. Artichoke Extract Lowered Plasma Cholesterol and Increased Fecal Bile Acids in Golden Syrian Hamsters. Phytother. Res. 2012, 26, 1048–1052. [Google Scholar] [CrossRef] [PubMed]
- Küskü-Kiraz, Z.; Mehmetçik, G.; Doǧru-Abbasoǧlu, S.; Uysal, M. Artichoke leaf extract reduces oxidative stress and lipoprotein dyshomeostasis in rats fed on high cholesterol diet. Phytother. Res. 2010, 24, 565–570. [Google Scholar] [CrossRef] [PubMed]
- Bogavac-Stanojevic, N.; Kotur Stevuljevic, J.; Cerne, D.; Zupan, J.; Marc, J.; Vujic, Z.; Crevar-Sakac, M.; Sopic, M.; Munjas, J.; Radenkovic, M.; et al. The role of artichoke leaf tincture (Cynara scolymus) in the suppression of DNA damage and atherosclerosis in rats fed an atherogenic diet. Pharm. Biol. 2018, 56, 138–144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Küçükgergin, C.; Aydın, A.F.; Özdemirler-Erata, G.; Mehmetçik, G.; Koçak-Toker, N.; Uysal, M. Effect of Artichoke Leaf Extract on Hepatic and Cardiac Oxidative Stress in Rats Fed on High Cholesterol Diet. Biol. Trace Elem. Res. 2010, 135, 264–274. [Google Scholar] [CrossRef] [PubMed]
- Abdelkrim, B. Study of Cynara Cardunculus (Artichoke) Stem and Leave Aqueous Extract Effects on Biochemical Parameters in rats fed with high-fat diet and vitamin-c supplement. J. Microbiol. Biotechnol. Food Sci. 2019, 8. [Google Scholar] [CrossRef]
- Barrat, E.; Zaïr, Y.; Sirvent, P.; Chauveau, P.; Maudet, C.; Housez, B.; Derbord, E.; Lescuyer, J.F.; Bard, J.M.; Cazaubiel, M.; et al. Effect on LDL-cholesterol of a large dose of a dietary supplement with plant extracts in subjects with untreated moderate hypercholesterolaemia: A randomised, double-blind, placebo-controlled study. Eur. J. Nutr. 2013, 52, 1843–1852. [Google Scholar] [CrossRef]
- Rezazadeh, K.; Rahmati-Yamchi, M.; Mohammadnejad, L.; Ebrahimi-Mameghani, M.; Delazar, A. Effects of artichoke leaf extract supplementation on metabolic parameters in women with metabolic syndrome: Influence of TCF7L2-rs7903146 and FTO-rs9939609 polymorphisms. Phytother. Res. 2018, 32, 84–93. [Google Scholar] [CrossRef]
- Ogier, N.; Amiot, M.J.; Georgé, S.; Maillot, M.; Mallmann, C.; Maraninchi, M.; Morange, S.; Lescuyer, J.F.; Peltier, S.L.; Cardinault, N. LDL-cholesterol-lowering effect of a dietary supplement with plant extracts in subjects with moderate hypercholesterolemia. Eur. J. Nutr. 2013, 52, 547–557. [Google Scholar] [CrossRef] [PubMed]
- Barrat, E.; Zaïr, Y.; Ogier, N.; Housez, B.; Vergara, C.; Maudet, C.; Lescuyer, J.-F.; Bard, J.-M.; Carpentier, Y.A.; Cazaubiel, M.; et al. A combined natural supplement lowers LDL cholesterol in subjects with moderate untreated hypercholesterolemia: A randomized placebo-controlled trial. Int. J. Food Sci. Nutr. 2013, 64, 882–889. [Google Scholar] [CrossRef] [PubMed]
- Galicia-Garcia, U.; Benito-Vicente, A.; Jebari, S.; Larrea-Sebal, A.; Siddiqi, H.; Uribe, K.B.; Ostolaza, H.; Martín, C. Pathophysiology of Type 2 Diabetes Mellitus. Int. J. Mol. Sci. 2020, 21, 6275. [Google Scholar] [CrossRef] [PubMed]
- Parhofer, K.G. Interaction between Glucose and Lipid Metabolism: More than Diabetic Dyslipidemia. Diabetes Metab. J. 2015, 39, 353–362. [Google Scholar] [CrossRef] [Green Version]
- Ben Salem, M.; Ben Abdallah Kolsi, R.; Dhouibi, R.; Ksouda, K.; Charfi, S.; Yaich, M.; Hammami, S.; Sahnoun, Z.; Zeghal, K.M.; Jamoussi, K.; et al. Protective effects of Cynara scolymus leaves extract on metabolic disorders and oxidative stress in alloxan-diabetic rats. BMC Complement. Altern. Med. 2017, 17, 328. [Google Scholar] [CrossRef] [PubMed]
- Kuczmannová, A.; Balažová, A.; Račanská, E.; Kameníková, M.; Fialová, S.; Majerník, J.; Nagy, M.; Gál, P.; Mučaji, P. Agrimonia eupatoria L. and Cynara cardunculus L. Water Infusions: Comparison of Anti-Diabetic Activities. Molecules 2016, 21, 564. [Google Scholar] [CrossRef] [Green Version]
- Heidarian, E.; Soofiniya, Y. Hypolipidemic and hypoglycemic effects of aerial part of Cynara scolymus in streptozotocin-induced diabetic rats. J. Med. Plants Res. 2011, 5, 2717–2723. [Google Scholar]
- Ebrahimi-Mameghani, M.; Asghari-Jafarabadi, M.; Rezazadeh, K. TCF7L2-rs7903146 polymorphism modulates the effect of artichoke leaf extract supplementation on insulin resistance in metabolic syndrome: A randomized, double-blind, placebo-controlled trial. J. Integr. Med. 2018, 16, 329–334. [Google Scholar] [CrossRef]
- Arion, W.J.; Canfield, W.K.; Ramos, F.C.; Schindler, P.W.; Burger, H.-J.; Hemmerle, H.; Schubert, G.; Below, P.; Herling, A.W. Chlorogenic Acid and Hydroxynitrobenzaldehyde: New Inhibitors of Hepatic Glucose 6-Phosphatase. Arch. Biochem. Biophys. 1997, 339, 315–322. [Google Scholar] [CrossRef]
- Loi, B.; Fantini, N.; Colombo, G.; Gessa, G.L.; Riva, A.; Bombardelli, E.; Morazzoni, P.; Carai, M.A. Reducing effect of a combination of Phaseolus vulgaris and Cynara scolymus extracts on food intake and glycemia in rats. Phytother. Res. PTR 2013, 27, 258–263. [Google Scholar] [CrossRef]
- Matsui, T.; Ogunwande, I.A.; Abesundara, K.J.; Matsumoto, K. Anti-hyperglycemic Potential of Natural Products. Mini Rev. Med. Chem. 2006, 6, 349–356. [Google Scholar] [CrossRef] [PubMed]
- Maietta, M.; Colombo, R.; Lavecchia, R.; Sorrenti, M.; Zuorro, A.; Papetti, A. Artichoke (Cynara cardunculus L. var. scolymus) waste as a natural source of carbonyl trapping and antiglycative agents. Food Res. Int. 2017, 100, 780–790. [Google Scholar] [CrossRef] [PubMed]
- Mejri, F.; Baati, T.; Martins, A.; Selmi, S.; Luisa Serralheiro, M.; Falé, P.L.; Rauter, A.; Casabianca, H.; Hosni, K. Phytochemical analysis and in vitro and in vivo evaluation of biological activities of artichoke (Cynara scolymus L.) floral stems: Towards the valorization of food by-products. Food Chem. 2020, 333, 127506. [Google Scholar] [CrossRef] [PubMed]
- Benkhoud, H.; Baâti, T.; Njim, L.; Selmi, S.; Hosni, K. Antioxidant, antidiabetic, and antihyperlipidemic activities of wheat flour-based chips incorporated with omega-3-rich fish oil and artichoke powder. J. Food Biochem. 2021, 45, e13297. [Google Scholar] [CrossRef]
- Aberomand, M.; Naghoosi, S. Basiryan Effact Effect of C. scolymus L on fasting blood sugar of rat. Eff. C. Scolymus L Fasting Blood Sugar Rat 2013, 3, 180–182. [Google Scholar]
- Hosseini, S.E.; Mousaei, S.; Tavakoli, F. Effect of hydro alcoholic extract of artichoke on diabetes treatment and liver enzymes in diabetic adult male rats. Adv. Herb. Med. 2015, 1, 17–21. [Google Scholar]
- Poorcheraghi, H.S.B.; Nakhaei, M.R.; Babaei, S.; Mehrabi, F.; Ebrahimzadeh-Koor, B. A Comparative Investigation of the Effects of the Cynara scolymus L. and Glibenclamide on Biochemical Parameters in Diabetic Rats. Herb. Med. J 2019, 4, 97–102. [Google Scholar] [CrossRef]
- Alkushi, A.G. Biological Effect of Cynara cardunculus on Kidney Status of Hypercholesterolemic Rats. Pharmacogn. Mag. 2017, 13, S430–S436. [Google Scholar] [CrossRef]
- Fantini, N.; Colombo, G.; Giori, A.; Riva, A.; Morazzoni, P.; Bombardelli, E.; Carai, M.A.M. Evidence of glycemia-lowering effect by a Cynara scolymus L. extract in normal and obese rats. Phytother. Res. 2011, 25, 463–466. [Google Scholar] [CrossRef] [Green Version]
Phenolic Compounds | Vegetal Parts | References |
---|---|---|
1-O-Caffeoylquinic acid | Leaves (n.d.–0.3 mg/g d.w.) Leaves (2.95–9.53 µm/g d.w.) Stalks (0.6–1.1 mg/g d.w.) Receptacle and bracts (0.3 mg/g d.w.) Florets (n.d.) | [102,114] [113] [114] [114] [114] |
3-O-Caffeoylquinic acid | Leaves (n.d.–tr mg/g d.w.) Stalks (0.2–0.9 mg/g d.w.) Receptacle and bracts (0.5 mg/g d.w.) Florets (n.d.) | [102,114] [114] [114] [114] |
cis-5-O-Caffeoylquinic acid | Seeds (0.96–35.8 mg/g d.w.) Bracts (n.d.–7.04 mg/g d.w.) Heads (n.d.–3.55 mg/g d.w.) Raw (2.93 mg/g d.w.) Stalks (2.30–3.15 mg/g d.w.) | [46,47] [43] [7] [117] [117] |
5-O-Caffeoylquinic acid | Stalks (2.30–3.15 mg/g d.w.) Raw (2.93 mg/g d.w.) Leaves (n.d.–2.3 mg/g d.w.) Leaves (18.82–73.68 µm/g d.w.) Leaves extracts (40–63 mg/g d.w.) Leaves extracts (51.3–632 mg/L) Plant (0.743 mg/g d.w.) Heads (n.d.–3.55 mg/g d.w.) Stalks (15.3–17.6 mg/g d.w.) Receptacle and bracts (20.6 mg/g d.w.) Florets (0.9 mg/g d.w.) Seeds (n.d.–2.7 mg/g d.w.) | [117] [117] [102] [113] [118] [13,109] [13] [31] [114] [114] [114] [46,47] |
cis-1,3-O-Dicaffeyolquinic acid | Seeds (n.d.–0.777 mg/g d.w.) | [46,47] |
1,3-O-Dicaffeyolquinic acid (cynarine) | Stalks (tr mg/g d.w.) Raw (tr mg/g d.w.) Leaves extract (6.5–22.4 mg/g d.w.) Plant (0.0117 mg/g d.w.) Stalks (1.2–1.6 mg/g d.w.) Receptacle and bracts (1.0 mg/g d.w.) Florets (n.d.) Seeds (n.d.–0.68 mg/g d.w.) | [117] [117] [13,118] [13] [114] [114] [114] [46,47] |
3,4-O-Dicaffeoylquinic acid | Seeds (0.507–6.2 mg/g d.w.) Stalks (tr) Raw (nd) Leaves extract (0.03–2.1 mg/g d.w.) | [46,47] [117] [117] [13,118] |
3,5-O-Dicaffeoylquinic acid | Seeds (14.8–418 mg/g d.w.) Bracts (0.119–21.83 mg/g d.w.) Heads (0.407–9.9 mg/g d.w.) Stalks (tr–0.1.09 mg/g d.w.) Raw (1.56 mg/g d.w.) Leaves (n.d.–5.75 mg/g d.w.) Plant (0.0575 mg/g d.w.) | [46,47] [43] [7,31] [117] [117] [13,102] [13] |
1,4-Dicaffeoylquinic acid | Stalks (tr–0.68 mg/g d.w.) Raw (tr) Stalks (0.9–1.5 mg/g d.w.) Receptacle and bracts (2.7 mg/g d.w.) Florets (n.d.) Leaves (n.d.) | [117] [117] [114] [114] [114] [114] |
1,5-Dicaffeoylquinic acid | Stalks (tr–1.09 mg/g d.w.) Raw (1.09 mg/g d.w.) Leaves (n.d.–0.1 mg/g d.w.) Leaves extracts (119.3–230.5 mg/L) Plant (0.827 mg/g d.w.) Stalks (14.3–18.8 mg/g d.w.) Receptacle and bracts (24.5 mg/g d.w.) Florets (4.8 mg/g d.w.) | [117] [117] [13,102,114] [109] [13] [114] [114] [114] |
4,5-Dicaffeoylquinic acid | Stalks (n.d.–tr mg/g d.w.) Raw (n.d.) Leaves extract (1.1–5.1 mg/g d.w.) Plant (0.896) | [117] [117] [13,118] [13] |
4-Acyl-di-O-caffeoylquinic acid isomer | Leaves (n.d.) Stalks (0.7 mg/g d.w.) Receptacle and bracts (0.6 mg/g d.w.) Florets (n.d.) | [114] [114] [114] [114] |
Tri-O-Caffeoylquinic acid | Heads (n.d.–1.29 mg/g d.w.) Heads (n.d.–1.29 mg/g d.w.) | [7] [31] |
Dicaffeoylquinic acids | Leaves (9.44–51.15 µmol/g d.w.) | [113] |
p-Coumaric acid | Bracts (n.d.–1.4 mg/g d.w.) | [43] |
p-Coumaric acid hexoside | Heads (n.d.–3.55 mg/g d.w.) Heads (n.d.–1.40 mg/g d.w.) | [7] [31] |
Succinyl-diCQA I | Stalks (n.d.–tr) Raw (n.d.) | [117] [117] |
Succinyl-diCQA II | Stalks (n.d.) Raw (n.d.) | [117] [117] |
Succinyl-diCQA III | Stalks (n.d.) Raw (tr) | [117] [117] |
Succinyl-dicaffeoylquinic acid | Leaves (n.d.–8.67 µmol/g d.w.) | [113] |
1,5-Di-O-caffeoylsuccinoylquinic acid isomer | Leaves (n.d.) Stalks (10.7–12.4 mg/g d.w.) Receptacle and bracts (n.d.) Florets (n.d.) | [114] [114] [114] [114] |
4-Acyl-di-O-caffeoylsuccinoylquinic acid isomer | Leaves (n.d.) Stalks (2.7–2.8 mg/g d.w.) Receptacle and bracts (n.d.) Florets (n.d.) | [114] [114] [114] [114] |
Dicaffeoylsuccinoylquinic acid isomer | Leaves (n.d.) Stalks (1.1–1.5 mg/g d.w.) Receptacle and bracts (n.d.) Florets (n.d.) | [114] [114] [114] [114] |
Dicaffeoyldisuccinoylquinic acid isomer | Leaves (n.d.) Stalks (1.6–1.9 mg/g d.w.) Receptacle and bracts (n.d.) Florets (n.d.) | [114] [114] [114] [114] |
Eridictyol-O-glucuronide | Bracts (n.d.–0.98 mg/g d.w.) | [43] |
Eriodictyol hexoside | Leaves (n.d.) Stalks (n.d.) Receptacle and bracts (n.d.) Florets (0.1 mg/g d.w.) | [114] [114] [114] [114] |
p-Coumaroylquinic acid | Leaves extracts (0.09–1.1 mg/g d.w.) | [118] |
5-O-Feruloylquinic acid | Bracts (n.d.–0.55 mg/g d.w.) Leaves extracts (0.6–1.6 mg/g d.w.) | [43] [118] |
Scopolin isomer | Leaves (n.d.) Stalks (n.d.) Receptacle and bracts (n.d.) Florets (1.2 mg/g d.w.) | [114] [114] [114] [114] |
Kaempferol-3-O-rutinoside | Bracts (n.d.–0.59 mg/g d.w.) | [43] |
Luteolin-O-glucuronide | Bracts (n.d.–2.036 mg/g d.w.) Heads (n.d.–1.03 mg/g d.w.) Leaves (n.d.–2.4 mg/g d.w.) Leaves (n.d.–0.48 µmol/g d.w.) Stalks (0.4–1.0 mg/g d.w.) Receptacle and bracts (0.8 mg/g d.w.) Florets (0.6 mg/g d.w.) | [43] [7,31] [102] [113] [114] [114] [114] |
Luteolin-7-O-glucuronide | Heads (n.d.–0.90 mg/g d.w.) Leaves (n.d.–13.7µmol/g d.w.) Leaves extracts (10.9–189.4 mg/L) | [7,31] [113] [109] |
Luteolin-O-hexoside | Bracts (n.d.–1.51 mg/g d.w.) | [43] |
Luteolin acetyl-hexoside | Leaves (0.7 mg/g d.w.) Stalks (n.d.) Receptacle and bracts (n.d.) Florets (0.3 mg/g d.w.) | [114] [114] [114] [114] |
Luteolin-7-O-rutinoside | Leaves (n.d.–6.5 mg/g d.w.) Leaves (n.d.–0.48 µmol/g d.w.) Stalks (n.d.) Receptacle and bracts (n.d.) Florets (0.3 mg/g d.w.) | [102,114] [113] [114] [114] [114] |
Luteolin glucoside | Leaves (n.d.–4.2 mg/g d.w.) Leaves extracts (7.4–9.3 mg/g d.w.) | [102] [118] |
Luteolin-7-O-glucoside (cynaroside) | Leaves (0.66–33.55 µmol/g d.w.) Leaves extract (2.9–3.8 mg/g d.w.) Stalks (0.3–1.2 mg/g d.w.) Receptacle and bracts (0.4 mg/g d.w.) Florets (0.6 mg/g d.w.) | [113] [114,118] [114] [114] [114] |
Luteolin-O-malonyl-hexoside | Bracts (n.d.–1.265 mg/g d.w.) Leaves (n.d.–2.2 mg/g d.w.) | [43] [102] |
Luteolin-7-O-malonyl-hexoside | Leaves (1.11–43.00 µmol/g d.w.) Leaves extracts (1.0–1.7 mg/g d.w.) Leaves extracts (n.d.–83.3 mg/L)) Heads (n.d.–1.17 mg/g d.w.) | [113] [118] [109] [31] |
Luteolin | Leaves (0.02–2.02 µmol/g d.w.) Stalks (n.d.) Receptacle and bracts (n.d.) Florets (1.2 mg/g d.w.) | [113,114] [114] [114] [114] |
Apigenin-7-O-glucuronide | Bracts (2.79–10.6 mg/g d.w.) Heads (n.d.–13.2 mg/g d.w.) Leaves (n.d.–2.4 mg/g d.w.) Leaves (n.d.–2.31 µmol/g d.w.) Leaves extracts (n.d.–115.0 mg/L) | [43] [7,31] [102] [113] [109] |
Apigenin glucuronide | Leaves (2.9 mg/g d.w.) Stalks (1.2–1.4 mg/g d.w.) Receptacle and bracts (8.1 mg/g d.w.) Florets (13.8 mg/g d.w.) | [114] [114] [114] [114] |
Apigenin-7-O-glucuronide-hexoside | Heads (n.d.–1.07 mg/g d.w.) | [7,31] |
Apigenin | Leaves (n.d.–6.79 µmol/g d.w.) Leaves extracts (n.d.–3.8 mg/L) Stalks (n.d.) Receptacle and bracts (n.d.) Florets (4.8 mg/g d.w.) | [113] [109,114] [114] [114] [114] |
Apigenin-O-malonyl-hexoside | Bracts (n.d.–1.77 mg/g d.w.) | [43] |
Apigenin acetyl-hexoside | Leaves (0.5 mg/g d.w.) Stalks (0.1–0.3 mg/g d.w.) Receptacle and bracts (0.6 mg/g d.w.) Florets (0.7 mg/g d.w.) | [114] [114] [114] [114] |
Apigenin-7-O-rutinoside | Heads (0.99–3.51 mg/g d.w.) Leaves (n.d.–0.7 mg/g d.w.) Leaves (n.d.–1.39 µmol/g d.w.) | [7,31] [102] [102] |
Apigenin-7-O-glucoside | Leaves (n.d.–0.1 mg/g d.w.) Leaves extracts (n.d.–61.7 mg/L) | [102] [109] |
Apigenin-malonylhexoside | Heads (n.d.–1.17 mg/g d.w.) Leaves extracts (n.d.–72.1 mg/L) | [7] [109] |
Naringenin-7-O-glucoside | Leaves (n.d.) Stalks (n.d.) Receptacle and bracts (n.d.) Florets (3.2 mg/g d.w.) | [114] [114] [114] [114] |
Naringenin rutinoside | Leaves (n.d.) Stalks (n.d.) Receptacle and bracts (n.d.) Florets (5.4 mg/g d.w.) | [114] [114] [114] [114] |
Naringenin | Leaves (n.d.) Stalks (n.d.) Receptacle and bracts (n.d.) Florets (0.2 mg/g d.w.) | [114] [114] [114] [114] |
Chrysoeriol hexoside isomer | Leaves (0.5 mg/g d.w.) Stalks (n.d.) Receptacle and bracts (n.d.) Florets (0.2 mg/g d.w.) | [114] [114] [114] [114] |
Chrysoeriol isomer | Leaves (n.d.) Stalks (n.d.) Receptacle and bracts (n.d.) Florets (0.1 mg/g d.w.) | [114] [114] [114] [114] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, L.R.; Jacinto, T.A.; Coutinho, P. Bioactive Compounds from Cardoon as Health Promoters in Metabolic Disorders. Foods 2022, 11, 336. https://doi.org/10.3390/foods11030336
Silva LR, Jacinto TA, Coutinho P. Bioactive Compounds from Cardoon as Health Promoters in Metabolic Disorders. Foods. 2022; 11(3):336. https://doi.org/10.3390/foods11030336
Chicago/Turabian StyleSilva, Luís R., Telma A. Jacinto, and Paula Coutinho. 2022. "Bioactive Compounds from Cardoon as Health Promoters in Metabolic Disorders" Foods 11, no. 3: 336. https://doi.org/10.3390/foods11030336
APA StyleSilva, L. R., Jacinto, T. A., & Coutinho, P. (2022). Bioactive Compounds from Cardoon as Health Promoters in Metabolic Disorders. Foods, 11(3), 336. https://doi.org/10.3390/foods11030336