Antifungal Preservation of Food by Lactic Acid Bacteria
Abstract
:1. Introduction
2. Foodborne Diseases
3. Synthetic Preservatives and Hazards of Their Use
4. Lactic Acid Bacteria (LAB)
4.1. LAB as Green Preservatives in Food Systems
4.2. Antifungal Activity Spectrum of LAB
4.3. Antifungal Metabolites of LAB
4.3.1. Organic Acids
4.3.2. Phenyllactic Acid (PLA)
4.3.3. Reuterin
4.3.4. Peptides and Cyclic Peptides
4.3.5. Fatty Acids
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- Agriopoulou, S.; Stamatelopoulou, E.; Sachadyn-Król, M.; Varzakas, T. Lactic Acid bacteria as antibacterial agents to extend the shelf life of fresh and minimally processed fruits and vegetables: Quality and safety aspects. Microorganisms 2020, 8, 952. [Google Scholar] [CrossRef] [PubMed]
- Sellamani, M.; Kalagatur, N.K.; Siddaiah, C.; Mudili, V.; Krishna, K.; Natarajan, G.; Rao Putcha, V.L. Antifungal and zearalenone inhibitory activity of Pediococcus pentosaceus isolated from dairy products on Fusarium graminearum. Front. Microbiol. 2016, 7, 890. [Google Scholar] [CrossRef] [PubMed]
- Sevgi, E.; Tsveteslava, I.I. Antifungal activity of lactic acid bacteria, isolated from Bulgarian wheat and rye flour. J. Life Sci. 2015, 9, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Kowalczyk, D.; Kordowska-Wiater, M.; Zięba, E.; Baraniak, B. Effect of carboxymethylcellulose/candelilla wax coating containing potassium sorbate on microbiological and physicochemical attributes of pears. Sci. Hortic. 2017, 218, 326–333. [Google Scholar] [CrossRef]
- Heydaryinia, A.; Veissi, M.; Sadadi, A. A comparative study of the effects of the two preservatives, sodium benzoate and potassium sorbate on Aspergillus niger and Penicillium notatum. Jundishapur J. Microbiol. 2011, 4, 301–307. Available online: www.sid.ir/en/journal/ViewPaper.aspx?id=211841 (accessed on 29 December 2021).
- Gálvez, A.; Abriouel, H.; López, R.L.; Omar, N.B. Bacteriocin-based strategies for food biopreservation. Int. J. Food Microbiol. 2007, 120, 51–70. [Google Scholar] [CrossRef]
- Cortés-Zavaleta, O.; López-Malo, A.; Hernández-Mendoza, A.; García, H. Antifungal activity of lactobacilli and its relationship with 3-phenyllactic acid production. Int. J. Food Microbiol. 2014, 173, 30–35. [Google Scholar] [CrossRef]
- Yang, E.; Chang, H. Purification of a new antifungal compound produced by Lactobacillus plantarum AF1 isolated from kimchi. Int. J. Food Microbiol. 2010, 139, 56–63. [Google Scholar] [CrossRef]
- Field, D.; Ross, R.P.; Hill, C. Developing bacteriocins of lactic acid bacteria into next generation biopreservatives. Curr. Opin. Food Sci. 2018, 20, 1–6. [Google Scholar] [CrossRef]
- Pawlowska, A.M.; Zannini, E.; Coffey, A.; Arendt, E.K. Green preservatives: Combating fungi in the food and feed in-dustry by applying antifungal lactic acid bacteria. Adv. Food Nutr. Res. 2012, 66, 217. [Google Scholar] [CrossRef]
- Liu, B.; Ge, N.; Peng, B.; Pan, S. Kinetic and isotherm studies on the adsorption of tenuazonic acid from fruit juice using inactivated LAB. J. Food Eng. 2018, 224, 45–52. [Google Scholar] [CrossRef]
- Shetty, P.H.; Jespersen, L. Saccharomyces cerevisiae and lactic acid bacteria as potential mycotoxin decontaminating agents. Trends Food Sci. Technol. 2006, 17, 48–55. [Google Scholar] [CrossRef]
- Ezat, S.W.P.; Netty, D.; Sangaran, G. Paper review of factors, surveillance and burden of food borne disease outbreak in Malaysia. Malays. J. Public Health Med. 2013, 132, 98–105. Available online: http://wprim.whocc.org.cn/admin/article/articleDetail?WPRIMID=626608&articleId=626608 (accessed on 29 December 2021).
- CDC. Available online: www.cdc.gov/foodsafety/foodborne-germs.html (accessed on 23 September 2021).
- WHO. Available online: www.who.int/activities/estimating-the-burden-of-foodborne-diseases (accessed on 23 September 2021).
- Pitt, J. Toxigenic fungi: Which are important? Med. Mycol. 2000, 38, 17–22. [Google Scholar] [CrossRef] [PubMed]
- Salaheen, S.; Peng, M.; Biswas, D. Replacement of conventional antimicrobials and preservatives in food production to improve consumer safety and enhance health benefits. In Microbial Food Safety and Preservation Techniques, 1st ed.; Rai, V.R., Bai, J.A., Eds.; CRC Press: Boca Raton, FL, USA, 2014; pp. 305–3010. Available online: https://www.taylorfrancis.com/chapters/edit/10.1201/b17465-20/replacement-conventional-antimicrobials-preservatives-food-production-improve-consumer-safety-enhance-health-benefits-serajus-salaheen-mengfei-peng-debabrata-biswas (accessed on 29 December 2021).
- Shehata, M.G.; Badr, A.N.; Sohaimy, S.A.E.I.; Asker, D.; Awad, T.S. Characterization of antifungal metabolites produced by novel lactic acid bacterium and their potential application as food biopreservatives. Ann. Agric. Sci. 2019, 64, 71–78. [Google Scholar] [CrossRef]
- Anand, S.; Sati, N. Artificial preservatives and their harmful effects: Looking toward nature for safer alternatives. Int. J. Pharm. Sci. Res. 2013, 47, 2496. [Google Scholar] [CrossRef]
- Kumari, P.K.; Akhila, S.; Rao, Y.S.; Devi, B.R. Alternative to artificial preservatives. Sys. Rev. Pharm. 2019, 10, 99–102. Available online: www.sysrevpharm.org/fulltext/196-1568985145.pdf (accessed on 29 December 2021).
- Dengate, S.; Ruben, A. Controlled trial of cumulative behavioural effects of a common bread preservative. J. Paediatr. Child Health 2002, 38, 373–376. [Google Scholar] [CrossRef] [PubMed]
- Magomya, A.M.; Yebpella, G.G.; Okpaegbe, U.C.; Oko, O.J.; Gambo, S.B. Analysis and health risk assessment of sodium benzoate and potassium sorbate in selected fruit juice and soft drink brands in nigeria. Int. J. Pharm. Chem. 2020, 5, 54–59. [Google Scholar] [CrossRef]
- Mollapour, M.; Piper, P.W. Targeted gene deletion in Zygosaccharomyces bailii. Yeast 2001, 18, 173–186. [Google Scholar] [CrossRef]
- Makdesi, A.K.; Beuchat, L.R. Evaluation of media for enumerating heat-stressed, benzoate-resistant Zygosaccharomyces bailii. Int. J. Food Microbiol. 1996, 33, 169–181. [Google Scholar] [CrossRef]
- Osman, N.M.; Abou Dobara, M.I.; El-Sayed, A.; Zaky, M. The inhibitory effect of some chemical food preservatives on the growth of some isolated dairy products fungi. J. Basic. Appl. Sci. 2021, 2, 253–262. [Google Scholar] [CrossRef]
- Lay, L.C.; Mounier, J.; Vasseur, V.; Weill, A.; Le Blay, G.; Barbier, G.; Coton, E. In vitro and in situ screening of lactic acid bacteria and propionibacteria antifungal activities against bakery product spoilage molds. Food Control 2016, 60, 247–255. [Google Scholar] [CrossRef]
- Guynot, M.; Ramos, A.; Sanchis, V.; Marín, S. Study of benzoate, propionate, and sorbate salts as mould spoilage inhibitors on intermediate moisture bakery products of low pH 4.5–5.5. Int. J. Food Microbiol. 2005, 101, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Ryan, L.; Dal Bello, F.; Arendt, E. The use of sourdough fermented by antifungal LAB to reduce the amount of calcium propionate in bread. Int. J. Food Microbiol. 2008, 125, 274–278. [Google Scholar] [CrossRef]
- Suhr, K.I.; Nielsen, P.V. Effect of weak acid preservatives on growth of bakery product spoilage fungi at different water activities and pH values. Int. J. Food Microbiol. 2004, 95, 67–78. [Google Scholar] [CrossRef]
- Pongsavee, M.; Mishra, R. Potassium sorbate induces oxidative stress and genotoxicity in human lymphocytes. Indian J. Forensic Med. Toxicol. 2021, 15, 2795–2803. [Google Scholar]
- Ledenbach, L.H.; Marshall, R.T. Microbiological spoilage of dairy products. In Compendium of the Microbiological Spoilage of Foods and Beverages; Springer: New York, NY, USA, 2010; pp. 41–67. [Google Scholar] [CrossRef]
- Stanojevic, D.; Comic, L.; Stefanovic, O.; Solujic-Sukdolak, S. Antimicrobial effects of sodium benzoate, sodium nitrite and potassium sorbate and their synergistic action in vitro. Bulg. J. Agric. Sci. 2009, 15, 307–311. Available online: www.agrojournal.org/15/04-05-09.pdf (accessed on 29 December 2021).
- Piper, J.D.; Piper, P.W. Benzoate and sorbate salts: A systematic review of the potential hazards of these invaluable preservatives and the expanding spectrum of clinical uses for sodium benzoate. Compr. Rev. Food Sci. Food Saf. 2017, 16, 868–888. [Google Scholar] [CrossRef] [Green Version]
- Linke, B.G.; Casagrande, T.A.; Cardoso, L.; Cardoso, A.C. Food additives and their health effects: A review on preservative sodium benzoate. Afr. J. Biotechnol. 2018, 17, 306–310. [Google Scholar] [CrossRef] [Green Version]
- Tirosh, A.; Calay, E.S.; Tuncman, G.; Claiborn, K.C.; Inouye, K.E.; Eguchi, K.; Alcala, M.; Rathaus, M.; Hollander, K.S.; Ron, I.; et al. The short-chain fatty acid propionate increases glucagon and FABP4 production, impairing insulin action in mice and humans. Sci. Transl. Med. 2019, 11, eaav0120. [Google Scholar] [CrossRef] [PubMed]
- Dehghan, P.; Mohammadi, A.; Mohammadzadeh-Aghdash, H.; Dolatabadi, J.E.N. Pharmacokinetic and toxicological aspects of potassium sorbate food additive and its constituents. Trends Food Sci. Technol. 2018, 80, 123–130. [Google Scholar] [CrossRef]
- Lebe, E.; Baka, M.; Yavaşoğlu, A.; Aktuğ, H.; Ateş, U.; Uyanıkgil, Y. Effects of preservatives in nasal formulations on the mucosal integrity: An electron microscopic study. Pharmacology 2004, 72, 113–120. [Google Scholar] [CrossRef]
- Sperber, W.H.; Doyle, M.P. Compendium of the Microbiological Spoilage of Foods and Beverages, 3rd ed.; Food microbiology and food safety; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2009; p. 45. [Google Scholar] [CrossRef]
- Stopforth, J.D.; Sofos, J.N.; Busta, F.F. Sorbic acid and sorbates. In Antimicrobials in Food, 2nd ed.; Davidson, P.M., Sofos, J.N., Branen, N.A., Eds.; CRC Press: New York, NY, USA, 2005; pp. 49–75. Available online: https://books.google.fi/books?hl=en&lr=&id=OU9sBgAAQBAJ&oi=fnd&pg=PA49&dq=Sorbic+acid+and+sorbates.+In+Food+Science+and+Technology&ots=hlaPNQ94qM&sig=gMY8mfCBC64bNAEcBlakPLVb2Vk&redir_esc=y#v=onepage&q=Sorbic%20acid%20and%20sorbates.%20In%20Food%20Science%20and%20Technology&f=false (accessed on 29 December 2021).
- Ferrand, C.; Marc, F.; Fritsch, P.; Cassand, P.; Blanquat, G.D.S. Genotoxicity study of reaction products of sorbic acid. J. Agric. Food Chem. 2000, 48, 3605–3610. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Deng, J.; Xu, S.; Peng, X.; Zuo, Z.; Cui, H.M.; Wang, Y.; Ren, Z.H. Effects of Zearalenone on IL-2, IL-6, and IFN-γ mRNA levels in the splenic lymphocytes of chickens. Sci. World J. 2012, 2012, 567327. [Google Scholar] [CrossRef] [Green Version]
- Wiederhold, N.P. Antifungal resistance: Current trends and future strategies to combat. Infect. Drug Resist. 2017, 10, 249. [Google Scholar] [CrossRef] [Green Version]
- Garnier, L.; Valence, F.A.; Pawtowski, L.; Auhustsinava-Galerne, N.; Frotté, R.; Baroncelli, F.; Déniel, E.; Coton, E.; Mounier, J. Diversity of spoilage fungi associated with various French dairy products. Int. J. Food Microbiol. 2017, 241, 191–197. [Google Scholar] [CrossRef]
- Nielsen, P.V.; De Boer, E. Food preservatives against fungi. In Introduction of Food-and Airborne Fungi; Samson, R.A., Hoekstra, E.S., Frisvad, J.C., Filtenborg, O., Eds.; Centraalbureau voor Schimmelcultures: Utrecht, The Netherlands, 2000; pp. 357–363. [Google Scholar]
- König, H.; Unden, G.; Fröhlich, J. Biology of Microorganisms on Grapes in Must and in Wine, 2nd ed.; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 2017; p. 4. Available online: https://link.springer.com/book/10.1007%2F978-3-319-60021-5 (accessed on 29 December 2021).
- Beasley, S.; Tuorila, H.; Saris, P.E.J. Fermented soymilk with a monoculture of Lactococcus lactis. Int. J. Food Microbiol. 2003, 81, 159–162. [Google Scholar] [CrossRef]
- García, C.; Rendueles, M.; Díaz, M. Liquid-phase food fermentations with microbial consortia involving lactic acid bacteria. Food Res. Int. 2019, 119, 207–220. [Google Scholar] [CrossRef]
- Azizkhani, M.; Saris, P.E.J.; Baniasadi, M. An in-vitro assessment of antifungal and antibacterial activity of cow, camel, ewe, and goat milk kefir and probiotic yogurt. J. Food Meas. Charact. 2020, 15, 406–415. [Google Scholar] [CrossRef]
- Singh, K.; Kallali, B.; Kumar, A.; Thaker, V. Probiotics: A review. Asian Pac. J. Trop. Biomed. 2011, 12, S287–S290. [Google Scholar] [CrossRef]
- Pakdaman, M.N.; Udani, J.K.; Molina, J.P.; Shahani, M. The effects of the DDS-1 strain of lactobacillus on symptomatic re-lief for lactose intolerance-a randomized, double-blind, placebo-controlled, crossover clinical trial. Nutr. J. 2015, 15, 56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dicks, L.; Botes, M. Probiotic lactic acid bacteria in the gastro-intestinal tract: Health benefits, safety and mode of action. Benef. Microbes 2009, 1, 11–29. [Google Scholar] [CrossRef] [PubMed]
- Mahmoudi, M.; Khomeiri, M.; Saeidi, M.; Kashaninejad, M.; Davoodi, H. Study of potential probiotic properties of lactic acid bacteria isolated from raw and traditional fermented camel milk. Appl. Food Biotechnol. 2019, 21, 1161–1172. Available online: jast.modares.ac.ir/article-23-18423-en.pdf (accessed on 29 December 2021).
- Mahmoudi, M.; Khomeiri, M.; Saeidi, M.; Davoodi, H. Lactobacillus Species from Iranian Jug Cheese: Identification and selection of probiotic based on safety and functional properties. J. Agric. Sci. 2021, 8, 47–56. [Google Scholar] [CrossRef]
- Axel, C.; Brosnan, B.; Zannini, E.; Furey, A.; Coffey, A.; Arendt, E.K. Antifungal sourdough lactic acid bacteria as biopreservation tool in quinoa and rice bread. Int. J. Food Microbiol. 2016, 23, 86–94. [Google Scholar] [CrossRef] [PubMed]
- Nasrollahzadeh, A.; Khomeiri, M.; Mahmoudi, M.; Sadeghi, A.; Ebrahimi, M. Identification and evaluation of the antimicrobial potential of strains derived from traditional fermented dairy products of iran as a biological preservative against Listeria monocytogenes, Staphylococcus aureus, Salmonella enterica and Escherichia coli. Iran. J. Microbiol. 2019, 13, 392–405. Available online: http://ijmm.ir/article-1-953-en.html (accessed on 29 December 2021). [CrossRef]
- Quattrini, M.; Liang, N.; Fortina, M.G.; Xiang, S.; Curtis, J.M.; Gänzle, M. Exploiting synergies of sourdough and antifungal organic acids to delay fungal spoilage of bread. Int. J. Food Microbiol. 2019, 302, 8–14. [Google Scholar] [CrossRef]
- Awah, J.; Ukwuru, M.; Alum, E.; Kingsley, T. Bio-preservative potential of lactic acid bacteria metabolites against fungal pathogens. Afr. J. Microbiol. Res. 2018, 12, 913–922. [Google Scholar] [CrossRef]
- Salas, M.L.; Thierry, A.; Lemaître, M.; Garric, G.; Harel-Oger, M.; Chatel, M.; Lê, S.; Mounier, J.; Valence, F.; Coton, E. Antifungal activity of lactic acid bacteria combinations in dairy mimicking models and their potential as bioprotective cultures in pilot scale applications. Front. Microbiol. 2018, 9, 1787. [Google Scholar] [CrossRef] [Green Version]
- Baek, E.; Kim, H.; Choi, H.; Yoon, S.; Kim, J. Antifungal activity of Leuconostoc citreum and Weissella confusa in rice cakes. J. Microbiol. 2012, 50, 842–848. [Google Scholar] [CrossRef] [PubMed]
- Mandal, V.; Sen, S.K.; Mandal, N.C. Detection, isolation and partial characterization of antifungal compound is produced by Pediococcus acidilactici LAB 5. Nat. Prod. Commun. 2007, 2, 671–674. [Google Scholar] [CrossRef] [Green Version]
- Valerio, F.; Favilla, M.; De Bellis, P.; Sisto, A.; De Candia, S.; Lavermicocca, P. Antifungal activity of strains of lactic acid bacteria isolated from a semolina ecosystem against Penicillium roqueforti, Aspergillus niger and Endomyces fibuliger contaminating bakery products. Syst. Appl. Microbiol. 2009, 32, 438–448. [Google Scholar] [CrossRef] [PubMed]
- Lynch, K.M.; Pawlowska, A.M.; Brosnan, B.; Coffey, A.; Zannini, E.; Furey, A.; Rahman, S.U.; Chen, X.; Jiang, Y.; Zhu, D.; et al. Application of Lactobacillus amylovorus as an antifungal adjunct to extend the shelf-life of Cheddar cheese. Int. Dairy J. 2014, 341, 167–173. [Google Scholar] [CrossRef]
- Fernandez, B.; Vimont, A.; Desfossés-Foucault, E.; Daga, M.; Arora, G.; Fliss, I. Antifungal activity of lactic and propionic acid bacteria and their potential as protective culture in cottage cheese. Food Control 2017, 78, 350–356. [Google Scholar] [CrossRef]
- Cheong, E.Y.; Sandhu, A.; Jayabalan, J.; Le, T.T.; Nhiep, N.T.; Ho, H.T.M.; Zwielehner, J.; Bansal, N.; Turner, M.S. Isolation of lactic acid bacteria with antifungal activity against the common cheese spoilage mould Penicillium commune and their potential as biopreservatives in cheese. Food Control 2014, 46, 91–97. [Google Scholar] [CrossRef] [Green Version]
- Khomeiri, M.; Esazadeh Rzelighi, S.; Nasrollahzadeh, A. Evaluation of growth inhibit of food spoilage yeast of Lactobacillus brevis and Enterococcus faecium from chal in Iranian yoghurt drink (Doogh). Iran. J. Biosyst. Eng. IJBSE 2017, 47, 643–649. Available online: https://ijbse.ut.ac.ir/m/article_60258.html?lang=en (accessed on 29 December 2021).
- Ouiddir, M.; Bettache, G.; Salas, M.L.; Pawtowski, A.; Donot, C.; Brahimi, S.; Mabrouk, K.; Coton, E.; Mounier, J. Selection of Algerian lactic acid bacteria for use as antifungal bioprotective cultures and application in dairy and bakery products. Food Microbiol. 2019, 82, 160–170. [Google Scholar] [CrossRef]
- Yan, B.; Zhao, J.; Fan, D.; Tian, F.; Zhang, H.; Chen, W. Antifungal activity of Lactobacillus plantarum against Penicillium roqueforti in vitro and the preservation effect on Chinese steamed bread. J. Food Process. Preserv. 2017, 41, e12969. [Google Scholar] [CrossRef]
- Dalié, D.K.D.; Deschamps, A.M.; Richard-Forget, F. Lactic acid bacteria—Potential for control of mould growth and mycotoxins: A review. Food Control 2010, 21, 370–380. [Google Scholar] [CrossRef]
- Black, B.A.; Zannini, E.; Curtis, J.M.; Gï, M.G. Antifungal hydroxy fatty acids produced during sourdough fermentation: Microbial and enzymatic pathways, and antifungal activity in bread. Appl. Environ. Microbiol. 2013, 79, 1866–1873. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rouse, S.; Harnett, D.; Vaughan, A.; Sinderen, D.V. Lactic acid bacteria with potential to eliminate fungal spoilage in foods. J. Appl. Microbiol. 2008, 104, 915–923. [Google Scholar] [CrossRef] [PubMed]
- Magnusson, J.; Schnürer, J. Lactobacillus coryniformis subsp. coryniformis strain Si3 produces a broad-spectrum proteinaceous antifungal compound. Appl. Environ. Microbiol. 2001, 67, 1–5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sangmanee, P.; Hongpattarakere, T. Inhibitory of multiple antifungal components produced by Lactobacillus plantarum K35 on growth, aflatoxin production and ultrastructure alterations of Aspergillus flavus and Aspergillus parasiticus. Food Control 2014, 40, 224–233. [Google Scholar] [CrossRef]
- Muhialdin, B.J.; Hassan, Z.; Saari, N. In vitro antifungal activity of lactic acid bacteria low molecular peptides against spoilage fungi of bakery products. Ann. Microbiol. 2018, 68, 557–567. [Google Scholar] [CrossRef]
- Prema, P.; Smila, D.; Palavesam, A.; Immanuel, G. Production and characterization of an antifungal compound 3-phenyllactic acid produced by Lactobacillus plantarum strain. Food Bioprocess Technol. 2010, 33, 379–386. [Google Scholar] [CrossRef]
- Peyer, L.C.; Axel, C.; Lynch, K.M.; Zannini, E.; Jacob, F.; Arendt, E.K. Inhibition of Fusarium culmorum by carboxylic acids released from lactic acid bacteria in a barley malt substrate. Food Control 2016, 69, 227–236. [Google Scholar] [CrossRef]
- Ruggirello, M.; Nucera, D.; Cannoni, M.; Peraino, A.; Rosso, F.; Fontana, M.; Cocolin, L.; Dolci, P. Antifungal activity of yeasts and lactic acid bacteria isolated from cocoa bean fermentations. Food Res. Int. 2019, 115, 519–525. [Google Scholar] [CrossRef]
- Nasrollahzadeh, A.; Khomeiri, M.; Sadeghi, A. Molecular identification of lactic acid bacteria strains isolated from the Chal in Golestan province and study antifungal activity of Lactobacillus brevis and Enterococcus faecium isolated against Penicillium chrysogenum. J. Appl. Microbiol. Food Ind. 2016, 2, 56–69. Available online: https://www.sid.ir/en/Journal/ViewPaper.aspx?ID=546149 (accessed on 29 December 2021).
- Ortiz-Rivera, Y.; Sánchez-Vega, R.; Gutiérrez-Méndez, N.; León-Félix, J.; Acosta-Muñiz, C.; Sepulveda, D.R. Production of reuterin in a fermented milk product by Lactobacillus reuteri: Inhibition of pathogens, spoilage microorganisms, and lactic acid bacteria. J. Dairy Sci. 2017, 100, 4258–4268. [Google Scholar] [CrossRef] [Green Version]
- Russo, P.; Arena, M.P.; Fiocco, D.; Capozzi, V.; Drider, D.; Spano, G. Lactobacillus plantarum with broad antifungal activity: A promising approach to increase safety and shelf-life of cereal-based products. Int. J. Food Microbiol. 2017, 247, 48–54. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, P.M.; Zannini, E.; Arendt, E.K. Cereal fungal infection, mycotoxins, and lactic acid bacteria mediated bioprotection: From crop farming to cereal products. Food Microbiol. 2014, 37, 78–95. [Google Scholar] [CrossRef] [PubMed]
- Muhialdin, B.J.; Hassan, Z.; Sadon, S.K.H. Antifungal activity of Lactobacillus fermentum Te007, Pediococcus pentosaceus Te010, Lactobacillus pentosus G004, and L. paracasi D5 on selected foods. J. Food Sci. 2011, 76, M493–M499. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.; Srivastava, S. Antifungal effect of antimicrobial peptides (AMPs LR14) derived from Lactobacillus plantarum strain LR/14 and their applications in prevention of grain spoilage. Food Microbiol. 2014, 42, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Oirdi, E.S.; Lakhlifi, T.; Bahar, A.A.; Yatim, M.; Rachid, Z.; Belhaj, A. Isolation and identification of Lactobacillus plantarum 4F, a strain with high antifungal activity, fungicidal effect, and biopreservation properties of food. J. Food Process. Preserv. 2020, 6, e15517. [Google Scholar] [CrossRef]
- Vimont, A.; Fernandez, B.; Ahmed, G.; Fortin, H.P.; Fliss, I. Quantitative antifungal activity of reuterin against food isolates of yeasts and moulds and its potential application in yogurt. Int. J. Food Microbiol. 2019, 28, 182–188. [Google Scholar] [CrossRef] [PubMed]
- Cosentino, S.; Viale, S.; Deplano, M.; Fadda, M.E.; Pisano, M.B. Application of autochthonous Lactobacillus strains as biopreservatives to control fungal spoilage in Caciotta cheese. BioMed Res. Int. 2018, 18, 381–393. [Google Scholar] [CrossRef] [Green Version]
- Luz, C.; D’Opazo, V.; Mañes, J.; Meca, G. Antifungal activity and shelf life extension of loaf bread produced with sourdough fermented by Lactobacillus strains. J. Food Process. Preserv. 2019, 43, e14126. [Google Scholar] [CrossRef]
- Guimarães, A.; Venancio, A.; Abrunhosa, L. Antifungal effect of organic acids from lactic acid bacteria on Penicillium nordicum. Food Addit. Contam. 2018, 359, 1803–1818. [Google Scholar] [CrossRef] [Green Version]
- Ryan, L.A.; Dal Bello, F.; Arendt, E.K.; Koehler, P. Detection and quantitation of 2, 5-diketopiperazines in wheat sourdough and bread. J. Agric. Food Chem. 2009, 57, 9563–9568. [Google Scholar] [CrossRef]
- Martinez, F.A.C.; Balciunas, E.M.; Salgado, J.M.; González, J.M.D.; Converti, A.; Oliveira, R.P.S. Lactic acid properties, applications and production: A review. Trends Food Sci. Technol. 2013, 30, 70–83. [Google Scholar] [CrossRef]
- Nasrollahzadeh, A.; Khomeiri, M.; Mahmoudi, M.; Sadeghi, A.; Ebrahimi, M. Antifungal activity of lactic acid bacteria isolated from masske, camel dough, and local yoghurt against Aspergillus flavus and Aspergillus niger. J. Food Hyg. 2020, 4, 1–11. Available online: https://www.sid.ir/en/Journal/ViewPaper.aspx?ID=747257 (accessed on 29 December 2021).
- Arena, M.P.; Silvain, A.; Normanno, G.; Grieco, F.; Drider, D.; Spano, G.; Fiocco, D. Use of Lactobacillus plantarum strains as a bio-control strategy against food-borne pathogenic microorganisms. Front. Microbiol. 2016, 7, 464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Honoré, A.H.; Aunsbjerg, S.D.; Ebrahimi, P.; Thorsen, M.; Benfeldt, C.; Knøchel, S.; Skov, T. Metabolic footprinting for investigation of antifungal properties of Lactobacillus paracasei. Anal. Bioanal. Chem. 2016, 408, 83–96. [Google Scholar] [CrossRef] [PubMed]
- Salas, M.L.; Mounier, J.; Maillard, M.B.; Valence, F.; Coton, E.; Thierry, A. Identification and quantification of natural compounds produced by antifungal bioprotective cultures in dairy products. Food Chem. 2019, 301, 125260. [Google Scholar] [CrossRef] [PubMed]
- Crowley, S.; Mahony, J.; Sinderen, D.V. Current perspectives on antifungal lactic acid bacteria as natural bio-preservatives. Trends Food Sci. Technol. 2013, 33, 93–109. [Google Scholar] [CrossRef]
- Dagnas, S.; Gauvry, E.; Onno, B.; Membre, J.M. Quantifying effect of lactic, acetic, and propionic acids on growth of molds isolated from spoiled bakery products. J. Food Prot. 2015, 78, 1689–1698. [Google Scholar] [CrossRef]
- Loubiere, P.; Cocaign-Bousquet, M.; Matos, J.; Goma, G.; Lindley, N. Influence of end-products inhibition and nutrient limitations on the growth of Lactococcus lactis subsp. Lactis. J. Appl. Microbiol. 1997, 82, 95–100. [Google Scholar] [CrossRef]
- Brosnan, B.; Coffey, A.; Arendt, E.K.; Furey, A. Rapid identification, by use of the LTQ Orbitrap hybrid FT mass spectrometer, of antifungal compounds produced by lactic acid bacteria. Anal. Bioanal. Chem. 2012, 403, 2983–2995. [Google Scholar] [CrossRef]
- Guo, J.; Brosnan, B.; Furey, A.; Arendt, E.; Murphy, P.; Coffey, A. Antifungal activity of Lactobacillus against Microsporum canis, Microsporum gypseum and Epidermophyton floccosum. Bioeng. Bugs 2012, 32, 104–113. [Google Scholar] [CrossRef] [Green Version]
- Muynck, C.; Leroy, A.I.D.; Maeseneire, S.D.; Arnaut, F.; Soetaert, W.; Vandamme, E.J. Potential of selected lactic acid bacteria to produce food compatible antifungal metabolites. Microbiol. Res. 2004, 159, 339–346. [Google Scholar] [CrossRef] [PubMed]
- Jung, S.; Hwang, H.; Lee, J.H. Effect of lactic acid bacteria on phenyllactic acid production in kimchi. Food Control 2019, 106, 106701. [Google Scholar] [CrossRef]
- Schmidt, M.; Lynch, K.M.; Zannini, E.; Arendt, E.K. Fundamental study on the improvement of the antifungal activity of Lactobacillus reuteri R29 through increased production of phenyllactic acid and reuterin. Food Control 2018, 88, 139–148. [Google Scholar] [CrossRef]
- Lavermicocca, P.; Valerio, F.; Evidente, A.; Lazzaroni, S.; Corsetti, A.; Gobbetti, M. Purification and characterization of novel antifungal compounds from the sourdough Lactobacillus plantarum strain 21B. Appl. Environ. Microbiol. 2000, 66, 4084–4090. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guimarães, A.; Santiago, A.; Teixeira, J.A.; Venâncio, A.; Abrunhosa, L. Anti-aflatoxigenic effect of organic acids produced by Lactobacillus plantarum. Int. J. Food Microbiol. 2018, 264, 31–38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yépez, A.; Luz, C.; Meca, G.; Vignolo, G.; Mañes, J.; Aznar, R. Biopreservation potential of lactic acid bacteria from Andean fermented food of vegetal origin. Food Control 2017, 78, 393–400. [Google Scholar] [CrossRef]
- Ström, K.; Sjögren, J.; Broberg, A.; Schnürer, J. Lactobacillus plantarum MiLAB 393 produces the antifungal cyclic dipeptides cyclo(L-Phe-L-Pro) and cyclo(L-Phe-trans-4-OH-L-Pro) and 3-phenyllactic acid. Appl. Environ. Microbiol. 2002, 68, 4322–4327. [Google Scholar] [CrossRef] [Green Version]
- Ndagano, D.; Lamoureux, T.; Dortu, C.; Vandermoten, S.; Thonart, P. Antifungal activity of 2 lactic acid bacteria of the Weissella genus isolated from food. J. Food Sci. 2011, 76, M305–M311. [Google Scholar] [CrossRef]
- Engels, C.; Schwab, C.; Zhang, J.; Stevens, M.J.; Bieri, C.; Ebert, M.O.; McNeill, K.; Sturla, S.J.; Lacroix, C. Acrolein contributes strongly to antimicrobial and heterocyclic amine transformation activities of reuterin. Sci. Rep. 2016, 6, 36246. [Google Scholar] [CrossRef] [Green Version]
- Schaefer, L.; Auchtung, T.A.; Hermans, K.E.; Whitehead, D.; Borhan, B.; Britton, R.A. The antimicrobial compound reuterin 3-hydroxypropionaldehyde induces oxidative stress via interaction with thiol groups. Microbiology 2010, 156, 1589–1599. [Google Scholar] [CrossRef] [Green Version]
- Magnusson, J. Antifungal activity of lactic acid bacteria. Ph.D. Thesis, Swedish University of Agricultural Sciences, Uppsala, Sweden, 2003. Available online: https://pub.epsilon.slu.se/247/ (accessed on 29 December 2021).
- Talarico, T.L.; Dobrogosz, W.J. Chemical characterization of an antimicrobial substance produced by Lactobacillus reuteri. Antimicrob. Agents Chemother. 1989, 33, 674–679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gómez-Torres, N.; Ávila, M.; Delgado, D.; Garde, S. Effect of reuterin-producing Lactobacillus reuteri coupled with glycerol on the volatile fraction, odour and aroma of semi-hard ewe milk cheese. Int. J. Food Microbiol. 2016, 232, 103–110. [Google Scholar] [CrossRef] [PubMed]
- Luz, C.; Saladino, F.; Luciano, F.; Mañes, J.; Meca, G. In vitro antifungal activity of bioactive peptides produced by Lactobacillus plantarum against Aspergillus parasiticus and Penicillium expansum. LWT 2017, 81, 128–135. [Google Scholar] [CrossRef]
- Gerez, C.L.; Torres, M.J.; Valdez, G.F.D.; Rollán, G. Control of spoilage fungi by lactic acid bacteria. Biol. Control 2013, 64, 231–237. [Google Scholar] [CrossRef]
- Guillén, G.; López Caballero, M.E.; Alemán, A.; López de Lacey, A.; Giménez, B.; Montero García, P. Antioxidant and antimicrobial peptide fractions from squid and tuna skin gelatin. In Sea By-Products as Real Material: New Ways of Application; Bihan, E., Ed.; Transworld Research Network: Trivandrum, India, 2010; pp. 98–115. [Google Scholar]
- Joo, S.H. Cyclic peptides as therapeutic agents and biochemical tools. Biomol. Ther. 2012, 20, 19–26. [Google Scholar] [CrossRef] [Green Version]
- Niku-Paavola, M.L.; Laitila, A.; Mattila-Sandholm, T.; Haikara, A. New types of antimicrobial compounds produced by Lactobacillus plantarum. J. Appl. Microbiol. 1999, 861, 29–35. [Google Scholar] [CrossRef]
- Shai, Y. Molecular recognition between membrane-spanning polypeptides. Trends Biochem. Sci. 1995, 20, 460–464. [Google Scholar] [CrossRef]
- Insel, P.M. Discovering Nutrition, 4th ed.; Jones and Bartlett: Burlington, MA, USA, 2013; Available online: https://books.google.com/books/about/Discovering_Nutrition.html?id=an0vCrQxaB8C (accessed on 29 December 2021).
- Sjögren, J.; Magnusson, J.; Broberg, A.; Schnürer, J.; Kenne, L. Antifungal 3-hydroxy fatty acids from Lactobacillus plantarum MiLAB 14. Appl. Environ. Microbiol. 2003, 69, 7554–7557. [Google Scholar] [CrossRef] [Green Version]
- Avis, T.J.; Bélanger, R.R. Specificity and mode of action of the antifungal fatty acid cis-9-heptadecenoic acid produced by Pseudozyma flocculosa. Appl. Environ. Microbiol. 2001, 672, 956–960. [Google Scholar] [CrossRef] [Green Version]
- Pohl, C.H.; Kock, J.L.F.; Thibane, V.S. Antifungal free fatty acids: A review. In Science against Microbial Pathogens: Communicating Current Research and Technological Advances; Formatex Research Center: Guadalajara, Mexico, 2011; Volume 1, pp. 61–71. Available online: www.researchgate.net/profile/Carolina_Pohl/publication/266463207_Antifungal_free_fatty_acids_A_Review/links/54daf14b0cf261ce15ce9643.pdf (accessed on 29 December 2021).
Preservatives | Food | Health Effects | Resistant Fungi | References |
---|---|---|---|---|
Benzoate | Fruit products Acidic foods Margarine Cereals Meat Carbonated drinks | Neurotransmission and cognitive functioning Hyperactivity and allergic reactions Genotoxic Clastogenic intercalation in the DNA structure | [19] [22] [23] | |
Zygosaccharomyces bailii | [24] | |||
Aspergillus flavus | [25] | |||
Aspergillus niger and Penicillium notatum | [5] | |||
Elymus repens and A. niger | [26] | |||
Aspergillus conicus, Penicillium, Cladosporium and Wallemia | [27] | |||
Propionate | Breads and other baked goods | Hypersensitivity Visual irritability Restlessness Inattention Sleep disturbance | [19] | |
E. repens and A. niger | [26] | |||
A. conicus, Penicillium, Cladosporium and Wallemia | [27] | |||
Penicillium expansum and Penicillium roqueforti | [28] | |||
P. roqueforti | [29] | |||
Sorbate | Syrups Dairy products Cakes Mayonnaise Margarine Processed meats | Cytotoxic and genotoxic effects DNA breakage Irritant to respiratory epithelium | P. roquefortii | [19] [30] [31] [32] |
A. flavus | [32] | |||
P. notatum and A. niger | [5] | |||
Rhizopus nigricans | [4] | |||
E. repens and A. niger | [26] | |||
A. conicus, Penicillium, Cladosporium and Wallemia | [27] |
LAB Isolate | Antifungal Compound | Activity Spectrum | Food Product | Reference |
---|---|---|---|---|
L. pentosus G004 L. fermentum Te007 L. paracasi D5 Pediococcus pentosaceus Te010 | Protein-like compounds | A. niger and Aspergillus oryzae | Bread Tomato Cheese | [81] |
L. amylovorus DSM 19280 | Acetic acid Lactic acid Hydrocinnamic acid Azelaic acid 4-Hydroxybenzoic acid | P. expansum | Cheddar cheese | [62] |
L. plantarum LR/14 | Antimicrobial peptides AMPs LR14 | A. niger, Rhizopus stolonifera, M. racemosus and P. chrysogenum | Wheat grain | [82] |
L. plantarum | Phenolic acids Organic acids | F. culmorum P. expansum MUCL2919240 | Barley malt Bread grapes | [75] [83] |
L. fermentum, L. plantarum | Phenyllactic acid Organic acids | A. flavus, Penicillium citrinum, Penicillium griseufulvum, A. niger and A. fumigatus | Cocoa beans | [76] |
L. reuteri | Reuterin | P. chrysogenum and M. racemosus | Yogurt | [84] |
L. pentosus, L. plantarum, L. brevis, Lactobacillus delbrueckii, L. fermentum, Lactococcus lactis and Lc. mesenteroides | Hydrogen sulphide and lactic acid | Penicillium oxalicum, Fusarium verticillioides and A. niger | Fruits and vegetables | [57] |
Lactobaciullus strains | Organic acids | P. chrysogenum and A. favus | Caciotta cheese | [85] |
L. plantarum CECT 749 | Gallic, chlorogenic, caffeic and syringic acids | Fusarium spp. Penicillium spp. and Aspergillus spp. | Bread | [86] |
Number of LAB strains isolated from Kimchi | Lactic acid and acetic acid | Cladosporium sp. YS1, Neurospora sp. YS3, and P. crustosum YS2 | Rice cake | [59] |
Leuconostoc spp. L. reuteri and L. buchneri | Organic acids such as lactic acid, acetic acid and propionic acid | Aspergillus, Eurotium, Penicillium, Cladosporium and Wallemia spp. | Milk bread rolls | [26] |
L. plantarum CH1, L. paracasei B20 and Lc. mesenteroides L1 | Lactic acid and acetic acid | M. racemosus, Penicillium commune, Yarrowia lipolytica, A. tubingensis, A. flavus and Paecilomyces | Sour cream and sourdough bread | [66] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nasrollahzadeh, A.; Mokhtari, S.; Khomeiri, M.; Saris, P.E.J. Antifungal Preservation of Food by Lactic Acid Bacteria. Foods 2022, 11, 395. https://doi.org/10.3390/foods11030395
Nasrollahzadeh A, Mokhtari S, Khomeiri M, Saris PEJ. Antifungal Preservation of Food by Lactic Acid Bacteria. Foods. 2022; 11(3):395. https://doi.org/10.3390/foods11030395
Chicago/Turabian StyleNasrollahzadeh, Ahmad, Samira Mokhtari, Morteza Khomeiri, and Per E. J. Saris. 2022. "Antifungal Preservation of Food by Lactic Acid Bacteria" Foods 11, no. 3: 395. https://doi.org/10.3390/foods11030395
APA StyleNasrollahzadeh, A., Mokhtari, S., Khomeiri, M., & Saris, P. E. J. (2022). Antifungal Preservation of Food by Lactic Acid Bacteria. Foods, 11(3), 395. https://doi.org/10.3390/foods11030395