The Effect of Respiration, pH, and Citrate Co-Metabolism on the Growth, Metabolite Production and Enzymatic Activities of Leuconostoc mesenteroides subsp. cremoris E30
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strains and Culture Conditions
2.2. Fermentation Conditions
2.3. Oxygen Uptake
2.4. Biochemical Analyses and Enzymatic Activities
2.5. Statistical Analysis
3. Results
3.1. Growth Kinetics and Oxygen Uptake
3.2. Consumption of Substrates and Production of Metabolites
3.3. Activities of Enzymes Related to Oxygen Metabolism and Oxidative Stress
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ricciardi, A.; Storti, L.V.; Zotta, T.; Felis, G.E.; Parente, E. Analysis of rpoB polymorphism and PCR-based approaches for the identification of Leuconostoc mesenteroides at the species and subspecies level. Int. J. Food Microbiol. 2020, 318, 108474. [Google Scholar] [CrossRef]
- Botta, C.; Langerholc, T.; Cencič, A.; Cocolin, L. In vitro selection and characterization of new probiotic candidates from table olive microbiota. PLoS ONE 2014, 9, e94457. [Google Scholar] [CrossRef] [PubMed]
- Corona, O.; Alfonzo, A.; Ventimiglia, G.; Nasca, A.; Francesca, N.; Martorana, A.; Moschetti, G.; Settanni, L. Industrial application of selected lactic acid bacteria isolated from local semolinas for typical sourdough bread production. Food Microbiol. 2016, 59, 43–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moon, S.H.; Kim, C.R.; Chang, H.C. Heterofermentative lactic acid bacteria as a starter culture to control kimchi fermentation. LWT-Food Sci. Technol. 2018, 88, 181–188. [Google Scholar] [CrossRef]
- Pogačić, T.; Maillard, M.B.; Leclerc, A.; Hervé, C.; Chuat, V.; Valence, F.; Thierry, A. Lactobacillus and Leuconostoc volatilomes in cheese conditions. Appl. Microbiol. Biotechnol. 2016, 100, 2335–2346. [Google Scholar] [CrossRef]
- Xu, Y.; Coda, R.; Shi, Q.; Tuomainen, P.; Katina, K.; Tenkanen, M. Exopolysaccharides production during the fermentation of soybean and fava bean flours by Leuconostoc mesenteroides DSM 20343. J. Agric. Food Chem. 2017, 65, 2805–2815. [Google Scholar] [CrossRef]
- D’Angelo, L.; Cicotello, J.; Zago, M.; Guglielmotti, D.; Quiberoni, A.; Suárez, V. Leuconostoc strains isolated from dairy products: Response against food stress conditions. Food Microbiol. 2017, 66, 28–39. [Google Scholar] [CrossRef]
- Comi, G.; Iacumin, L. Identification and process origin of bacteria responsible for cavities and volatile off-flavour compounds in artisan cooked ham. J. Food Sci. Technol. 2012, 47, 114–121. [Google Scholar] [CrossRef]
- Comi, G.; Andyanto, D.; Manzano, M.; Iacumin, L. Lactococcus lactis and Lactobacillus sakei as bio-protective culture to eliminate Leuconostoc mesenteroides spoilage and improve the shelf life and sensorial characteristics of commercial cooked bacon. Food Microbiol. 2016, 58, 16–22. [Google Scholar] [CrossRef]
- Pothakos, V.; Nyambi, C.; Zhang, B.Y.; Papastergiadis, A.; De Meulenaer, B.; Devlieghere, F. Spoilage potential of psychrotrophic lactic acid bacteria (LAB) species: Leuconostoc gelidum subsp. gasicomitatum and Lactococcus piscium on sweet bell pepper (SBP) simulation medium under different gas compositions. Int. J. Food Microbiol. 2014, 178, 120–129. [Google Scholar] [CrossRef]
- Pothakos, V.; Aulia, Y.A.; van der Linden, I.; Uyttendaele, M.; Devlieghere, F. Exploring the strain-specific attachment of Leuconostoc gelidum subsp. gasicomitatum on food contact surfaces. Int. J. Food Microbiol. 2015, 199, 41–46. [Google Scholar] [CrossRef] [PubMed]
- Gänzle, M.G. Lactic metabolism revisited: Metabolism of lactic acid bacteria in food fermentations and food spoilage. Curr. Opin. Food Sci. 2015, 2, 106–117. [Google Scholar] [CrossRef]
- Smid, E.J.; Kleerebezem, M. Production of aroma compounds in lactic fermentations. Annu. Rev. Food Sci. Technol. 2014, 5, 313–326. [Google Scholar] [CrossRef] [PubMed]
- Zaunmüller, T.; Eichert, M.; Richter, H.; Unden, G. Variations in the energy metabolism of biotechnologically relevant heterofermentative lactic acid bacteria during growth on sugars and organic acids. Appl. Microbiol. Biotechnol. 2006, 72, 421–429. [Google Scholar] [CrossRef]
- Plihon, F.; Taillandier, P.; Strehaiano, P. Oxygen effect on batch cultures of Leuconostoc mesenteroides: Relationship between oxygen uptake, growth and end-products. Appl. Microbiol. Biotechnol. 1995, 43, 117–122. [Google Scholar] [CrossRef]
- Plihon, F.; Taillandier, P.; Strehaiano, P. Oxygen effect on lactose catabolism by a Leuconostoc mesenteroides strain: Modeling of general O2-dependent stoichiometry. Biotechnol. Bioeng. 1996, 49, 63–69. [Google Scholar] [CrossRef]
- Lechardeur, D.; Cesselin, B.; Fernandez, A.; Lamberet, G.; Garrigues, C.; Pedersen, M.; Gaudu, P.; Gruss, A. Using heme as an energy boost for lactic acid bacteria. Curr. Opin. Biotech. 2011, 22, 143–149. [Google Scholar] [CrossRef]
- Pedersen, M.B.; Gaudu, P.; Lechardeur, D.; Petit, M.A.; Gruss, A. Aerobic respiration metabolism in lactic acid bacteria and uses in biotechnology. Annu. Rev. Food Sci. Technol. 2012, 3, 37–58. [Google Scholar] [CrossRef]
- Zotta, T.; Ricciardi, A.; Parente, E. Aerobic metabolism in the genus Lactobacillus: Impact on stress response and potential applications in the food industry. J. Appl. Microbiol. 2017, 122, 857–869. [Google Scholar] [CrossRef] [Green Version]
- Brooijmans, R.J.W.; Smit, B.; Santos, F.; van Riel, J.; de Vos, W.M.; Hugenholtz, J. Heme and menaquinone induced electron transport in lactic acid bacteria. Microb. Cell Fact. 2009, 8, 28. [Google Scholar] [CrossRef] [Green Version]
- Ianniello, R.G.; Zheng, J.; Zotta, T.; Ricciardi, A.; Gänzle, M.G. Biochemical analysis of respiratory metabolism in the heterofermentative Lactobacillus spicheri and Lactobacillus reuteri. J. Appl. Microbiol. 2015, 119, 763–775. [Google Scholar] [CrossRef] [PubMed]
- Jääskeläinen, E.; Johansson, P.; Kostiainen, O.; Nieminen, T.; Schmidt, G.; Somervuo, P.; Mohsina, M.; Vanninen, P.; Auvinen, P.; Björkroth, J. Significance of heme-based respiration in meat spoilage caused by Leuconostoc gasicomitatum. Appl. Environ. Microbiol. 2013, 79, 1078–1085. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rahkila, R.; De Bruyne, K.; Johansson, P.; Vandamme, P.; Björkroth, J. Reclassification of Leuconostoc gasicomitatum as Leuconostoc gelidum subsp. gasicomitatum comb. nov. description of Leuconostoc gelidum subsp. aenigmaticum subsp. nov. designation of Leuconostoc gelidum subsp. gelidum subsp. nov. and emended description of Leuconostoc gelidum. Int. J. Syst. Evol. Microbiol. 2014, 64, 1290–1295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zotta, T.; Ricciardi, A.; Ianniello, R.G.; Storti, L.V.; Glibota, N.A.; Parente, E. Aerobic and respirative growth of heterofermentative lactic acid bacteria: A screening study. Food Microbiol. 2018, 76, 117–127. [Google Scholar] [CrossRef] [PubMed]
- Zotta, T.; Ricciardi, A.; Guidone, A.; Sacco, M.; Muscariello, L.; Mazzeo, M.F.; Cacace, G.; Parente, E. Inactivation of ccpA and aeration affect growth, metabolite production and stress tolerance in Lactobacillus plantarum WCFS1. Int. J. Food Microbiol. 2012, 155, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Ianniello, R.G.; Zotta, T.; Matera, A.; Genovese, F.; Parente, E.; Ricciardi, A. Investigation of factors affecting aerobic and respiratory growth in the oxygen-tolerant strain Lactobacillus casei N87. PLoS ONE 2016, 11, e0164065. [Google Scholar] [CrossRef]
- Baranyi, J.; Roberts, T.A. A dynamic approach to predicting bacterial growth in food. Int. J. Food Microbiol. 1994, 23, 277–294. [Google Scholar] [CrossRef]
- Baranyi, J. DMFit Manual Version 3.5 Institute of Food Research; Norwich Research Park: Norwich, UK, 2015. [Google Scholar]
- Ricciardi, A.; Ianniello, R.G.; Tramutola, A.; Parente, E.; Zotta, T. Rapid detection assay for oxygen consumption in the Lactobacillus casei group. Ann. Microbiol. 2014, 64, 1861–1864. [Google Scholar] [CrossRef]
- Sander, R. Compilation of Henry’s Law constants (Version 4.0) for water as solvent. Atmos. Chem. Phys. 2015, 15, 4399–4981. [Google Scholar] [CrossRef] [Green Version]
- Zotta, T.; Ricciardi, A.; Ianniello, R.G.; Parente, E.; Reale, A.; Rossi, F.; Iacumin, L.; Comi, G.; Coppola, R. Assessment of aerobic and respiratory growth in the Lactobacillus casei group. PLoS ONE 2014, 9, e99189. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021; Available online: https://www.R-project.org/ (accessed on 1 December 2021).
- Wickham, H. Tidyverse: Easily Install and Load ‘Tidyverse’ Packages. R Package Version 1.1.1. 2017. Available online: https://CRAN.R-project.org/package=tidyverse (accessed on 1 December 2021).
- Guo, T.; Zhang, L.; Xin, Y.; Xu, Z.; He, H.; Kong, J. Oxygen-inducible conversion of lactate to acetate in heterofermentative Lactobacillus brevis ATCC 367. Appl. Environ. Microbiol. 2017, 83, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, T.S.; Korber, D.R.; Tanaka, T. Influence of oxygen on NADH recycling and oxidative stress resistance systems in Lactobacillus panis PM1. AMB Express 2013, 3, 10–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jänsch, A.; Freiding, S.; Behr, J.; Vogel, R.F. Contribution of the NADH-oxidase (Nox) to the aerobic life of Lactobacillus sanfranciscensis DSM20451T. Food Microbiol. 2011, 28, 29–37. [Google Scholar] [CrossRef] [PubMed]
- Sakamoto, M.; Uchimura, T.; Komagata, K. Comparison of H2O-forming NADH oxidase from Leuconostoc mesenteroides subsp. mesenteroides NRIC 1541T and H2O2-forming NADH oxidase from Sporolactobacillus inulinus NRIC 1133T. J. Biosci. Bioeng. 1996, 82, 531–537. [Google Scholar] [CrossRef]
- Whittenbury, R. Hydrogen peroxide formation and catalase activity in the lactic acid bacteria. J. Gen. Microbiol. 1964, 35, 13–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Özcan, E.; Selvi, S.S.; Nikerel, E.; Teusink, B.; Öner, E.T.; Çakır, T. A genome-scale metabolic network of the aroma bacterium Leuconostoc mesenteroides subsp. cremoris. Appl. Microbiol. Biotechnol. 2019, 103, 3153–3165. [Google Scholar] [CrossRef]
- Marty-Teysset, C.; Lolkema, J.S.; Schmitt, P.; Diviès, C.; Konings, W.N. The citrate metabolic pathway in Leuconostoc mesenteroides: Expression, amino acid synthesis, and a-ketocarboxylate transport. J. Bacteriol. 1996, 178, 6209–6215. [Google Scholar] [CrossRef] [Green Version]
- Schmitt, P.; Divies, C.; Cardona, R. Origin of end-products from the co-metabolism of glucose and citrate by Leuconostoc mesenteroides subsp. cremoris. Appl. Microbiol. Biotechnol. 1992, 36, 679–683. [Google Scholar] [CrossRef]
- Reale, A.; Ianniello, R.G.; Ciocia, F.; Di Renzo, T.; Boscaino, B.; Ricciardi, A.; Coppola, R.; Parente, E.; Zotta, T.; McSweeney, P.L.H. Effect of respirative and catalase-positive Lactobacillus casei adjuncts on the production and quality of Cheddar-type cheese. Int. Dairy J. 2016, 63, 78–87. [Google Scholar] [CrossRef]
- Reale, A.; Di Renzo, T.; Zotta, T.; Preziuso, M.; Boscaino, F.; Ianniello, R.; Storti, L.V.; Tremonte, P.; Coppola, R. Effect of respirative cultures of Lactobacillus casei on model sourdough fermentation. LWT-Food Sci. Technol. 2016, 73, 622–629. [Google Scholar] [CrossRef]
Fermentation | Incubation a | Citrate b | pH |
---|---|---|---|
F1 | AN | 0 | 6.5 |
F2 | AN | 1 | 6.5 |
F3 | AN | 0 | 5.5 |
F4 | AN | 1 | 5.5 |
F5 | RS | 0 | 6.5 |
F6 | RS | 1 | 6.5 |
F7 | RS | 0 | 5.5 |
F8 | RS | 1 | 5.5 |
Growth Condition | µmax (h−1) | lag (h) | R2 of Fit |
---|---|---|---|
F1_AN_0_6.5_a | 0.46 ± 0.02 | 0.00 ± 0.00 | 0.972 |
F1_AN_0_6.5_b | 0.46 ± 0.01 | 1.38 ± 0.21 | 0.996 |
F2_AN_1_6.5_a | 0.64 ± 0.01 | 1.05 ± 0.11 | 0.998 |
F2_AN_1_6.5_b | 0.57 ± 0.01 | 1.13 ± 0.14 | 0.997 |
F3_AN_0_5.5_a | 0.40 ± 0.02 | 1.92 ± 0.25 | 0.995 |
F3_AN_0_5.5_b | 0.42 ± 0.02 | 3.09 ± 0.22 | 0.997 |
F4_AN_1_5.5_a | 0.50 ± 0.01 | 0.00 ± 0.00 | 0.997 |
F4_AN_1_5.5_b | 0.47 ± 0.01 | 1.54 ± 0.19 | 0.997 |
F5_RS_0_6.5_a | 0.77 ± 0.03 | 2.17 ± 0.19 | 0.997 |
F5_RS_0_6.5_b | 0.82 ± 0.06 | 0.36 ± 3.57 | 0.992 |
F6_RS_1_6.5_a | 0.72 ± 0.07 | 4.58 ± 0.32 | 0.988 |
F6_RS_1_6.5_b | 0.71 ± 0.03 | 2.58 ± 0.21 | 0.995 |
F7_RS_0_5.5_a | 0.63 ± 0.03 | 2.11 ± 0.18 | 0.996 |
F7_RS_0_5.5_b | 0.67 ± 0.03 | 2.41 ± 0.20 | 0.996 |
F8_RS_1_5.5_a | 0.55 ± 0.06 | 3.24 ± 0.50 | 0.974 |
F8_RS_1_5.5_b | 0.49 ± 0.03 | 3.00 ± 0.35 | 0.988 |
Growth Condition a | Growth Phase b | Biomass Yield c | Glucose Consumed d | Lactic Acid Yield e | Acetic ACID Yield f | Ethanol Yield g |
---|---|---|---|---|---|---|
F1_AN_0_6.5 | E | 0.074 ± 0.032 | 34.8 ± 3.356 | 0.595 ± 0.248 | 0.038 ± 0.010 | 0.450 ± 0.0186 |
S | 0.072 ± 0.009 | 131.93 ± 4.512 | 0.979 ± 0.043 | 0.019 ± 0.021 | 0.682 ± 0.046 | |
F2_AN_1_6.5 | E | 0.102 ± 0.070 | 27.16 ± 21.253 | 1.707 ± 1.339 | 1.205 ± 0.978 | 0.158 ± 0.065 |
S | 0.076 ± 0.006 | 116.81 ± 5.761 | 1.209 ± 0.070 | 0.196 ± 0.012 | 0.666 ± 0.108 | |
F3_AN_0_5.5 | E | 0.074 ± 0.005 | 32.43 ± 0.746 | 0.763 ± 0.003 | 0.036 ± 0.024 | 0.606 ± 0.074 |
S | 0.082 ± 0.009 | 130.78 ± 1.361 | 0.843 ± 0.001 | 0.010 ± 0.003 | 0.653 ± 0.087 | |
F4_AN_1_5.5 | E | 0.140 ± 0.006 | 17.01 ± 2.424 | 1.706 ± 0.278 | 1.530 ± 0.176 | 0.247 ± 0.185 |
S | 0.082 ± 0.006 | 122.02 ± 2.834 | 1.186 ± 0.287 | 0.177 ± 0.038 | 0.590 ± 0.148 | |
F5_RS_0_6.5 | E | 0.232 ± 0.036 | 13.71 ± 4.847 | 0.802 ± 0.186 | 0.726 ± 0.181 | 0.090 ± 0.098 |
S | 0.135 ± 0.051 | 126.43 ± 1.510 | 0.613 ± 0.011 | 0.634 ± 0.008 | 0.130 ± 0.146 | |
F6_RS_1_6.5 | E | 0.145 ± 0.022 | 24.78 ± 1.491 | 0.924 ± 0.164 | 0.000 ± 0.000 | 0.000 ± 0.000 |
S | 0.128 ± 0.004 | 124.88 ± 1.920 | 0.783 ± 0.069 | 0.611 ± 0.028 | 0.105 ± 0.059 | |
F7_RS_0_5.5 | E | 0.077 ± 0.027 | 43.77 ± 14.169 | 0.244 ± 0.088 | 0.147 ± 0.073 | 0.000 ± 0.000 |
S | 0.113 ± 0.005 | 126.91 ± 4.754 | 0.468 ± 0.070 | 0.499 ± 0.022 | 0.089 ± 0.097 | |
F8_RS_1_5.5 | E | 0.455 ± 0.174 | 11.21 ± 0.559 | 1.877 ± 0.053 | 1.649 ± 0.094 | 0.000 ± 0.000 |
S | 0.102 ± 0.033 | 122.41 ± 4.661 | 0.940 ± 0.009 | 0.469 ± 0.025 | 0.100 ± 0.008 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ricciardi, A.; Storti, L.V.; Giavalisco, M.; Parente, E.; Zotta, T. The Effect of Respiration, pH, and Citrate Co-Metabolism on the Growth, Metabolite Production and Enzymatic Activities of Leuconostoc mesenteroides subsp. cremoris E30. Foods 2022, 11, 535. https://doi.org/10.3390/foods11040535
Ricciardi A, Storti LV, Giavalisco M, Parente E, Zotta T. The Effect of Respiration, pH, and Citrate Co-Metabolism on the Growth, Metabolite Production and Enzymatic Activities of Leuconostoc mesenteroides subsp. cremoris E30. Foods. 2022; 11(4):535. https://doi.org/10.3390/foods11040535
Chicago/Turabian StyleRicciardi, Annamaria, Livia Vanessa Storti, Marilisa Giavalisco, Eugenio Parente, and Teresa Zotta. 2022. "The Effect of Respiration, pH, and Citrate Co-Metabolism on the Growth, Metabolite Production and Enzymatic Activities of Leuconostoc mesenteroides subsp. cremoris E30" Foods 11, no. 4: 535. https://doi.org/10.3390/foods11040535
APA StyleRicciardi, A., Storti, L. V., Giavalisco, M., Parente, E., & Zotta, T. (2022). The Effect of Respiration, pH, and Citrate Co-Metabolism on the Growth, Metabolite Production and Enzymatic Activities of Leuconostoc mesenteroides subsp. cremoris E30. Foods, 11(4), 535. https://doi.org/10.3390/foods11040535