Raman Spectroscopy and Improved Inception Network for Determination of FHB-Infected Wheat Kernels
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Raman Spectral Measurements
2.3. Spectral Data Preprocessing
2.4. Modeling Methods
2.4.1. Traditional Machine Learning Methods
2.4.2. Inception Networks
2.5. Performance Evaluation
3. Results and Discussion
3.1. Raman Spectra of Wheat Kernels
3.2. Analysis of FHB Infection Using Traditional Machine Learning Methods
3.3. Analysis of FHB Infection Using Inception Networks
3.4. Feature Visualization of the Inception–Attention Network
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- McBeath, J.H.; McBeath, J. Plant diseases, pests and food security. In Environmental Change and Food Security in China; Springer: Dordrecht, The Netherlands, 2010; pp. 117–156. [Google Scholar] [CrossRef]
- Delwiche, S.R.; Rodriguez, I.T. Estimating percentages of fusarium-damaged kernels in hard wheat by near-infrared hyperspectral imaging. J. Cereal Sci. 2019, 87, 18–24. [Google Scholar] [CrossRef] [Green Version]
- van Bruggen, A.H.C.; Gamliel, A. Plant disease management in organic farming systems. Pest Manag. Sci. 2016, 72, 30–44. [Google Scholar] [CrossRef] [PubMed]
- Dweba, C.C.; Figlan, S. Fusarium head blight of wheat: Pathogenesis and control strategies. Crop. Prot. 2017, 91, 114–122. [Google Scholar] [CrossRef]
- Shahin, M.A.; Symons, S.J. Detection of Fusarium damaged kernels in Canada Western Red Spring wheat using visible/near-infrared hyperspectral imaging and principal component analysis. Comput. Electron. Agric. 2011, 75, 107–112. [Google Scholar] [CrossRef]
- Barbedo, J.G.A.; Tibola, C.S. Detecting Fusarium head blight in wheat kernels using hyperspectral imaging. Biosyst. Eng. 2015, 131, 65–76. [Google Scholar] [CrossRef]
- Martinelli, F.; Scalenghe, R. Advanced methods of plant disease detection: A review. Agron. Sustain. Dev. 2015, 35, 1–25. [Google Scholar] [CrossRef] [Green Version]
- Derveaux, S.; Vandesompele, J. How to do successful gene expression analysis using real-time PCR. Methods 2010, 50, 227–230. [Google Scholar] [CrossRef]
- Van der Wolf, J.M.; Van Beckhoven, J. New technologies for sensitive and specific routine detection of plant pathogenic bacteria. In Plant Pathogenic Bacteria; Springer: Dordrecht, The Netherlands, 2001; pp. 75–77. [Google Scholar] [CrossRef]
- Clark, M.F.; Adams, A.N. Characteristics of the microplate method of enzyme-linked immunosorbent assay for the detection of plant viruses. J. Gen. Virol. 1977, 34, 475–483. [Google Scholar] [CrossRef]
- Das, R.S.; Agrawal, Y.K. Raman spectroscopy: Recent advancements, techniques and applications. Vib. Spectrosc. 2011, 57, 163–176. [Google Scholar] [CrossRef]
- Pahlow, S.; Meisel, S. Isolation and identification of bacteria by means of Raman spectroscopy. Adv. Drug Deliv. Rev. 2015, 89, 105–120. [Google Scholar] [CrossRef]
- Conrad, A.O.; Bonello, P. Application of infrared and Raman spectroscopy for the identification of disease resistant trees. Front. Plant Sci. 2016, 6, 1152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farber, C.; Mahnke, M. Advanced spectroscopic techniques for plant disease diagnostics: A review. TrAC Trends Anal. Chem. 2019, 118, 43–49. [Google Scholar] [CrossRef]
- Craig, A.P.; Franca, A.S. Surface-enhanced Raman spectroscopy applied to food safety. Annu. Rev. Food Sci. Technol. 2013, 4, 369–380. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, L.; Ermolenkov, A. Non-invasive diagnostics of Liberibacter disease on tomatoes using a hand-held Raman spectrometer. Planta 2020, 251, 64. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, L.; Pant, S. Detection and identification of canker and blight on orange trees using a hand-held Raman spectrometer. J. Raman Spectrosc. 2019, 50, 1875–1880. [Google Scholar] [CrossRef]
- Lauriola, I.; Lavelli, A. An Introduction to Deep Learning in Natural Language Processing: Models, Techniques, and Tools. Neurocomputing 2021, 471, 443–456. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Weng, S.; Hu, X. Advanced Application of Raman Spectroscopy and Surface-Enhanced Raman Spectroscopy in Plant Disease Diagnostics: A Review. J. Agric. Food Chem. 2021, 69, 2950–2964. [Google Scholar] [CrossRef]
- Weng, S.; Hu, X. Surface-enhanced Raman spectroscopy with gold nanorods modified by sodium citrate and liquid–liquid interface self-extraction for detection of deoxynivalenol in Fusarium head blight-infected wheat kernels coupled with a fully convolution network. Food Chem. 2021, 359, 129847. [Google Scholar] [CrossRef]
- Wang, K.; Chen, L. Arcobacter identification and species determination using Raman spectroscopy combined with neural networks. Appl. Environ. Microb. 2020, 86, e00924-20. [Google Scholar] [CrossRef]
- Javanmardi, S.; Ashtiani, S.H.M. Computer-vision classification of corn seed varieties using deep convolutional neural network. J. Stored Prod. Res. 2021, 92, 101800. [Google Scholar] [CrossRef]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 1–9. [Google Scholar]
- He, K.; Zhang, X. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.; Shen, L. Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 7132–7141. [Google Scholar]
- Phillips, T.; Abdulla, W. Developing a new ensemble approach with multi-class SVMs for Manuka honey quality classification. Appl. Soft Comput. 2021, 111, 107710. [Google Scholar] [CrossRef]
- Mohana, R.M.; Reddy, C.K.K. Random forest algorithms for the classification of tree-based ensemble. Mater. Today Proc. 2021. [CrossRef]
- Li, T.; Wang, J. Enhancing link prediction using gradient boosting features. In Intelligent Computing Theories and Application; Springer: Cham, Switzerland, 2016; pp. 81–92. [Google Scholar] [CrossRef]
- Kang, L.; Wang, K. High pressure structural investigation of benzoic acid: Raman spectroscopy and x-ray diffraction. J. Phys. Chem. C 2016, 120, 14758–14766. [Google Scholar] [CrossRef]
- Szymańska-Chargot, M.; Chylińska, M. Raman imaging of changes in the polysaccharides distribution in the cell wall during apple fruit development and senescence. Planta 2016, 243, 935–945. [Google Scholar] [CrossRef] [Green Version]
- Almeida, M.R.; Alves, R.S. Determination of amylose content in starch using Raman spectroscopy and multivariate calibration analysis. Anal. Bioanal. Chem. 2010, 397, 2693–2701. [Google Scholar] [CrossRef]
- Devitt, G.; Howard, K. Raman spectroscopy: An emerging tool in neurodegenerative disease research and diagnosis. ACS Chem. Neurosci. 2018, 9, 404–420. [Google Scholar] [CrossRef]
- Zheng, R.; Zheng, X. Proteins can convert to β-sheet in single crystals. Protein Sci. 2004, 13, 1288–1294. [Google Scholar] [CrossRef] [Green Version]
- Sanchez, L.; Farber, C. Noninvasive and nondestructive detection of cowpea bruchid within cowpea seeds with a hand-held Raman spectrometer. Anal. Chem. 2019, 91, 1733–1737. [Google Scholar] [CrossRef]
- Qin, X.; Sun, X. Oxidation of a non-phenolic lignin model compound by two Irpex lacteus manganese peroxidases: Evidence for implication of carboxylate and radicals. Biotechnol. Biofuels 2017, 10, 103. [Google Scholar] [CrossRef]
- Altangerel, N.; Ariunbold, G.O. In vivo diagnostics of early abiotic plant stress response via Raman spectroscopy. Proc. Natl. Acad. Sci. USA 2017, 114, 3393–3396. [Google Scholar] [CrossRef] [Green Version]
- Adar, F. Carotenoids-their resonance raman spectra and how they can be helpful in characterizing a number of biological systems. Spectroscopy 2017, 32, 12–20. [Google Scholar]
- Pan, T.T.; Pu, H. Insights into the changes in chemical compositions of the cell wall of pear fruit infected by Alternaria alternata with confocal Raman microspectroscopy. Postharvest Biol. Technol. 2017, 132, 119–129. [Google Scholar] [CrossRef]
- Kurouski, D.; Van Duyne, R.P. Exploring the structure and formation mechanism of amyloid fibrils by Raman spectroscopy: A review. Analyst 2015, 140, 4967–4980. [Google Scholar] [CrossRef] [PubMed]
- Egging, V.; Nguyen, J. Detection and identification of fungal infections in intact wheat and sorghum grain using a hand-held Raman spectrometer. Anal. Chem. 2018, 90, 8616–8621. [Google Scholar] [CrossRef]
- Sanchez, L.; Pant, S. Rapid and noninvasive diagnostics of Huanglongbing and nutrient deficits on citrus trees with a handheld Raman spectrometer. Anal. Bioanal. Chem. 2019, 411, 3125–3133. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Yu, K. Application of Raman spectroscopy for early detection of rape sclerotinia on rapeseed leaves. Trans. Chin. Soc. Agric. Eng. 2017, 33, 206–211. [Google Scholar] [CrossRef]
- Mandrile, L.; Rotunno, S. Nondestructive Raman spectroscopy as a tool for early detection and discrimination of the infection of tomato plants by two economically important viruses. Anal. Chem. 2019, 91, 9025–9031. [Google Scholar] [CrossRef]
Band | Vibrational Mode | Assignment |
---|---|---|
480 | C-C-O and C-C-C deformations; related to glycosidic ring skeletal deformations | Carbohydrates |
δ(C-C-C) + τ(C-O) scissoring of C-C-C and out-of-plane bending of C-O | ||
536 | S-S gauche-gauche-trans | Protein |
576 | δ(C−C−O) + τ(C−O) | Carbohydrates |
616 | δ(C-C-O) of carbohydrate | Carbohydrates |
716 | δ(C-C-O) related to glycosidic ring skeletal deformations | Carbohydrates |
764 | δ(C-C-O) | Carbohydrates |
864 | δ(C-C-H) + δ(C-O-C) glycosidic bond; anomeric region | Carbohydrates |
(C-O-C) skeletal mode of α-anomers | Pectin | |
940 | Skeletal modes; δ(C-O-C) + δ(C-O-H) + ν(C-O)α-1,4 glycosidic linkages | Carbohydrates |
1004 | ν3(C-CH3 stretching) and | Carotenoids |
phenylalanine | Proteins | |
1088 | ν(C−O) + ν(C−C) + δ(C−O−H) | Carbohydrates |
1124 | ν(C−O) + ν(C−C) + δ(C−O−H) | Carbohydrates |
1264 | ν(C−O) + ν(C−C) + δ(C−O−H) | Carbohydrates |
Guaiacyl ring breathing, C-O stretching (aromatic) | Lignin | |
1342 | ν(C−O); δ(C−O−H) | Carbohydrates |
1380 | δ(C−O−H), coupling of the CCH and | Carbohydrates |
COH deformation modes | ||
1460 | δ(CH) + δ(CH2) + δ(C−O−H) CH, CH2, | Carbohydrates |
and COH deformations | aliphatic | |
Lignin | ||
1556 | –C=C– (in plane) | Carotenoids |
1600 | ν(C–C) aromatic ring + σ(CH) | Lignin |
1632 | C=C–C (ring) or C=O stretching, amide I | Lignin |
Proteins |
Methods | Classes | Accuracy (%) | Prediction Set | ||
---|---|---|---|---|---|
Precision (%) | Recall (%) | F1-Score (%) | |||
RF | Healthy | ACCT = 100 | 87.50 | 84.85 | 86.15 |
Mildly infected | ACCV = 82.98 | 95.58 | 71.88 | 82.14 | |
Severely infected | ACCP = 81.91 | 68.42 | 89.66 | 77.61 | |
GBDT | Healthy | ACCT = 100 | 87.88 | 92 | 87.88 |
Mildly infected | ACCV = 85.11 | 87.88 | 71.86 | 80.70 | |
Severely infected | ACCP = 84.04 | 87.88 | 93.10 | 83.08 | |
SVM | Healthy | ACCT = 96.77 | 91.18 | 93.94 | 92.54 |
Mildly infected | ACCV = 90.42 | 92.86 | 81.25 | 86.67 | |
Severely infected | ACCP = 89.36 | 84.38 | 93.10 | 88.52 |
Networks | Classes | Accuracy (%) | Prediction Set | ||
---|---|---|---|---|---|
Precision (%) | Recall (%) | F1-Score (%) | |||
Inception | Healthy | ACCT = 100 | 100 | 90.91 | 95.24 |
Mildly infected | ACCV = 92.56 | 95.83 | 71.88 | 82.14 | |
Severely infected | ACCP = 87.23 | 72.50 | 100 | 84.06 | |
Inception–residual | Healthy | ACCT = 100 | 88.24 | 90.91 | 89.56 |
Mildly infected | ACCV = 89.36 | 93.10 | 84.38 | 88.52 | |
Severely infected | ACCP = 89.36 | 87.10 | 93.10 | 90 | |
Inception–attention | Healthy | ACCT = 97.13 | 91.43 | 96.97 | 94.12 |
Mildly infected | ACCV = 91.49 | 93.33 | 87.50 | 90.32 | |
Severely infected | ACCP = 93.62 | 96.55 | 96.55 | 96.55 | |
Inception–residual–attention | Healthy | ACCT = 99.28 | 88.57 | 93.94 | 91.18 |
Mildly infected | ACCV = 89.36 | 90 | 84.38 | 87.10 | |
Severely infected | ACCP = 90.43 | 93.10 | 93.10 | 93.10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiu, M.; Zheng, S.; Tang, L.; Hu, X.; Xu, Q.; Zheng, L.; Weng, S. Raman Spectroscopy and Improved Inception Network for Determination of FHB-Infected Wheat Kernels. Foods 2022, 11, 578. https://doi.org/10.3390/foods11040578
Qiu M, Zheng S, Tang L, Hu X, Xu Q, Zheng L, Weng S. Raman Spectroscopy and Improved Inception Network for Determination of FHB-Infected Wheat Kernels. Foods. 2022; 11(4):578. https://doi.org/10.3390/foods11040578
Chicago/Turabian StyleQiu, Mengqing, Shouguo Zheng, Le Tang, Xujin Hu, Qingshan Xu, Ling Zheng, and Shizhuang Weng. 2022. "Raman Spectroscopy and Improved Inception Network for Determination of FHB-Infected Wheat Kernels" Foods 11, no. 4: 578. https://doi.org/10.3390/foods11040578
APA StyleQiu, M., Zheng, S., Tang, L., Hu, X., Xu, Q., Zheng, L., & Weng, S. (2022). Raman Spectroscopy and Improved Inception Network for Determination of FHB-Infected Wheat Kernels. Foods, 11(4), 578. https://doi.org/10.3390/foods11040578