Nutritional Characterization of Strychnos madagascariensis Fruit Flour Produced by Mozambican Communities and Evaluation of Its Contribution to Nutrient Adequacy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fruit Collection and Flour Preparation
2.2. Chemical Analysis
2.2.1. Proximate Analysis
2.2.2. Low Molecular Weight Carbohydrates Determination by HPLC-RI
2.2.3. Fatty Acids Composition by GC-FID
Atherogenicity and Thrombogenicity Indexes
2.2.4. Analysis of Vitamin E and Carotenoids by HPLC-DAD/FLD
2.2.5. Amino Acid Composition by HPLC-FLD and Assessment of Protein Quality
2.2.6. Mineral Analysis
2.2.7. Estimated Intake of Nutrients and Non-Essential Elements
Evaluation of Nutrient Adequacy
Estimated Intake of Non-Essential Elements
2.2.8. Statistical Analysis
3. Results and Discussion
3.1. Proximate Composition, Energy Value and Sugar Profile
3.2. Fatty Acids Composition and Atherogenic and Thrombogenic Indices
3.3. Vitamin E and Carotenoids
3.4. Amino Acids and Protein Nutritional Quality
3.5. Mineral Elements
3.6. Nutrient Adequacy of Nfuma
3.7. Exposure Assessment to Non-Essential Trace Elements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brito, A.L.B.; Oliveira, A.F.; Nogueira, A.R.A.; Pessoa, A.G.G.; Pontes, L.F.B.L. Determination of inorganic constituents and physicochemical characterization of functional flour samples. Microchem. J. 2017, 132, 112–118. [Google Scholar] [CrossRef] [Green Version]
- Nyanga, L.K.; Gadaga, T.H.; Nout, M.J.R.; Smid, E.J.; Boekhout, T.; Zwietering, M.H. Nutritive value of masau (Ziziphus mauritiana) fruits from Zambezi Valley in Zimbabwe. Food Chem. 2013, 138, 168–172. [Google Scholar] [CrossRef] [PubMed]
- Stadlmayr, B.; Charrondière, U.R.; Eisenwagen, S.; Jamnadass, R.; Kehlenbeck, K. Nutrient composition of selected indigenous fruits from sub-Saharan Africa. J. Sci. Food Agric. 2013, 93, 2627–2636. [Google Scholar] [CrossRef] [PubMed]
- Magaia, T.; Uamusse, A.; Sjöholm, I.; Skog, K. Proximate Analysis of Five Wild Fruits of Mozambique. Sci. World J. 2013, 2013, 601435. [Google Scholar] [CrossRef] [Green Version]
- Van Wyk, B.E. The potential of South African plants in the development of new medicinal products. S. Afr. J. Bot. 2011, 77, 812–829. [Google Scholar] [CrossRef] [Green Version]
- Kuhnlein, H.V.; Johns, T. Northwest African and Middle Eastern food and dietary change of indigenous peoples. Asia Pac. J. Clin. Nutr. 2003, 12, 344–349. [Google Scholar]
- Bvenura, C.; Sivakumar, D. The role of wild fruits and vegetables in delivering a balanced and healthy diet. Food Res. Int. 2017, 99, 15–30. [Google Scholar] [CrossRef]
- National Research Council. Lost Crops of Africa: Volume III: Fruits; The National Academies Press: Washington, DC, USA, 2008. [Google Scholar]
- Ngadze, R.T.; Linnemann, A.R.; Nyanga, L.K.; Fogliano, V.; Verkerk, R. Local processing and nutritional composition of indigenous fruits: The case of monkey orange (Strychnos spp.) from Southern Africa. Food Rev. Int. 2017, 33, 123–142. [Google Scholar] [CrossRef] [Green Version]
- Ngadze, R.T.; Verkerk, R.; Nyanga, L.K.; Fogliano, V.; Linnemann, A.R. Improvement of traditional processing of local monkey orange (Strychnos spp.) fruits to enhance nutrition security in Zimbabwe. Food Secur. 2017, 9, 621–633. [Google Scholar] [CrossRef] [Green Version]
- AOAC. Official Method of Analysis, 18th ed.; Association of Officiating Analytical Chemists: Washington, DC, USA, 2005. [Google Scholar]
- Martins, Z.E.; Pinto, E.; Almeida, A.A.; Pinho, O.; Ferreira, I.M.P.L.V.O. Fibre fortification of wheat bread: Impact on mineral composition and bioaccessibility. Food Funct. 2017, 8, 1979–1987. [Google Scholar] [CrossRef]
- Regulation (EU) 1169/2011 of the European Parliament and of the Council of 25 October 2011 OJ L 304, 22.11.2011. pp. 18–63. Available online: https://eur-lex.europa.eu/eli/reg/2011/1169/oj (accessed on 10 January 2022).
- Santos, J.R.; Viegas, O.; Páscoa, R.N.M.J.; Ferreira, I.M.P.L.V.O.; Rangel, A.O.S.S.; Lopes, J.A. In-line monitoring of the coffee roasting process with near infrared spectroscopy: Measurement of sucrose and colour. Food Chem. 2016, 208, 103–110. [Google Scholar] [CrossRef] [PubMed]
- Regulation (EEC) 2568/91 of the 11 July 1991 OJ L 248, 5.9.1991. pp. 1–83. Available online: https://eur-lex.europa.eu/legal-content/en/TXT/?uri=CELEX:31991R2568 (accessed on 10 January 2022).
- Ulbricht, T.L.V.; Southgate, D.A.T. Coronary heart disease: Seven dietary factors. Lancet 1991, 338, 985–992. [Google Scholar] [CrossRef]
- Cruz, R.; Casal, S. Direct analysis of vitamin A, vitamin E, carotenoids, chlorophylls and free sterols in animal and vegetable fats in a single normal-phase liquid chromatographic run. J. Chromatogr. A 2018, 1565, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Benhammouche, T.; Melo, A.; Martins, Z.; Faria, M.A.; Pinho, S.C.M.; Ferreira, I.; Zaidi, F. Nutritional quality of protein concentrates from Moringa Oleifera leaves and in vitro digestibility. Food Chem. 2021, 348, 128858. [Google Scholar] [CrossRef]
- Friedman, M. Nutritional Value of Proteins from Different Food Sources. A Review. J. Agric. Food Chem. 1996, 44, 6–29. [Google Scholar] [CrossRef]
- FAO; WHO; UNU. Protein and Amino Acid Requirements in Human Nutrition: Report of a Joint FAO/WHO/UNU Expert Consultation; World Health Organization: Geneva, Switzerland, 2007. [Google Scholar]
- Pinto, E.; Ferreira, I.M.P.L.V.O.; Almeida, A. Essential and non-essential/toxic trace elements in whey protein supplements. J. Food Compos. Anal. 2020, 86, 103383. [Google Scholar] [CrossRef]
- DRV Finder. Available online: https://multimedia.efsa.europa.eu/drvs/index.htm (accessed on 10 January 2022).
- EFSA Scientific Committee. Guidance on selected default values to be used by the EFSA Scientific Committee, Scientific Panels and Units in the absence of actual measured data. EFSA J. 2012, 10, 2579. [Google Scholar] [CrossRef]
- EFSA Panel on Contaminants in the Food Chain (CONTAM). Update of the risk assessment of nickel in food and drinking water. EFSA J. 2020, 18, e06268. [Google Scholar] [CrossRef]
- JEFCA. Discussion Paper on the Implementation of a Structured Approach to Identify the Need for Review of Codex Standards and Related Texts for Contaminants in Foods. CF/14 INF/1, April 2021. Available online: https://www.fao.org/fao-who-codexalimentarius/sh-proxy/en/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FMeetings%252FCX-735-14%252FWDs-2021%252Fcf14_16e.pdf (accessed on 10 January 2022).
- INSA (Instituto Nacional de Saúde Dr. Ricardo Jorge). Tabela da Composição de Alimentos; Centro de Segurança Alimentar e Nutrição INSA: Lisboa, Portugal, 2007. [Google Scholar]
- Carli, C.G.; Lima, V.A.; Porcu, O.M. Prospecting the Physical, Chemical and Nutritional Characteristics of Commercial Fruit Flours. Nutr. Food Sci. Int. J. 2016, 2, 1–7. [Google Scholar] [CrossRef]
- Amarteifio, J.O.; Mosase, M. The Chemical Composition of Selected Indigenous Fruits of Botswana. J. Appl. Sci. Environ. Manag. 2009, 10, 43–47. [Google Scholar] [CrossRef] [Green Version]
- Kalenga Saka, J.D.; Msonthi, J.D. Nutritional value of edible fruits of indigenous wild trees in Malawi. For. Ecol. Manag. 1994, 64, 245–248. [Google Scholar] [CrossRef]
- Raczyk, M.; Kruszewski, B.; Michałowska, D. Effect of Coconut and Chestnut Flour Supplementations on Texture, Nutritional and Sensory Properties of Baked Wheat Based Bread. Molecules 2021, 26, 4641. [Google Scholar] [CrossRef] [PubMed]
- Bello, M.O.; Falade, O.S.; Adewusi, S.R.A.; Olawore, N.O. Studies on the chemical compositions and anti nutrients of some lesser known Nigeria fruits. Afr. J. Biotechnol. 2007, 7, 3972–3979. [Google Scholar]
- Ohizua, E.R.; Adeola, A.A.; Idowu, M.A.; Sobukola, O.P.; Afolabi, T.A.; Ishola, R.O.; Ayansina, S.O.; Oyekale, T.O.; Falomo, A. Nutrient composition, functional, and pasting properties of unripe cooking banana, pigeon pea, and sweetpotato flour blends. Food Sci. Nutr. 2017, 5, 750–762. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lockett, C.T.; Calvert, C.C.; Grivetti, L.E. Energy and micronutrient composition of dietary and medicinal wild plants consumed during drought. Study of rural Fulani, northeastern Nigeria. Int. J. Food Sci. Nutr. 2000, 51, 195–208. [Google Scholar] [CrossRef]
- Wilson, A.L.; Downs, C.T. Fruit nutritional composition and non-nutritive traits of indigenous South African tree species. S. Afr. J. Bot. 2012, 78, 30–36. [Google Scholar] [CrossRef] [Green Version]
- Donno, D.; Mellano, M.G.; Riondato, I.; De Biaggi, M.; Andriamaniraka, H.; Gamba, G.; Beccaro, G.L. Traditional and Unconventional Dried Fruit Snacks as a Source of Health-Promoting Compounds. Antioxidants 2019, 8, 396. [Google Scholar] [CrossRef] [Green Version]
- Regulation (EC) 1924/2006 of the European Parliament and of the Council of 20 December 2006. OJ L 404, 30.12.2006. pp. 9–25. Available online: https://eur-lex.europa.eu/legal-content/en/ALL/?uri=CELEX%3A32006R1924 (accessed on 10 January 2022).
- Berasategi, I.; Barriuso, B.; Ansorena, D.; Astiasarán, I. Stability of avocado oil during heating: Comparative study to olive oil. Food Chem. 2012, 132, 439–446. [Google Scholar] [CrossRef]
- Venkatachalam, M.; Sathe, S.K. Chemical Composition of Selected Edible Nut Seeds. J. Agric. Food Chem. 2006, 54, 4705–4714. [Google Scholar] [CrossRef]
- Carta, G.; Murru, E.; Banni, S.; Manca, C. Palmitic Acid: Physiological Role, Metabolism and Nutritional Implications. Front. Physiol. 2017, 8, 902. [Google Scholar] [CrossRef] [Green Version]
- Elson, C.E.; Alfin-Slater, R.B. Tropical oils: Nutritional and scientific issues. Crit. Rev. Food Sci. Nutr. 1992, 31, 79–102. [Google Scholar] [CrossRef] [PubMed]
- Nogueira, A.C.; Sehn, G.A.R.; Rebellato, A.P.; Coutinho, J.P.; Godoy, H.T.; Chang, Y.K.; Steel, C.J.; Clerici, M.T.P.S. Yellow sweet potato flour: Use in sweet bread processing to increase β-carotene content and improve quality. An. Acad. Bras. Ciênc. 2018, 90, 283–293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sibiya, N.P.; Kayitesi, E.; Moteetee, A.N. Proximate Analyses and Amino Acid Composition of Selected Wild Indigenous Fruits of Southern Africa. Plants 2021, 10, 721. [Google Scholar] [CrossRef] [PubMed]
- Baptista, A.; Pinho, O.; Pinto, E.; Casal, S.; Mota, C.; Ferreira, I.M.P.L.V.O. Characterization of protein and fat composition of seeds from common beans (Phaseolus vulgaris L.), cowpea (Vigna unguiculata L. Walp) and bambara groundnuts (Vigna subterranea L. Verdc) from Mozambique. J. Food Meas. Charact. 2017, 11, 442–450. [Google Scholar] [CrossRef]
- Fernstrom, J.D.; Fernstrom, M.H. Tyrosine, Phenylalanine, and Catecholamine Synthesis and Function in the Brain. J. Nutr. 2007, 137, 1539S–1547S. [Google Scholar] [CrossRef] [PubMed]
- Wu, G. Functional amino acids in growth, reproduction, and health. Adv. Nutr. 2010, 1, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Alasalvar, C.; Shahidi, F. 1-Composition, phytochemicals, and beneficial health effects of dried fruits: An overview. In Dried Fruits, 1st ed.; Alasalvar, C., Shahidi, F., Eds.; Wiley-Blackwell: Hoboken, NJ, USA, 2013. [Google Scholar]
- Sibiya, N.P.; Kayitesi, E.; Moteetee, A.N. Mineral composition of selected indigenous wild southern African fruits. S. Afr. J. Bot. 2020, 132, 87–94. [Google Scholar] [CrossRef]
- Hassan, L.G.; Abdulmumin, U.; Umar, K.J.; Ikeh, O.P.; Aliero, A.A. Nutritional and Anti-nutritional Composition of Strychnos innocua Del. (Monkey Orange) Fruit Pulp Grown in Zuru, Nigeria. Niger. J. Basic Appl. Sci. 2014, 22, 33–37. [Google Scholar] [CrossRef] [Green Version]
- Xavier, A.D.S.; Furtado, D.Z.S.; Assunção, N.A.; Nascimento, A.N. Bioacessibility of Fe and Zn (associated to proteins) in cashew nut. J. Food Compos. Anal. 2019, 83, 103259. [Google Scholar] [CrossRef]
- Omotayo, A.O.; Aremu, A.O. Undervalued Spiny Monkey Orange (Strychnos spinosa Lam.): An Indigenous Fruit for Sustainable Food-Nutrition and Economic Prosperity. Plants 2021, 10, 2785. [Google Scholar] [CrossRef]
- Ertl, K.; Goessler, W. Grains, whole flour, white flour, and some final goods: An elemental comparison. Eur. Food Res. Technol. 2018, 244, 2065–2075. [Google Scholar] [CrossRef] [Green Version]
- Gonçalves, A.C.; Campos, G.; Pinto, E.; Oliveira, A.S.; Almeida, A.; de Pinho, P.G.; Alves, G.; Silva, L.R. Essential and non-essential elements, and volatile organic compounds for the discrimination of twenty-three sweet cherry cultivars from Fundão, Portugal. Food Chem. 2022, 367, 130503. [Google Scholar] [CrossRef] [PubMed]
- FAOSTAT. Available online: https://www.fao.org/faostat/en/#data/FBS (accessed on 10 January 2022).
- Amaro, M. Accelerating progress in micronutrient deficiencies in Mozambique: A Ministry of Health perspective. Matern. Child Nutr. 2019, 15, e12707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Marracuene | Chókwè | Chicualacuala | Manhiça | p Value | ||
---|---|---|---|---|---|---|
Moisture (g) | 4.4 ± 0.2 | 4.6 ± 0.0 | 4.3 ± 0.1 | 4.4 ± 0.1 | ns | |
Protein (g) | 3.1 ± 0.0 b | 3.2 ± 0.1 b | 3.0 ± 0.0 b | 3.5 ± 0.1 a | 0.003 ** | |
Fat (g) | 26.3 ± 0.2 b | 27.0 ± 0.0 b | 26.9 ± 0.1 b | 27.8 ± 0.0 a | 0.016 ** | |
Ash (g) | 5.5 ± 0.1 b | 4.8 ± 0.0 c | 6.0 ± 0.1 a | 5.0 ± 0.1 c | 0.020 ** | |
Total Carbohydrates # (g) | 60.7 ± 0.1 a | 60.5 ± 0.1 a,b | 59.8 ± 0.2 a,b | 59.3 ± 0.1 b | 0.026 ** | |
Available Carbohydrates # (g) | 54.9 ± 0.1 a | 49.7 ± 0.1 d | 52.4 ± 0.0 c | 53.1 ± 0.1 b | 0.006 ** | |
Sugars | ||||||
Fructose (g) | 4.0 ± 0.0 | 3.5 ± 0.1 | 3.3 ± 0.2 | 4.3 ± 0.5 | ns | |
Glucose (g) | 4.4 ± 0.2 | 3.7 ± 0.0 | 3.7 ± 0.1 | 5.0 ± 1.0 | ns | |
Sucrose (g) | 1.4 ± 0.2 | 1.8 ± 0.4 | 1.9 ± 0.4 | 1.8 ± 0.4 | ns | |
Total dietary fiber (g) | 5.8 ± 0.1 c | 10.8 ± 0.0 a | 7.4 ± 0.2 b | 6.2 ± 0.1 c | 0.001 ** | |
Insoluble (g) | 5.2 ± 0.1 | 6.9 ± 0.4 | 6.0 ± 0.2 | 5.5 ± 0.2 | ns | |
Soluble (g) | 0.6 ± 0.1 c | 3.9 ± 0.4 a | 1.4 ± 0.01 b | 0.6 ± 0.1 c | 0.022 ** | |
Energy | (kJ) | 2005 ± 8 a,b | 1982 ± 1 b,c | 1995 ± 1 a | 2039 ± 3 a | 0.012 ** |
(kcal) | 480 ± 2 a,b | 476 ± 0.2 b,c | 478 ± 0.2 a | 489 ± 0.7 a | 0.014 ** |
Fatty Acid | Marracuene | Chókwè | Chicualacuala | Manhiça | p Value | |
---|---|---|---|---|---|---|
C12:0 | 3.4 ± 0.2 | 3.5 ± 0.9 | 3.8 ± 0.4 | 3.7 ± 0.5 | ns | |
C14:0 | 34.1 ± 1.9 | 35.4 ± 1.0 | 35.3 ± 1.2 | 36.1 ± 0.5 | ns | |
C16:0 | 5229.9 ± 118.3 a,b | 5354.5 ± 58.6 a | 5359.1 ± 67.2 a | 5528.3 ± 52.6 b,c | 0.033 * | |
C16:1-n9 | 421.4 ± 13.5 | 428.7 ± 3.1 | 428.5 ± 8.9 | 439.1 ± 1.8 | ns | |
C18:0 | 1198.7 ± 13.2 | 1201.6 ± 23.3 | 1213.6 ± 15.8 | 1258.0 ± 24.5 | ns | |
C18:1-n9 | 16,464.1 ± 298.7 a,b | 16,905.2 ± 3.3 c | 16,812.7 ± 147.7 a,c | 17,388.1 ± 25.0 b,c | <0.001 ** | |
C18:2-n6 | 1791.6 ± 55.4 | 1832.8 ± 17.6 | 1839.6 ± 36.2 | 1884.9 ± 13.0 | ns | |
C18:3-n3 | 457.5 ± 21.1 | 460.8 ± 9.9 | 466.0 ± 14.1 | 472.4 ± 9.6 | ns | |
C20:0 | 161.0 ± 2.8 | 165.7 ± 2.5 | 168.2 ± 5.4 | 171.8 ± 2.8 | ns | |
C20:1-n9 | 78.1 ± 1.4 | 82.4 ± 2.7 | 83.3 ± 3.9 | 84.8 ± 3.7 | ns | |
SFA | 6926 ± 138 | 7068 ± 67 | 7084 ± 76 | 7314 ± 80 | - | |
MUFA | 17,013 ± 313 | 17,469 ± 4 | 17,390 ± 160 | 17,965 ± 17 | - | |
PUFA | 2304 ± 79 | 2345 ± 27 | 2361 ± 51 | 2408 ± 17 | - | |
AI# | 0.28 ± 0.00 | 0.28 ± 0.00 | 0.28 ± 0.00 | 0.28 ± 0.00 | - | |
TI# | 0.60 ± 0.00 | 0.60 ± 0.00 | 0.60 ± 0.00 | 0.60 ± 0.00 | - |
Vitamin E | β-Carotene | |
---|---|---|
Marracuene | 6.73 ± 0.74 | 2.56 ± 0.08 |
Chókwè | 7.97 ± 0.72 | 2.45 ± 0.34 |
Chicualacuala | 6.88 ± 0.13 | 2.19 ± 0.11 |
Manhiça | 7.44 ± 0.40 | 2.64 ± 0.13 |
p value | ns | ns |
Amino Acid | Marracuene | Chókwè | Chicualacuala | Manhiça | p Value |
---|---|---|---|---|---|
Asp | 121 ± 1 b | 106 ± 3 a | 114 ± 2 a,b | 116 ± 4 b | 0.004 |
Glu | 101 ± 5 | 103 ± 17 | 92.0 ± 2.6 | 103 ± 18 | ns |
Ser | 97.2 ± 0.4 b | 93.2 ± 1.5 a,b | 96.9 ± 0.5 a,b | 92.7 ± 2.2 a | 0.020 |
His | 25.0 ± 2.4 | 22.6 ± 0.3 | 24.1 ± 0.6 | 22.6 ± 0.7 | ns |
Gly | 27.3 ± 0.4 | 27.3 ± 0.4 | 27.8 ± 0.2 | 27.7 ± 0.5 | ns |
Thr | 59.5 ± 0.8 | 59.1 ± 0.7 | 61.1 ± 1.7 | 58.4 ± 1.5 | ns |
Arg | 148 ± 1 b,c | 153 ± 2 a,c | 156 ± 1 a | 153 ± 3 a,c | 0.041 |
Ala | nd | nd | nd | nd | |
Tyr | 42.6 ± 0.3 | 40.7 ± 0.6 | 42.7 ± 0.1 | 40.3 ± 1.5 | ns |
Val | 74.6 ± 0.3 | 73.1 ± 0.9 | 75.6 ± 0.3 | 73.1 ± 2.3 | ns |
Met | 12.0 ± 0.0 b | 15.6 ± 0.3 a | 11.5 ± 0.3 b,c | 10.9 ± 0.2 c | <0.001 |
Phe | 59.0 ± 0.2 | 59.0 ± 0.8 | 62.4 ± 0.2 | 58.9 ± 2.4 | ns |
Ile | 43.3 ± 0.6 | 43.1 ± 1.1 | 43.8 ± 0.3 | 42.6 ± 1.1 | ns |
Leu | 72.8 ± 0.3 | 73.6 ± 1.2 | 75 ± 0.3 | 72.7 ± 2.2 | ns |
Lys | 14.9 ± 0.1 b | 15.6 ± 0.2 b | 16.9 ± 0.3 a | 15.4 ± 0.5 b | 0.002 |
Pro | 41.1 ± 1.5 a,b | 49 ± 5.2 b | 30.1 ± 3.1 a | 43.1 ± 3.6 b | 0.005 |
Trp | 10.3 ± 0.5 b | 14.9 ± 0.3 a | 14.0 ± 0.6 a | 14.0 ± 0.3 a | <0.001 |
Cys | 49.9 ± 1.6 | 50.4 ± 4.3 | 56.4 ± 1.3 | 55.5 ± 1.0 | ns |
∑AAA 1 | 102 ± 0 | 100 ± 1 | 105 ± 0 | 99.2 ± 3.9 | - |
∑SAA 2 | 61.9 ± 0.0 | 66.8 ± 0.3 | 68.4 ± 0.3 | 66.1 ± 0.2 | - |
∑EAA 3 | 464 ± 3 | 469 ± 6 | 484 ± 1 | 464 ± 12 | - |
Element | Marracuene | Chókwè | Chicualacuala | Manhiça | p Value |
---|---|---|---|---|---|
Essential macrominerals (mg/100 g) | |||||
Ca | 24.7 ± 0.2 | 31.3 ± 6.3 | 26.2 ± 0.0 | 29.9 ± 2.5 | ns |
Mg | 85.6 ± 2.8 a | 80.8 ± 3.4 a,b | 75.3 ± 4.7 a,b | 69.4 ± 4.3 b | 0.025 * |
K | 1654 ± 102 a | 1399 ± 71 b | 1303 ± 15 b | 1204 ± 80 b | 0.002 * |
Na | 4.9 ± 0.2 b | 4.0 ± 0.1 b | 6.6 ± 0.1 a | 4.9 ± 0.8 b | 0.002 * |
Essential trace elements (µg/100 g) | |||||
Fe | 1683 ± 71 | 1620 ± 56 | 1476 ± 73 | 1706 ± 122 | ns |
Zn | 261.4 ± 11.2 | 216.5 ± 12.5 | 205 ± 13.4 | 228.6 ± 20.8 | ns |
Mn | 4017 ± 141 | 3885 ± 71 | 3874 ± 21 | 4098 ± 181 | ns |
Cu | 215.2 ± 1.0 a | 200.3 ± 5.9 a,b | 193.9 ± 7.7 b | 208.5 ± 5.1 a,b | 0.021 * |
Cr | 58.1 ± 1.4 | 55.2 ± 2.7 | 57.5 ± 1.9 | 58.1 ± 0.5 | ns |
Co | 7.6 ± 0.3 | 7.3 ± 0.2 | 6.8 ± 0.3 | 7.6 ± 0.0 | ns |
Non-essential trace elements (µg/100 g) | |||||
Al | 2631 ± 210 a | 3042 ± 221 a,b | 2995 ± 73 a | 3331 ± 26 b | 0.026 ** |
Rb | 1100 ± 19 a | 980 ± 29 b | 968 ± 15 b | 968 ± 31 b | 0.002 * |
Ni | 463.8 ± 3.8 | 482.6 ± 20.5 | 458.8 ± 12.6 | 478.0 ± 20.0 | ns |
Sr | 258.2 ± 2.6 | 240.9 ± 5.5 | 250.2 ± 14.4 | 256.2 ± 4.8 | ns |
Ba | 222.3 ± 5.1 b | 252.2 ± 8.6 a | 249.7 ± 9.5 a | 257.0 ± 4.6 a | 0.006 * |
V | 17.9 ± 0.4 a | 17.6 ± 0.5 a | 17 ± 0.6 a | 21.9 b ± 0.3 | 0.002 * |
Cd | 2.4 ± 0.0 | 2.1 ± 0.2 | 2.3 ± 0.1 | 2.1 ± 0.1 | ns |
DRV (AI a/AR b/PRI c/RI d/SAI e) | EDI (% DRV) | |||
---|---|---|---|---|
Male | Female | Male | Female | |
Energy (MJ/day) | ||||
Energy | 9.1–13.0 b,* | 7.4–10.5 b,* | 15–22 | 19–27 |
Macronutrients (g/day) | ||||
Protein | 53.1 c,# | 45.6 c,# | 6.0 | 7.0 |
Fat | 48.3–120.8 d | 38.9–97.3 d | 22–56 | 28–69 |
Alpha-linolenic acid | 1.2–1.7 a | 1.0–1.3 a | 27–38 | 33–48 |
Linoleic acid | 9.7–13.8 a | 7.8–11.1 a | 13–19 | 17–24 |
Carbohydrates | 244.5–465.8 d | 197.1–375.5 d | 11–22 | 14–27 |
Total Dietary Fiber | 25 a | 30 | ||
Vitamins | ||||
Vitamin A (µg RE/day) | 750 c | 650 c,§ | 55 | 63 |
Vitamin E (mg/day) | 13 a | 11 a | 56 | 66 |
Minerals (mg/day) | ||||
Ca | 950 c | 3 | ||
Mg | 350 a | 300 a | 22 | 26 |
K | 3500 a | 40 | ||
Na | 2000 e | 0.3 | ||
Fe | 11 c | 16 c,§ | 15 | 10 |
Zn | 9.4–16.3 c,† | 7.5–12.7 c,† | 1.4–2.4 | 1.8–3.0 |
Mn | 3 a | 132 | ||
Cu | 1.6 a | 1.3 a | 12.8 | 15.7 |
DRV (PRI) | EDI (% DRV) | |||
---|---|---|---|---|
1–3 Years | 4–6 Years | 1–3 Years | 4–6 Years | |
Vitamin A (µg RE/day) | 250 | 300 | 82 | 68 |
Fe (mg/day) | 7 | 12 |
Element | Reference Value | Estimated Intake of Non-Essential Elements | |
---|---|---|---|
Ni | TDI (µg/day/kg bw) | EDI (% TDI) | |
Toddlers | Adult | ||
13 | 151 | 52 | |
Al | PTWI (µg/week/kg bw) | EWI (% PTWI) | |
Toddlers | Adult | ||
2000 | 44 | 15 | |
Cd | PTMI (µg/month/kg bw) | EMI (% PTMI) | |
Toddlers | Adult | ||
25 | 11 | 4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chemane, S.S.I.; Ribeiro, M.; Pinto, E.; Pinho, S.C.M.; Martins, Z.S.; Almeida, A.; Ferreira, I.M.P.L.V.O.; Khan, M.; Pinho, O.; Casal, S.; et al. Nutritional Characterization of Strychnos madagascariensis Fruit Flour Produced by Mozambican Communities and Evaluation of Its Contribution to Nutrient Adequacy. Foods 2022, 11, 616. https://doi.org/10.3390/foods11040616
Chemane SSI, Ribeiro M, Pinto E, Pinho SCM, Martins ZS, Almeida A, Ferreira IMPLVO, Khan M, Pinho O, Casal S, et al. Nutritional Characterization of Strychnos madagascariensis Fruit Flour Produced by Mozambican Communities and Evaluation of Its Contribution to Nutrient Adequacy. Foods. 2022; 11(4):616. https://doi.org/10.3390/foods11040616
Chicago/Turabian StyleChemane, Sandra S. I., Mafalda Ribeiro, Edgar Pinto, Susana C. M. Pinho, Zita Sá Martins, Agostinho Almeida, Isabel M. P. L. V. O. Ferreira, Maida Khan, Olívia Pinho, Susana Casal, and et al. 2022. "Nutritional Characterization of Strychnos madagascariensis Fruit Flour Produced by Mozambican Communities and Evaluation of Its Contribution to Nutrient Adequacy" Foods 11, no. 4: 616. https://doi.org/10.3390/foods11040616
APA StyleChemane, S. S. I., Ribeiro, M., Pinto, E., Pinho, S. C. M., Martins, Z. S., Almeida, A., Ferreira, I. M. P. L. V. O., Khan, M., Pinho, O., Casal, S., & Viegas, O. (2022). Nutritional Characterization of Strychnos madagascariensis Fruit Flour Produced by Mozambican Communities and Evaluation of Its Contribution to Nutrient Adequacy. Foods, 11(4), 616. https://doi.org/10.3390/foods11040616