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Abstract: In both public and private sectors, one can notice a strong interest in the topic of sustainable
food and packaging. For a long time, the spotlight for optimization was placed on well-known
examples of high environmental impacts, whether regarding indirect resource use (e.g., meat, dairy)
or problems in waste management. Staple and hedonistic foods such as cereals and confectionary
have gained less attention. However, these products and their packaging solutions are likewise of
worldwide ecologic and economic relevance, accounting for high resource input, production amounts,
as well as food losses and waste. This review provides a profound elaboration of the status quo in
cereal and confectionary packaging, essential for practitioners to improve sustainability in the sector.
Here, we present packaging functions and properties along with related product characteristics and
decay mechanisms in the subcategories of cereals and cereal products, confectionary and bakery
wares alongside ready-to-eat savories and snacks. Moreover, we offer an overview to formerly and
recently used packaging concepts as well as established and modern shelf-life extending technologies,
expanding upon our knowledge to thoroughly understand the packaging’s purpose; we conclude
that a comparison of the environmental burden share between product and packaging is necessary to
properly derive the need for action(s), such as packaging redesign.

Keywords: food packaging; cereals; confectionary; bakery; food quality; shelf-life; sustainable
packaging; active and intelligent packaging; modified atmosphere packaging; vacuum packaging

1. Introduction

Over the past decades, global awareness about environmental, social and economic
sustainability challenges, as well as the need for immediate action to limit their negative
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short- and long-term impacts, has risen considerably. With regard to environmental sus-
tainability, challenges encompass, but are not limited to, the use of resources, land, water,
energy, and generation of associated emissions and waste. In order to facilitate the transi-
tion towards a sustainable future, several (inter)national goals, commitments, and legal
bases have already been initiated or applied. These include, for instance, the Paris Agree-
ment on climate change and the United Nations Sustainable Development Goals (SDGs) on
a global scale, the European Green Deal including the New Circular Economy Action Plan,
as well as the Farm to Fork Strategy on European level and numerous implementations
into national law systems [1–6].

Regarding food, it is well-agreed in the scientific community and beyond, that a great
share of negative environmental impacts such as global anthropogenic greenhouse gas
emissions or waste originate from food systems [7–9]. These systems are defined as the
whole of actors and activities involved, from production to the disposal of food products
of different origins, as well as herewith associated natural, social, and economic environ-
ments [10]. Moreover, they are composed of subsystems (e.g., farming) and connected to
other systems (e.g., energy). A complex network in which changes (e.g., policies) made in
one sector may also affect others. Against this background, different international efforts
have been taken to achieve sustainable food systems, which will provide present and future
generations with a secure supply of safe food [11].

Packaging is strongly associated with food, allowing, amongst other functions, con-
tainment, protection, and transportation of contents, and thus can be seen as an integral
part of food systems [12,13]. Nevertheless, nowadays it is the subject of intense debates
and even stricter legal requirements, mainly due to massive circularity gaps including,
for example, unsatisfactory end-of-life scenarios such as limited recyclability or (marine)
litter [14,15]. However, the simple omission of packaging is hardly possible, since a
well-chosen packaging system frequently shows positive (indirect) effects on the total
environmental sustainability of a food system by, for example, reducing food losses and
food waste or increasing transport efficiency [16]. Therefore, when aiming at developing
sustainable packaging solutions, it is important to apply a holistic and interdisciplinary
approach over the whole life cycle of both food and its corresponding packaging [17].

Since packaging offers a service to the food product and does not fulfil an end in
itself, it is often worth starting a packaging development or a redesign process from the
food perspective. By gaining profound knowledge of the food product itself, together with
the intrinsic and extrinsic factors that affect quality along the food supply chain, further
packaging requirements can be defined and considered in the innovation process [12,13,17].

Due to their high environmental impact, the focus of research and development ac-
tivities is often on (animal protein-rich) foods such as meat or milk [18–20]. Despite their
high nutritional value that shouldn’t be underestimated, cereal and confectionary products
are rather underrepresented, regarding their impact in health but also in economic and
environmental sustainability [21–27]. For instance, about 50% of daily required carbohy-
drates are consumed through bread in industrialized countries. Further, cereals are also an
important source of proteins, minerals, and trace elements [28]. Expressed in figures, retail
sales of bread alone were expected to reach about 92 billion euros in Europe in 2021 [29].
On the other hand, confectionary products reached a production volume of 14.7 million
tons with an annual turnover of 60 billion euros along with an export value of 9.2 euros
and an import value of two billion euros in Europe (EU28) in 2019 [30].

In more detail, the present review aims at building a comprehensive basis for fu-
ture sustainable packaging development activities in the area of cereal and confectionary
products by:

• Presenting relevant information on packaging functions and properties of packag-
ing materials,

• detailing product group specific decay mechanisms and frequently used packaging solu-
tions,

• and highlighting packaging-related shelf-life extension technologies.
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The text is therefore structured as follows: After the introduction, a general background
on food packaging is discussed, followed by product group specific decay mechanisms
and packaging solutions. Finally, packaging measures that can extend the shelf-life are
presented (see also Figure 1).
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2. Packaging
2.1. Packaging Functions

No matter how diverse individual products and packaging solutions may be on the
market, it is well-agreed in relevant literature that the main functions of packaging can
be broken down into a few. Next to the concept of primary and secondary functions,
where the former describes in particular the technical functions like storage and trans-
port, and the latter describes functions related to e.g., communication, a more holistic
concept is frequently mentioned in the packaging literature. This concept describes the
four basic functions of food packaging as (i) containment, (ii) protection, (iii) convenience,
and (iv) communication [12,13,31–33].

Although the containment function is often overlooked, it can be considered one of
the most essential, since it prevents product loss and contamination and facilitates storage,
transportation, and distribution. There are only a few exceptions, where containment and
thus packaging is not needed. Such examples are relatively large, chunky products that are
often regionally produced and consumed within a short period of time or that show long
shelf-life [12,13,31].

The protection function is often recognised as well as highlighted and can be indeed
considered as the most important aspect of packaging. It limits or excludes intrinsic as well
as extrinsic physical, chemical, and biological factors that may have negative influences on
the quality of the respective food product. In the best case, the packaging is even capable
of extending the shelf-life of the product. Therefore, it is of upmost importance to match
the food product’s properties and requirements along the supply chain with packaging
to achieve optimal results. Both under- and over-packaging should be avoided since this
may result, on one hand, in food losses or waste and, on the other hand, in excessive
packaging [12,13,31].

Further, the convenience function refers to the practical aspects or user-friendliness of
packaging. As an example, easy-to-open or -empty, microwave- or heat-able, resealable,
or portion packaging can be named. These features are more and more implemented in
package designs, since they allow to specifically address target groups (e.g., children, el-
derly, single-households, on-the-go lifestyle) and therefore frequently influence the market
success of a product [12,13,31].

Last but not least, the communication function allows for information transfer and
marketing. While the former allows to display legally required (e.g., product name, ingre-
dients, shelf-life), necessary (e.g., barcodes), or voluntary (e.g., certificates, cooking recipe)
information, the latter enables to transfer an often unique brand image (e.g., form, colour,
shape), which may be of great recognition value [12,13,31].

It is worth mentioning that a successful package on the market does not only need
a strong product in terms of quality but also an effective packaging, which in a clever
way combines the above described four functions of containment, protection, convenience
and communication. Otherwise, it may result in a short-term success (weak product and
effective packaging), a situation where the potential is not achieved (strong product and
ineffective packaging), or even failure (weak product and ineffective packaging) [31].
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2.2. Packaging Properties

From a technical point of view, the functions containment and protection are closely
linked to the right selection of packaging materials which consequently poses a key deci-
sion in the development process. The available material classes cover mainly glass, metal,
paper/board, (bio)plastic, as well as composite materials (laminated, coextruded, blended).
Composites can consist of two or more components combined to form, for example, multi-
layer materials (e.g., plastic-coated cardboard) which frequently show superior functional
properties (e.g., barrier) and reduced weight [31], but on the downside also reduced recy-
clability [34,35]. Touching upon the topic of recyclability, many packaging solutions face
obstacles, if it is at the stage of collection, sorting, or in general limited technical recycla-
bility. Not even the use of mono-materials guarantees actual recycling, as it is the case for
PET trays versus PET bottles (bottles are highly likely to be recycled). On the other hand,
specific combinations of compatible materials, even high barrier films, for example, metal-
lized polyolefins, might be considered recyclable in the appropriate infrastructure [36,37].
Summing up, it can be stated that each of the named materials show advantages and
disadvantages (see Table 1) and the decision for a specific material must be based on the
prevailing requirements (e.g., product, supply chain, use, end-of-life). Support is often
provided by material specifications and declaration of compliance documents. However, it
is recommended to test the materials in question under respective conditions by means of a
field or laboratory test. This ensures that deviations from the target value can be recognized
at an early stage in the development process [12,13,31,38,39].

Table 1. Overview of the properties and applications of most widely used materials for packaging.

Packaging Material
Barrier Heat

Seal-Ability
Mechanical, Physical and

Chemical Properties Application Reference
Oxygen Moisture Light

Plastic

Low-density
polyethylene

(LDPE)

Very low

High

Low Yes

Toughness, flexibility,
resistance to grease and

chemicals, temperature range
−50 – +80 ◦C

Bags, flexible lids
and bottles

[12]

Linear
low-density

polyethylene
(LLDPE)

High
Toughness, extensibility,

resistant to grease, temperature
range −30 – +100 ◦C

(Strech) wrap

High-density
polyethylene

(HDPE)

Extremely
high

Toughness, stiffness, resistance
to grease and chemicals, easy

processing and forming,
temperature range
−40 – +120 ◦C

Bottles, cardboard
liners, tubs, bags

Polypropylene
(PP) Low High Low Yes

Moderate stiffness, strong,
resistant to grease and

chemicals, temperature range
−40 – +120 ◦C

Bottles, cardboard
liners, tubs,

microwavable
packaging, bags

Polyethylene
terephthalate

(PET)
Good Good Low Yes

Stiffness, strong, resistance to
grease and oil, temperature

range −60 – +200 ◦C

Bottles, jars, tubs,
trays, blisters, films

(bags and
wrappers)

[12,40]

Glass

Transparent

Absolute

Low

No

High temperature and
pressure stability, brittle,

chemical resistance,
microwave-able

Bottles, jars [12,40–42]Green Good

Brown High

Metal (aluminium,
tinplate, tin-free steel) Absolute No High temperature stability Bottles, cans,

tubs, caps [12,40]

Paper and board Extremely
low

High – extremely
high No Mechanical stability Boxes, liners [12,40,41]

The key properties of packaging materials of interest are physical and mechanical
strength, barrier, migration, as well as hygiene. Regarding the physical and mechanical
strength, it can be noted that static as well as dynamic stress challenges the packages
along the supply chain from packing, storage, and transport to consumer use. Examples
for static stress are stacking and increased pressure (vacuum or modified atmosphere
packaging—MAP), as well as pointed or angular products. Dynamic stress on the other
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hand may be caused by the production process (e.g., printing, forming, filling) or transport
(e.g., vibration). The right selection of the material, but also the shape of the packaging,
therefore plays a vital role in the success of a primary, secondary or tertiary package (see
also Figure 2) [12,13,38,43].
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Another key characteristic of materials to be considered is the barrier property. Espe-
cially, the barriers against oxygen (O2) and water vapour (H2O) transmission are determi-
nant since these can exhibit significant influences on product quality and safety. The former
for example can promote oxidation reactions, loss of quality-determining ingredients (e.g.,
vitamins), and growth of spoilage and pathogenic microorganisms. The latter can influence
structural changes such as hardening, agglomeration, or softening of products and promote
microbial growth (see Section 3.2). Additionally, barriers against carbon dioxide (CO2) and
nitrogen (N2), which are the often-used gases in MAP, as well as aroma components, are
decisive. Depending on the use case and product requirement, material with an appropriate
barrier, i.e., permeation characteristics, should be chosen. Complementary to the above
described, the barrier against other substances like fat may be considered [12,13,38,44].
Furthermore, electromagnetic radiation (light) has to be taken into consideration, since
oxidative or other chemical reactions as well as structural changes may be induced or
accelerated, thus impairing product quality [12,41,45–47].

What is important regarding chemical safety is the migration of compounds from
packaging materials into the food. Migration describes the mass transfer of substances
from a packaging material into the food product or vice versa. As for the permeation, the
driving force behind this phenomenon is the concentration gradient. Additionally, factors
such as material, storage temperature, relative humidity, and time play an influencing
role [38,39,48].

Against common perception, possible migration of, for example, additives, are not
only present in plastic packaging materials. Migration can also be found in other (primary
or secondary (recycled)) materials such as glass (e.g., silicates), metal (e.g., corrosion
of the metal, additive migration from organic coatings), paper and board (e.g., fillers,
contaminations like mineral oils) and may, next to the packaging material itself, find its
origin in packaging aids (e.g., labels, closures, coatings) or even set-off processes (e.g.,
printed and role-to-role processed or stapled materials) [12,13,38]. To ensure safety of
food contact materials (including packaging), several legal requirements are in place in
the European Union and beyond [39,48–53]. It should be noted that in addition to the
migration from the packaging material to the food, migration processes from the food to
the packaging can also be observed. This process is also called sorption or scalping and
may cause alteration of the product (e.g., flavour loss) as well as reduced reusability of
packaging containers due to the re-release of previously migrated substances [12,13].

In addition to chemical safety, packaging materials also play a role in the hygiene
and biological safety of food products. Depending on the material used, a barrier against
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contamination, microorganisms and animals (e.g., food pests) can be given. To achieve
a high standard of hygiene, it is crucial to utilize materials that pose a sufficient barrier
and that are free from contamination. Further, it is important to use materials that do not
support microbial growth. Lastly, it is important to recognise, that most packaging materials
carry a low microbial count when freshly produced due to often high process temperatures
(e.g., melting of glass). So, the microbial burden is often a result of recontamination during
finishing processes, storage, and application, which can sometimes make it necessary to
implement decontamination measures prior to the filling process [38,54].

3. Cereal and Confectionary Products

Against the above-summarized background, food packaging can be seen as a mediator
between product and the environment, capable of significantly influencing food quality,
safety, and shelf-life [12]. Regarding cereal and confectionary products, the following
text aims at summarizing and categorizing the product group, presenting an overview of
category specific decay mechanisms, as well as respective packaging solutions.

3.1. Categorization of Cereal and Confectionary Products

As shown by Belitz et al. [28], cereal and confectionary products cover a wide and
diverse range of food products. They summarized different products in two groups,
namely cereals and cereal products. The first group is mainly made from important staple
foods such as wheat, rye, rice, barley, millet, oats and corn. These are used to produce
different kinds of products. For example, Smith et al. [55] made the following division:
“. . . unsweetened goods (bread, rolls, buns, crumpets, muffins and bagels), sweet goods
(pancakes, doughnuts, waffles and cookies) and filled goods (fruit and meat pies, sausage
rolls, pastries, sandwiches, cream cakes, pizza and quiche)”.

The group of confectionery products are mainly sugar-based products that, in contrast
to cereal products, are predominantly consumed as a “treat” rather than a full meal.
These include products such as chocolate, hard candy, and pralines [56,57]. In addition
to sweet confectionery, savory snacks can also be found on the market. According to
Robertson [13], these include “. . . a very wide range of products, including potato and corn
chips, alkali-cooked corn tortilla chips, pretzels, popcorn, extruded puffed and baked/fried
products, half-products, meat snacks and rice-based snacks” [13,58]. In addition to that,
there are combinations of sweet and savory snacks like chocolate covered pretzels or sweet
popcorn [59].

In the available literature and other sources including statistics, codices and regula-
tions, different approaches to properly (sub)categorize cereal and confectionary products
can be found [59–61]. Taking a food and shelf-life perspective, it is reasonable to cluster
products that exhibit similar characteristics or spoilage mechanisms. In the European
Union, where there is a strong food law [62] in place, a comprehensive list can be, for ex-
ample, found in the guidance document to Annex II of regulation (EC) No 1333/2008
on food additives [59,63]. For the field of cereals and confectionary, the four groups of
confectionary, cereals and cereal products, bakery wares, and ready-to-eat savories and
snacks are of special interest. While confectionary is further subdivided into cocoa and
chocolate products, other confectionery products including breath freshening micro-sweets,
chewing gum as well as decorations, coatings and fillings, cereals and cereal products are
divided into whole, broken or flaked grain, flours, milled products and starches, breakfast
cereals as well as pasta, noodles, batters and pre-cooked or processed cereals. For bakery
wares, a classification into bread and rolls and fine bakery wares is given. Last but not least,
savories and snacks are broken down into potato-, cereal-, flour- or starch-based snacks as
well as processed nuts. For each of the above-mentioned subgroups, a comprehensive list of
product examples is given in the mentioned document [59]. The present review adopts this
categorization approach and structures relevant information on cereal and confectionary
shelf-life, packaging, and shelf-life extension strategies accordingly (Figure 3).



Foods 2022, 11, 697 7 of 28

Foods 2022, 11, x FOR PEER REVIEW 9 of 32 
 

 

ing gum as well as decorations, coatings and fillings, cereals and cereal products are di-
vided into whole, broken or flaked grain, flours, milled products and starches, breakfast 
cereals as well as pasta, noodles, batters and pre-cooked or processed cereals. For bakery 
wares, a classification into bread and rolls and fine bakery wares is given. Last but not 
least, savories and snacks are broken down into potato-, cereal-, flour- or starch-based 
snacks as well as processed nuts. For each of the above-mentioned subgroups, a compre-
hensive list of product examples is given in the mentioned document [59]. The present 
review adopts this categorization approach and structures relevant information on cereal 
and confectionary shelf-life, packaging, and shelf-life extension strategies accordingly 
(Figure 3). 

 
Figure 3. Representation of the followed product categorization. Adapted from [59]. 

3.2. Decay Mechanisms and Shelf-Life 
It is well-established that intrinsic as well as extrinsic factors influence the quality of 

food and thus its shelf-life [13], which can be defined as the period of time a food main-
tains its safety and/or quality under reasonably foreseeable conditions of distribution, 
storage, and use [12,64–66]. Intrinsic factors include, amongst others, pH, water activity 
(aw), initial microbial population, redox potential value (Eh), and nutrient content and 
therefore determine the nature of decay mechanisms of a food product. On the other hand, 
extrinsic factors determine how fast decay mechanisms proceed. Typical examples are at-
mosphere, climatic conditions, and illumination. Packaging itself acts as mediator or sep-
arator between intrinsic and extrinsic systems [13,67]. The following paragraphs highlight 
the main challenges of quality maintenance of cereal and confectionary products but do 
not go into detail about the physical, chemical, or biological bases of these mechanisms 
(e.g., oxidation). This information can be found in the relevant scientific literature 
[13,67,68]. 

Focusing on cereal and confectionary products (see Table 2), moisture content (MC) 
and water activity (aw) are some of the most important quality-affecting parameters. Kong 
and Singh [69] define, that the aw value is “…the vapour pressure of water above a sample 
(p) divided by that of pure water at the same temperature (p0); i.e, a୵ = ୮୮. It describes 
the degree to which water is free or bound to other components”. They state that this is 
related to “…the composition, temperature, and physical state of the compounds” [69,70]. 
This is  of importance regarding the potential growth of microorganisms as they depend 
on free water presence [71]. 

  

Figure 3. Representation of the followed product categorization. Adapted from [59].

3.2. Decay Mechanisms and Shelf-Life

It is well-established that intrinsic as well as extrinsic factors influence the quality of
food and thus its shelf-life [13], which can be defined as the period of time a food maintains
its safety and/or quality under reasonably foreseeable conditions of distribution, storage,
and use [12,64–66]. Intrinsic factors include, amongst others, pH, water activity (aw), initial
microbial population, redox potential value (Eh), and nutrient content and therefore de-
termine the nature of decay mechanisms of a food product. On the other hand, extrinsic
factors determine how fast decay mechanisms proceed. Typical examples are atmosphere,
climatic conditions, and illumination. Packaging itself acts as mediator or separator be-
tween intrinsic and extrinsic systems [13,67]. The following paragraphs highlight the main
challenges of quality maintenance of cereal and confectionary products but do not go into
detail about the physical, chemical, or biological bases of these mechanisms (e.g., oxidation).
This information can be found in the relevant scientific literature [13,67,68].

Focusing on cereal and confectionary products (see Table 2), moisture content (MC)
and water activity (aw) are some of the most important quality-affecting parameters. Kong
and Singh [69] define, that the aw value is “. . . the vapour pressure of water above a sample
(p) divided by that of pure water at the same temperature (p0); i.e, aw =

p
p0 . It describes

the degree to which water is free or bound to other components”. They state that this is
related to “. . . the composition, temperature, and physical state of the compounds” [69,70].
This is of importance regarding the potential growth of microorganisms as they depend on
free water presence [71].

Table 2. Water activity and moisture content of confectionery products, breakfast cereals, snacks, and
bakery products.

Product category Subcategory Product Water Activity
[aw]

Moisture
Content [%] Reference

Confectionery

Cocoa and
chocolate products Chocolate 0.42–0.60 1.2 [72]

Other confectionery
including breath freshening

micro-sweets

Hard candy 0.25–0.40 2.0–5.0
[73,74]

Fudge, toffee 0.45–0.60 6.0–18.0

Nougat (white, dark) 0.55 8.00–10.0 [13,75]

Jelly, liquorice 0.50–0.75 8.0–22.0
[73,74]

Marshmallow 0.60–0.75 12.0–22.0

Marzipan 0.75–0.80 – [13]

Chewing gum Chewing gum 0.40–0.65 3.0–6.0 [73,74]
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Table 2. Cont.

Product category Subcategory Product Water Activity
[aw]

Moisture
Content [%] Reference

Cereals and cereal
products

Whole, broken,
or flaked grain Oats, grains, cereals 0.34–0.70 8.8–9.2

[13,72]Breakfast cereals
Cornflakes 0.25–0.38 1.7–3.5

Puffs 0.17–0.20 0.48–1.70

Fresh pasta Fresh pasta 0.91–0.98 ≥24

Dry pasta Dry pasta 0.33–0.57 5.4–8.3

Bakery wares

Fine bakery wares

Sponge cake, muffins 0.84–0.95 21.0–40.0

[76,77]Croissant crust 0.59–0.61 8.0–10–0

Croissant crumb 0.92–0.94 30.0–33.0

Biscuits 0.60–0.63 1.5–3.0 [72,78]

Wafers 0.13–0.15 2.1
[72]

Cookies 0.18–0.64 1.4–11.7

Bread and rolls

Flat bread (no yeast) - 33.0–35.0 [79]

Sourdough bread, yeast
bread crumb 0.91–0.95 29.0–40.0

[72]

Sourdough bread, yeast
bread crust 0.88–0.94 26.0–32.0

Bagel crust 0.96 38.5

Bagel crumb 0.92 31.0

Ready-to-eat
savouries

and snacks

Potato-, cereal-, flour- or
starch-based snacks

Popcorn 0.07 0.28

Chips 0.09–0.27 0.3–1.3

Crackers, grissini,
sticks, pretzels 0.05–0.54 1.1–5.4

Processed nuts Nuts, seeds, nibs 0.15–0.75 0.5–3.1

With an aw lower than 0.75, a large proportion of the products listed in Table 2 falls
into the group of low-moisture or dried foods that additionally exhibit low (e.g., cornflakes)
or high (e.g., crisps) fat content. In this group, water uptake and thus loss of, e.g., crispness,
which occurs, e.g., in potato chips and breakfast cereals after gaining moisture at a range
of 0.35 to 0.5 aw, is the main decay mechanism [12,13,69,80]. Other mechanisms include
loss of aroma (e.g., flavoured products) or aroma uptake from the products’ surrounding
due to the often porous structure of the food products. Further, structural changes such
as loss of integrity due to e.g., mechanical damage (e.g., breakage), softening, or caking
may occur. While microbial growth is the basis for both, low and high fat types, oxidative
mechanisms, which may lead to off-odours and -tastes and subsequently to quality loss in
terms of overall acceptance, are often linked to the fat content and thus tend to increase
with the same [12]. Examples that can be named are nuts, chips, biscuits, and cookies.
All in all, this product group can, however, be described as rather stable and therefore
storage under dry and ambient conditions is recommended and possible. For example,
breakfast cereals and dry pasta stay stable under temperate conditions for 6–18 months
and 48 months, respectively [72,81]. Confectionary products like pulled sugar are stable for
6–9 months under temperate conditions (e.g., ~20 ◦C) [68].

Other products, including chocolate for example, can be allocated to compact foods
with high fat content, a group mainly susceptible to the uptake of unwanted flavours and
some (often minor) water exchange (uptake or loss) processes [12]. The latter can induce
so-called blooming effects [13]. Sugar bloom on the one hand is often provoked by humid
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storage or rapid temperature changes and leads to the loss of surface gloss. Fat bloom on
the other side is also known to cause quality related issues visible as a fine whitish layer [82].
Growth of microorganisms is, however, of minor importance in this product group. Storage
under temperate or chilled conditions is therefore possible for up to 12–24 months [57].

Microbial growth is of major concern in the group of ready-to-eat and ready-to-
cook convenience food products (e.g., fresh pasta). At this point, in addition to spoilage
microorganisms, pathogenic microorganisms play an essential role [65,83]. Further, water
loss and structural changes can be named. Additionally, oxidation can significantly gain
importance regarding shelf-life. Accordingly, chilled storage is often preferred [13,67].

The area of bakery products can be divided into fresh bakery wares and ready-to-bake
products. The first group (e.g., bread) shows high aw values (>0.8) and thus short shelf-life,
which is heavily influenced by water exchange processes that are often interlinked with
structural changes (softening of the crust and drying of the crumb). Connected to this,
starch retrogradation, which is the main mechanism of staling, can be highlighted [69].
Further, loss of moisture and hardening with aw values below 0.5–0.7 [13,69,80] quickly
result in low sensory acceptance of the products. While oxidation and rancidity play a
minor role in this food category, uptake of flavours as well as microbial spoilage play a
more elaborated role in this product group. The latter point is mainly driven by the often
visible growth of moulds and yeasts on the food surface. Characteristic microorganisms are
Penicillium roqueforti, Hansenula anomala, Pichia anomala, Candida guilliermondii, C. parapsilosis,
Saccharomyces cerevisiae, S. exiguus, S. unisporus, S. bayanus, S. pastorianus. Additionally,
Clostridium and Bacillus genera are known bacteria potentially affecting bakery wares (spore-
forming), with e.g. Bacillus spp. causing “rope” or “ropy spoilage” (Bacillus amyloliquefaciens,
Bacillus subtilis, Bacillus pumilus, Bacillus cereus) [71,84,85]. Oxidation and rancidity play
a minor role in this product category. Accordingly, the average shelf-life of fresh bread
and cake under ambient conditions is often less than one week [86]. In some cases, chilled
or frozen storage is advisable. The group of ready-to-bake rolls show very similar decay
mechanisms. However, due to the higher water content, drying and spoilage is even more
pronounced. In the case of frozen products, these mechanisms are delayed. A special focus
has to be laid on water exchange (freezer burn) and structural damage [87].

3.3. Product Group Specific Packaging

Responding to the above-mentioned predominant decay mechanisms of cereal and
confectionary products, the following section aims at highlighting common packaging
concepts and material choices (compare also Table 1).

Chocolate packaging has to provide a good barrier against aroma, gas (especially O2
and H2O) as well as light. This is conventionally achieved by using aluminium foil of
different thickness to wrap the product. Since aluminium alone cannot be heat sealed, the
per se excellent barrier of the material is, however, interrupted at, e.g., overlapping areas or
gaps. Hence, diffusion (mass transfer) of aroma, gas and other molecules (e.g., mineral oil
components) to the product cannot be excluded. Additionally, the originality of the product,
an important factor of food safety, may not be ensured [13,67]. For this and other reasons
(e.g., communication), many described packaging concepts (still) include an additional
packaging layer, namely paper or paperboard [13,27,88–92].

Today, more and more multilayer materials can be found on the market. For example,
laminates of LDPE (low density polyethylene) and aluminium allow for heat sealing of the
aluminium by at the same time keeping the superior barrier and dead-fold properties of
aluminium. Further, multilayer materials including paper or other aluminium replacing
barrier materials (e.g., polyvinylidene dichloride (PVdC)) are available. Possible build-
ups may include LDPE/aluminium/paper or LDPE/PVdC, respectively [13]. Nowadays,
a shift towards packaging made (solely) from (oriented) PP, which exhibits, due to a
stretching process, inter alia, improved mechanical and barrier properties, is notable [21,92].
Additionally, cold sealing, is more and more adopted, since it avoids exposing sensitive
products, such as chocolate, to elevated temperatures during heat sealing. This alternative
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is made possible by applying cold-seal adhesives on the intended sealing areas of the
packaging film and pressing of two of the sealing areas together [31].

Individually packed chocolate products, such as chocolate coated bars or pralines, are
often bought for hedonistic reasons (e.g., treats, gift function) and thus the communication
function (design) of these packages is frequently at the forefront [13,56]. While the functions
of containment and protection are already met, these packages often use excess packaging
materials and/or layers and for example consist of a (e.g., polyethylene terephthalate
(PET)) tray with individual cavities, (e.g., aluminium) wrapping of the individual pieces,
a (e.g., paperboard) box, (e.g., polyethylene (PE) or polypropylene (PP)) overwrapping and
packaging aids (e.g., labels, stickers). Glass or metal is also used in some cases [13].

Many confections, such as hard candies, gums, toffees and caramels are likewise
(twist) wrapped individually. This is either for technical reasons such as provision of an
adequate (H2O) barrier and thus avoidance of moisture loss or uptake, resulting in e.g.,
drying or agglutination of the product pieces, hygienic reasons or distinction from other
products. As for chocolate, tightness of the package should be in the ideal case assured [73].
Due to their in general good barrier properties and sealability, the market dominating
polyolefins (PE and PP) as well as PET [93] are also frequently used in this product category
(e.g., multipacks) [21,94]. If elevated barriers are needed, different multilayer materials
are also adopted. Further, glass and metal packaging can be found on the market and
traditional materials include waxed paper, waxed glassine and waterproof, plasticized
cellulose fibre [57]. Plain paper and board are, however, hardly used as a primary packaging
material, since products tend to stick to the material. The packaging types in this product
category are manifold and include, for example, trays, flow packs, boxes (for example
cardboard and metal) and jars [13].

Other products such as biscuits, (processed) nuts and fruits are traditionally packaged
in regenerated cellulose (trade name Cellophane) fibres (RCF). Therefore, RCF is usually
coated with either LDPE or PVdC copolymer and often with a layer of glassine in direct
contact with the product if it contains fat. Currently, this combination of materials is
replaced by PP, either as plain or pearlized OPP film, coextruded OPP (OPPcoex) film, or
acrylic-coated (Ac) on both sides. Plain OPP films require a heat seal coating to improve
sealability while coextruded OPP provides superior seal strength. If a high O2 barrier
is required, then acrylic-coated OPP (AcOPP) is used. One side is sometimes coated
with PVdC copolymer rather than Ac. In addition, Ac and PVdC copolymer-coated OPP
films provide a superior flavour and aroma barrier compared with that of uncoated OPP.
Biscuits are often packed in PP and additionally a cardboard box, acting as secondary
packaging [13,25].

In comparison to other products, the dry and low in fat group of cereals and cereal
products, (such as whole, broken, flaked or milled) grains (e.g., wheat and rice) show
rather low packaging demands. Mostly used are paper bags, flexible plastic bags (e.g.,
PE [95]), as well as cardboard boxes [96,97]. There are also variations of these packages,
for example inner flexible plastic bag and a secondary cardboard box. If paper is used
and high barriers are needed, LDPE liners for example can be applied [13], also to avoid
mineral oil migration [98]. Rigid laminates with paper content and plastic lids usually
known in snack product packaging, are also available. Flours for example are commercially
packaged in bags or bulk bins [13]. In addition to that, woven PP bags are commonly used
in developing countries. However, Forsido et al. [99] discussed that the low moisture barrier
led to chemical, physical, sensorial, and microbial changes of flour. Another successful
approach for flour packaging that was used for decades, was bags made from cotton
twill [13].

The barrier requirements for breakfast cereals packaging are set higher than in the
above-mentioned group since crispness, formation of off-flavours, loss of aroma and vita-
mins or breakage are more critical for consumer acceptance [13]. Consequently, the inner
packaging/primary packaging level of these products is a plastic bag, mostly HDPE (high
density polyethylene), giving a sufficient water vapour barrier since moisture vapour trans-



Foods 2022, 11, 697 11 of 28

mission rates less than or equal to 15 g/m2-day-atm are often required. Sealant polymers
such as EVA (ethylene vinyl acetate), ionomer, mPE (metallocene polyethylene), or blends
are used for low temperature seals, form-fill-seal packaging, and easy opening seals [95].
In order to increase barrier characteristics, HDPE is also coextruded with a thin layer of EVA
or PA (polyamide) and EVOH (ethylene vinyl alcohol) polymers [95,100]. Other O2 barrier
materials for breakfast cereals are PVdC and coated polypropylene-low density polyethy-
lene [101]. In addition, PP-bags are common liners. The secondary packaging/outer
packaging is most frequently a fibreboard box [13,22]. Alternative packaging concepts
include coated paperboard, plastic cups, as well as metal boxes and glass jars [13,102].

Dried pasta is often packaged in paperboard carton, containing a plastic window.
At the moment, most pasta products are packaged in plastic films, such as PE or oriented
polypropylene [13,103–107]. For fresh pasta/noodle products, packaging solutions might
be different, as appropriate barriers (gas and/or water vapour) and/or MAP (e.g. CO2:N2
20:80% MAP for pasta) is needed [107,108]. The selection of packaging materials for fresh
pasta products can also depend on whether or not the product is pasteurized (thus, the
package must be able to withstand the pasteurization conditions) and whether or not the
product is to be heated in its package (the package must be able to withstand either heating
in boiling water or microwave conditions) by the consumer. For products which are not
pasteurized nor intended to be heated in their package, a rigid tray of PVC-LDPE sealed
with PA-LDPE film is common. When microwave heating is used, the rigid tray is usually
made from crystalline polyethylene terephthalate (PET-C), or polystyrene-ethylene vinyl
alcohol copolymer-LDPE (PS-EVOH-LDPE) laminate, and the film may be based on PVdC
copolymer-coated PET, OPET-EVOH-LDPE, or PP [109].

Packaging of fresh bakery products such as bread is a moisture balancing act. On one
hand, moisture needs to be contained to prevent drying of the product and on the other
hand, moisture has to be released from the product to avoid softening of the crust and
microbial spoilage. Since there is a wide range of products and product characteristics, also
a wide range of packaging solutions can be found. Frequently, paper-based materials, LDPE,
LLDPE, HDPE bags as well as OPP, either as plain, pearlized, OPPcoex, or Ac/OPP/Ac
films are used [13,95,110–114]. The bags are usually closed either with a strip of adhesive
tape or a (plastic) clip in order to reduce moisture loss [111,113,115]. EVA polymers are also
used for sealability and optics [95]. Perforated LDPE bags are used (for crusty products)
in order to prevent the formation of a leathery consistency of the crust due to moisture
migration from the crumb [115]. If aroma and taste barriers are needed, PA is used [95].
Vacuum packaging including the use of respective barrier packaging materials is only used
in some exceptions (e.g., flat breads) in this product category due to mechanical impairment
of the often soft products. MAP rich in CO2 is whereas more frequently used (e.g., sliced
bread, convenience applications). For example, CO2:N2 60:40% MAP for bread, cakes,
crumpets, crepes, fruit pies and pita bread. This is also the case for ready-to-bake products,
which are intended to have a longer shelf-life [13].

Packaging for fried snack foods such as potato or tortilla chips, which exhibit, due
to their production process, low moisture and high fat contents, preliminarily aims at
providing a barrier against gases (H2O and O2) and light to avoid loss of crispness and
increased oxidation/rancidity levels of the product [95]. Hence, these products are mainly
packaged in high barrier multilayer films containing aluminium foil or metallisation (e.g.,
PET/Alu/LDPE; PETmet/LDPE; BOPP/BOPPmet) [31,94,116]. In addition, barrier poly-
mers such EVOH or PVDC can be found in these materials. Further, rigid multilayer paper
solutions with aluminium (for example spiral wound paper-board cans) or metal cans
are also used. Since extruded and puffed snack foods exhibit lower fat levels and thus
primarily rely on a package that provides a barrier against water vapour; these products
are less often packaged in metallized materials. An example is OPP/LDPE/OPP [95].
In both scenarios, and whether flexible or rigid packaging is adopted, modified atmosphere
packaging is frequently used. For example, the package is usually flushed with an inert gas
(N2) before closing [116]. Additional mechanical protection of the often fragile products
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and dry storage is recommended. This might lead to the use of secondary packaging, such
as cardboard boxes [31].

4. Shelf-Life Extension

As can be seen from the above text, choosing the right packaging material concept
can have a positive effect on quality maintenance and therefore shelf-life of cereal and
confectionary products and food in general. Where particularly sensitive products (e.g.,
high aw value, high fat content or oxidation potential) are present (e.g., fresh pasta, fried
snacks) or an elevated shelf-life has to be achieved (e.g., ready-to-bake rolls, fine bakery
wares), modern packaging concepts such as modified atmospheric packaging or active (AP)
and intelligent packaging (IP) are used (combined abbreviation: AIP). Manifold different
approaches can be found regarding MAP, AP, and IP, each with different relevance for the
discussed product subgroups, cereals and cereal products, confectionary, bakery wares and
ready-to-eat savouries and snacks. However, for an impression of these, Figure 4 depicts
selected examples.
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Using these approaches, other product preservation actions (e.g., heating, use of
preservatives) may be reduced, which supports attempts to reach a healthier diet (e.g.,
reduction of salt) or a clean label (e.g., avoidance of excess additives) [141] These allow
specifically addressing other remaining challenges in the chemical, biological, mechanical,
and physical fields [12,13]. Thus, they are also often implemented in the hurdle technology,
a concept of combining diverse adverse factors or treatments to control microbial growth
in food products [13,142]. According to studies found, also biobased and/or biodegradable
packaging material is experimentally combined with AIP approaches. These materials offer
new opportunities, for example in making use of different barrier properties, that allow a
certain shelf-life extension [134,135]. Examples for MAP and AP with traditional as well as
biobased/biodegradable packaging materials can be found in Table 3.
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Table 3. Effects of packaging material selection, active packaging (AP) and modified atmosphere packaging (MAP) on shelf-life extension of cereal and confectionary
products. Abbreviations: m = month; d = day; RH = relative humidity; RT = room temperature.

Category Product Packaging Material AIP/MAP Applied Storage Shelf-Life Reference

Confectionary Dark chocolate
with hazelnuts

Alu (commercial) Air

20 ◦C in dark

8 m

[119]PET/LDPE
Vacuum or N2

8–9 m

PET-SiOx/LDPE 11 m

PET/LDPE or PET-SiOx/LDPE Oxygen absorber ≥ 12 m

Cereals and
cereal products

Muesli with chocolate
and apricots

Paper bag: PAP + PP window

Air 20 ◦C, RH 55 %

2 m

[143]Pouch: PAP/Alu/PE
9 m

Can:PAP/Alu + LDPE lid

Fresh pasta
PS tray + PVC film Air

8 ◦C
20 d

[120]
PA/EVOH/LLDPE CO2:N2 22:78% MAP 40 d

Fresh pasta filled
with cheese

Tray: EVOH/PS/PE wrapped in film:
EVOH/OPET/PE

Air
4 ◦C

7–14 d
[108]

CO2:N2 50:50% MAP 42 d

Gluten-free fresh
filled pasta

Tray: PETFilm: antifog PET film Air
4 ◦C

14 d
[121]

Tray: EVOH/PS/PEFilm: EVOH/OPET/PE CO2:N2 30:70% MAP 42 d

Bakery wares

Sponge cake
PA/LLDPE Combinations of oxygen scavengers

with / without ethanol emitter 30 ◦C, RH 60% ≤42 d [139]
PVDC/PA/cPP

Sliced wheat bread PET-SiOx/LDPE

Bread

20 ◦C

4 d

[130]
Bread + preservatives 6 d

Ethanol emitter 24 d

Ethanol emitter + oxygen absorber 30 d

Ciabatta bread OPA/PE

Air (control)

21 ◦C

5 d

[122]

Air + ethanol spray 11 d

CO2:N2 10:90% MAP 12 d

MAP + ethanol spray 13 d

Air + ethanol emitter 25 d

MAP + ethanol emitter 30 d
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Table 3. Cont.

Category Product Packaging Material AIP/MAP Applied Storage Shelf-Life Reference

Wheat bread

HDPE/PE -
25.8 ◦C, 275.5 lx,

RH 31.2%

2 d

[144]Unpackaged bread - 3 d

HDPE/Nanoparticles/PE Ag-TiO2 >6 d

Calcium-enriched
wholemeal bread PA/PE bag + cardboard box CO2:N2 60:40% MAP 20 ◦C 24 d [145]

Whole wheat bread PA/PE N2 RT 2–3 w [123]

Part-baked flat bread
(Sangak) PA/PE

Air

25 ◦C

9 d

[124]CO2:N2 20:80% MAP 18 d

CO2 100% MAP 21 d

Sliced wheat bread Tray: APET/EVOH/PEAntifog-film: PA/PE

Air without potassium sorbate &
with 0.15% potassium sorbate

20 ◦C, RH 60%

14 d

[125]
N2 100% MAP, CO2:N2 30:70% MAP,

CO2:N2 50:50% MAP, CO2:N2
70:30% MAP, CO2 100 %MAP;with

& without potassium sorbate

21 d

Air with 0.30% potassium sorbate >21 d

Bread Plastic bag

E-Poly-L-Lysine Biofilms1.6/3.2/6.5
mg of E-Poly-L-Lysine /cm2

RT for 7 days
inoculated with

A. parasitus
+1 d

[131]
E-Poly-L-Lysine Biofilms6.5 mg of

E-Poly-L-Lysine /cm2

RT for 7 days
inoculated with

P. expansum
+3 d

Sliced wheat bread PP/PET/LDPE Star anise oil, thymol 25 ◦C inoculated with
P. roqueforti 14 d [132]

Bread Starch-based bionanocomposite film Chitosan, grapefruit seed extract 25 ◦C, RH 59% 20 d [133]

Sliced white pan bread

PP bag
–

30◦C
3 d

[134]
PBAT-PLA bag

Trans-cinnamaldehyde ≥21 d

Bread

BOPP
–

25 ◦C, RH 75%

3 d

[135]PLA 6 d

PLA-PBSA bag Thymol 7–9 d
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4.1. Modified Atmosphere Packaging (MAP)

Leaving quality sensitive products exposed to atmospheric conditions (gas compo-
sition of N2, O2, Ar, CO2, traces of other gases) can trigger undesirable changes such as
quality-related oxidative decay or growth of (non)pathogenic aerobic microorganisms. On
the contrary, modifying the atmosphere inside a packaging can help maintain the quality
of a product over an elevated timeframe. Consequently, common mitigation strategies
include the reduction of packaging headspace and, thus, total available atmosphere or
even removal of the atmosphere (to a value below one percent), which in turn results in
vacuum packaging. To maintain these conditions over time, it is necessary to assure an
appropriate containment function of the packaging by choosing packaging materials with
an appropriate gas barrier and proper sealing. Challenges in this case are often the structure
of the products and the corresponding residual oxygen in the packaging in the case of e.g.,
pores and the collapse of the product in the case of e.g., a soft structure [13,125,146].

A more advanced modification can be found in a so-called modified atmosphere
packaging, MAP [147]. Here, an active modification takes place in a two-step process,
where first the initial atmosphere is removed (vacuum) and then replaced with a specific
artificially composed atmosphere before closure of the barrier packaging. Commonly, in
product-dependent concentrations used, colourless and odourless gases in MAP mainly
encompass CO2 and N2. Due to its formation of hydrated carbonate species in aqueous
phase CO2 is valued for its bacteriostatic and fungistatic effect, which increases with
increasing concentration. Due to the solubility in water and fat, formation of under-pressure
in the package and, consequently, possible collapse of the latter is possible. To avoid this
and to act as a filler gas, the inexpensive and inert N2 is applied. Hence, passively, also this
gas contributes to quality maintenance of the product. Furthermore, O2 is a frequently used
gas but of little relevance for the cereal and confectionary sector. Its field of application
is mostly in meat (e.g., bright-red colour preservation via high-oxygen MAP) and fish
products and to lower extent in plant products [145,148,149]. More recently, permitted
noble gases such as argon are subject to research but not broadly applied on cereal and
confectionary products [150,151]. Depending on the chosen MAP gas composition, food
shelf-life can increase manifold (50–400%) and with this advantage along the supply chain
can be recorded (e.g., less food waste, longer remaining shelf-life, less frequent production
and transport). However, disadvantages linked to MAP, in general encompass the need for
more sophisticated packaging materials and filling equipment, costs for gas and increased
packaging volume [13].

Regarding the food categories at the centre of the present review, confectionary prod-
ucts are less frequently in the centre of research and application of MAP than cereals and
cereal products, bakery wares or ready-to-eat savouries and snacks (see Table 3). One case
of MAP use, however, is reported by Mexis et al. [119], for dark chocolate with hazelnuts.
The authors found, that when conventionally used aluminium packaging together with
storage under surrounding atmosphere was replaced with a PET/LDPE or PET-SiOx pack-
aging and vacuum or N2, the shelf-life (dark storage at 20 ◦C) was increased from 8 to
8–9 and 11 months, respectively. Also Kita et al. [152], investigated the effects of different
packaging types and shelf-life extension strategies for chocolate coated products (fruits and
nuts). They analysed air, vacuum and MAP (N2 ≥ 98%) of coated cherries, figs, hazelnuts
and almonds in long term storage conditions in three different types of packaging. PP film
closed with a clip was chosen for air, PP film sealed for vacuum and metallized sealed film
for MAP. They resumed that the best packaging solutions for the chosen chocolate coated
products, ensuring quality (for example bioactive compounds, antioxidative activity) were,
on one hand, air and vacuum packaging for fruits, vacuum packaging for hazelnuts and
MAP for almonds.

In the category of cereals and cereal products, and in more detail in fresh pasta, MAP
often contains elevated amounts of CO2 (up to 80%) and corresponding low N2 values
(balance) [13,108,120,121]. For instance, Lee et al. [120] conducted a comparative study on
fresh pasta packaged under air (PS tray with PVC film) and under CO2:N2 78:22% MAP
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(PA/EVOH/LLDPE). As a result, the shelf-life was doubled from 20 to 40 days at a storage
temperature of 8 ◦C. Even higher rates of shelf-life increase for fresh filled pasta were
shown in two other studies [108,121]. In the first case, samples included fresh pasta filled
with cheese in a sealed tray (EVOH/PS/PE) with a barrier film (EVOH/OPET/PE) and
two different atmospheres (air; CO2:N2 50:50% MAP). Quality maintenance was increased
from 7–10 days up to 42 days [108]. Similarly, in the second case, gluten-free fresh pasta
was packaged in trays (control: PET; test: EVOH/PS/PE) sealed with films (control: PET;
test: EVOH/OPET/PE). Shelf life under air was compared to CO2:N2 30:70% MAP. Here,
an increase from 14 to 42 days was notable [121].

Turning to bakery wares such as (pita)bread, cakes, crumpets, crepes, (fruit)pies,
Robertson [13] reports a frequent use of CO2:N2 60:40% MAP. However, in the scien-
tific literature, a more diverse application of CO2:N2 MAP can be seen. For example,
Rodriguez et al. [126] investigated extending the shelf-life of bread using MAP packaging
in a combination with preservatives. The research referred to bread slices packaged in
a 60 µm bag. The results showed that in the samples without added preservative, and
CO2:N2 50:50% MAP, the increases in shelf-life were 117% and 158% (at 22–25 ◦C and
15–20 ◦C). For the samples with calcium propionate addition and in N2 100% MAP, shelf-
life was increased by 116%. Furthermore, calcium propionate addition and CO2:N2 20:80%
MAP increased the shelf-life by 150% and 131% at 22–25 ◦C and 15–20 ◦C. When the CO2
concentration was increased to 50%, the increased shelf-life of the samples with added
preservative was 167% at 22–25 ◦C. For the same settings at 15–20 ◦C the increase was
even 195%. Fernandez et al. [149], conducted a similar research with soy bread. They as
well used different settings of MAP and preservative adding but expanded the question
of packaging options. They used two multilayer packaging solutions, high and medium
barrier. The high barrier was LLDPE/PA/EVOH/PA/LLDPE, whereas the medium barrier
solution was LLDPE/PA/LLDPE. As controls, LDPE and air atmospheres were used. The
combination of high barrier packaging in CO2:N2 50:50% or CO2:N2 20:80% MAP without
calcium propionate addition extended the shelf-life of the samples by at least 200%.

Turning to ready-to-eat savouries and snacks (e.g., crisps) Sanches et al. [128] inves-
tigated inter alia the effects of different packaging atmospheres under 40 ◦C and room
temperature on multiple crisp samples, linked to lipid oxidation. They included marketed
products under unknown MAP concentrations, air, N2, vacuum and oxygen scavengers in
the analysis. Reflecting changes in the fatty acid profile of the crisps, it was resumed that
changes in the package’s atmospheres, mostly cutting out oxygen, was crucial for the shelf-
life of the crisps. Vacuum packaging options would also allow stable lipid profiles, however,
they are not suitable for easily breakable crisps. Del Nobile [129] was similarly questioning
the optimal packaging for crisps, however, focused on finding the best headspace gas
composition for two different multilayer film packages (metallized PP and PVdC coated
PE) through simulated storage. He proposed that N2 combined with water vapour would
lead to a shelf-life extension up to 80%.

4.2. Active and Intelligtent Packaging (AIP)

While MAP is firmly established in the market, active and intelligent packaging has not
yet reached its full potential in food packaging applications but is at the threshold of more
widespread use in the European market and subject to intense research and development
activities [153–155]. Accordingly, the following paragraphs aim at outlining the concept of
AIP and highlighting applications most relevant for cereal and confectionary packaging.

Just as conventional packaging applications, AIP define as food contact materials as
given in Regulation (EC) No 1935/2004. While conventional packaging has to be suffi-
ciently inert not to transfer substances to the food in quantities that endanger human health
or bring an unacceptable change of the food product (composition, organoleptic properties),
AIP are intentionally designed not to be inert. This allows them to actively maintain or even
improve the quality or shelf-life of food products [39]. Hence, AIP deliberately includes
“active” components that are either aimed to be released to the food or that aim at absorbing
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substances from it. This justifies the division of active packaging into so-called releaser and
absorber systems. However, a clear distinction is made to traditional substance releasing
materials (e.g., wooden barrels) in food contact. The use of active substances aimed to
be released to the food must also comply with the Directive 1333/2008 on food additives
and should be authorized accordingly by applicable community provisions [63]. Further-
more, specific requirements regarding labelling and information, avoidance of misleading
consumers as well as safety assessment and authorisation is given [39]. In addition to
Regulation (EC) No 1935/2004, Commission Regulation (EC) No 450/2009 gives specific
rules for the use of AIP (e.g., community list of allowed substances for use and evaluation
of these) [39,156].

In response to major challenges in food quality and safety [12,13], key technolo-
gies in the area of active packaging are emitters (e.g., CO2, ethanol, antimicrobials, an-
tioxidants) and scavengers (e.g., O2, CO2, ethylene), absorbers (e.g., H2O, flavour and
odour), self-venting packages, microwave susceptors, and temperature control packag-
ing [13,40,157–165]. Intelligent packaging on the other hand refers to packaging that
monitors the food product and provides information about its condition [39]. Related
key technologies are mostly indicators and sensors (e.g., time, temperature) and linked
processing and communication systems (e.g., (printed) electronics). Further, tamper evident
packaging and anti-counterfeiting applications exist [163,166].

Due to their effectiveness, the growth forecasts for AIP in the coming years are high,
but it must be emphasised that the sustainability of such sophisticated packaging solutions
should be evaluated case by case [167]. In addition to the actual reduction of food losses and
food waste, factors such as, e.g., the recyclability of AIP, which may include metal-based
components, should be evaluated [153,163,168,169].

Going into detail about cereal and confectionary packaging (see also Table 3), an appli-
cation example for oxygen absorbers is in sliced bread. Where O2 concentration decreased
below 0.1% within a few days of packaging, microbial shelf-life was shown to be extended.
It was reported that there was no effect on sensory quality [170]. Oxygen absorber can
also be used in combination with MAP. In 2003, Del Nobile et al. [127] showed that the
application of CO2:N2 80:20% MAP in the packaging of durum wheat bread prolonged the
shelf-life from 3 to about 18 days at 30 ◦C. However, if the packaging film itself possesses a
high barrier against oxygen, neither the use of scavengers nor MAP are necessary to achieve
the desired shelf-life of white bread [171]. Finally, an oxygen scavenger system, consisting
of a multilayer coextruded bag associated with an oxygen scavenger, was tested in different
storage conditions (accelerated storage, room temperature, refrigerator), for its effect on
preservative-free tortillas shelf life. The results indicated a protective effect of the packages
including the oxygen scavenger system. Specifically, the weight and thickness of flour
tortillas under room temperature conditions could be maintained, opposed to respective
decreases detected in control packages (consisting of LDPE/LLDPE). In parallel, yeast and
mold growth were hold back in the packages containing the oxygen scavenger versus con-
trol (room temperature and accelerated storage). Under refrigerated conditions, a shelf-life
up to 31 days was estimated, however, independed of the use of oxygen scavengers [172].

It has been also shown that the use of ethanol emitters extend shelf-life even without
establishment of an additional modified atmosphere. For ciabatta, a shelf-life of 16 days, at
21 ◦C could be obtained, packaged in air atmosphere and ethanol emitter addition [122].

Antimicrobial, antifungal, and antioxidative agents as active food packaging include
multiple research topics. Options include the applications of essential oils, edible films,
and nanocomposites, which are often used with products susceptible to microbiological
degradation, e.g., sliced bread. For example, oregano essential oil has been observed to
be a successful application against yeasts and moulds in sliced bread. It was applied
in the form of antimicrobial sachet at concentrations of 5, 10, and 15% (v/w) at room
temperature [136]. In addition to that, methylcellulose edible films produced with clove
and oregano essential oil have displayed antimicrobial activity against spoilage fungi in
bakery products and have improved sliced bread shelf-life to 15 days, at 25 ± 2 ◦C [137].
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Also, cinnamaldehyde was used as an active ingredient to increase the shelf-life of sliced
bread. It was incorporated in gliadin films (5%), which allowed to keep the quality of
the product for 27 days of storage at 23 ◦C [173]. Next to having antimicrobial effects,
essential oils are also antioxidative agents that can be included in packaging material
like HDPE, LDPE, EVA. Zhu et al. [138] for example tested this approach with sesame
essential oils for the packaging of oat cereals. However, there are also biological threats that
could shorten the shelf-life of cereal and confectionery products. Essential oils from garlic,
black pepper, ginger, fennel, and onion already have been tested as insect repellents for
grain packaging. All these tested essential oils were characterized by significant fumigant
insecticidal properties. For example, allyl mercaptan deriving from allium plants added as
a sachet with rice flour, was proven as potential protective active packaging against S. oryzae
contamination leaving sensory properties unaffected [174]. In general, the incorporation of
essential oils in packaging materials is a growing sector [175,176]. One background can be
that they are waterproof, so it could be the ideal material for the incorporation into a film,
which will turn it from a conventional packaging material to an active one, increasing both
its value and its functionality [175].

One further option of active packaging is the targeted use of composites at the
nanoscale, whether organic (oils/proteins/carbohydrates) and/or inorganic, e.g., clays.
This topic is of interest as active agents might have different properties in smaller scales. Ma-
terials of which at least one of its external dimensions belongs to the nanoscale (1 to 100 nm)
are considered nanomaterials [177,178]. They are characterized for their unique proper-
ties such us high surface-area-to-volume ratio, fine particle size, and high reactivity [179].
One common area of research interest is represented by publications including essential
oils. For example, bio-nano-composite films prepared with corn starch incorporated with
chitosan nano-clay, and further enriched with a variety of ratios of grapefruit seed extracts
have been studied. It was shown that this solution was capable of inhibiting fungal prolif-
eration for a period of 20 days, compared to that of 6 days in bread packaged samples with
synthetic plastic, indicating a successful active packaging approach to extent the shelf-life
of bakery products [133]. Furthermore, two different formulations mainly consisting of
essential oils from several plants were evaluated for their potential antifungal properties
in maize grains. Specifically, in a recent study, bioactive EVOH films including various
essential oils have been characterized. Cinnamaldehyde, citral, linalool and isoeugenol
were investigated to decrease the activity of A. steynii and A. tubingensis strains. It was
shown that the ochratoxin A production by these strains in partly milled maize grains
could be reduced significantly. The inhibitory effect was the highest in EVOH with cin-
namaldehyde, followed by isoeugenol and citral [180]. In parallel, EVOH copolymer films
incorporated with essential oils from Origanum vulgare, Cinnamomum zeylanicum and/or
their major active constituents have been studied. The results showed that carvacrol and
cinnamaldehyde were effective in decreasing Aspergillus flavus and A. parasiticus-induced
aflatoxin production in maize, respectively. Overall, cinnamaldehyde showed the highest
inhibitory effect, followed by combinations of EVOH with essential oils from Origanum
vulgare, Cinnamomum zeylanicum and carvacrol [181].

Next to these highly discussed organic nanoparticles, inorganic particles like Ag
(silver) and TiO2 (titan dioxide) have also been applied to packaging solutions, for example
cereal products, due to their antimicrobial effects [182–185]. However, there is a concern
on potential risk of nanoparticles migrating into food, although limited data showed that
obtained values were within the limits set by the legislation [185–189]. It was shown
that Ag-TiO2 nanocomposite incorporated in HDPE considerably extended shelf-life and
microbiological safety of bread in comparison with control sample stored in an open
atmosphere or in HDPE bags [144]. Not only the characteristics of plastic packaging
can be optimized by the inclusion of nanoparticles. The modification of paper with Ag-
TiO2-SiO2 (silicon dioxide) or Ag/N-TiO2 composites can improve the papers material
characteristics. It was shown that such paper was capable to extend the shelf-life of bread
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by 2 days in comparison to the control, in both ambient (18–20 ◦C) and refrigerated (0–4 ◦C)
conditions [190].

Research in optimizing packaging with nanostructures goes even further to high-tech
materials. An example is a packaging material with a montmorillonite layer. It was shown
that montmorillonite composite polyamide 6 nano-fibres placed over PP films, increased
the shelf-life of bread by 2 days at room temperature, due to inhibition of microbial
growth [191].

Intelligent packaging, on the other hand, is a special packaging technique aiming
to monitor the quality of the packaged food and to predict or measure the safe shelf-
life better than a best before marking date [122,130,171,192–194]. It provides functions
beneath the ones considered as conventional e.g., protection and containment and is
used to monitor the condition and provide quality information of packed foods to the
consumers [158]. Different indicators, such as time-temperature, microbial growth, product
freshness, pack integrity etc., are used as intelligent packaging systems. High temperatures
and/or temperature fluctuation are often correlated with food deterioration as result of
detrimental biochemical reactions combined with microbial growth. Depending on the
food sensitivity specific intelligent indicators can be applied to specific food products.
The time-temperature indicator measures the change that imitates the targeted quality
characteristics with the same behaviour under the same time-temperature exposure. The
pH and enzymatic indicators can also give information about the quality of food [195].
Commercially available time-temperature indicators can be used to monitor quality changes
of many perishable and semi-perishable foods. Among other products, these indicators
have been applied to canned fruitcake for 10 days’ storage at constant (12, 25 and 37 ◦C)
temperatures. Sensory analysis, as quality characteristic of the product, was correlated
with indicator response [140,196].

Reflecting the above chapters and findings, it can be summarized and confirmed that,
if chosen correctly, cereal and confectionary packaging, as well as food packaging in general
can make a valuable contribution to maintaining the quality and safety of food [12,13,17].
Accordingly, it can also help to prevent food losses and waste, an important point when it
comes to making our food systems more sustainable [11,16]. This point is also taken up
in the SDGs and influences current political efforts such as the European Union's Green
Deal [2,3,6].

However, packaging redesign or optimizations should not simply be carried out with-
out evaluating the effects on ecological, social, and economic sustainability as objectively
as possible. This is the only way to avoid possible hidden trade-offs [17].

In addition, close cooperation between a wide range of disciplines is required. In this
context, and among others, material science, sustainability science and social sciences,
and humanities can be mentioned in addition to food science and technology. The latter
in particular has, however, an important enabling function [197,198]. The future focus
here could be on the points of promoting (i) diverse and sustainable primary produce,
(ii) new processes and systems for sustainable manufacture, (iii) reduction of food and
material waste along the supply chain, (iv) safety and traceability, (v) affordable and
balanced nutrition, (vi) healthy diets as well as (vii) digitalization. MAP and AIP are
important approaches in this context, which are particularly present in the points (ii), (iii)
and (iv) [198].

5. Conclusions

The ongoing discussion about packaging optimization towards the enhancement of
the sustainability of certain products, asks for a profound review of the status quo in
specific food groups. Cereal and confectionary were found to be underrepresented in recent
publications addressing this topic, despite their global economic and ecologic importance.
To take the right steps aspiring more sustainable production and consumption of goods,
it is essential for practitioners along the food supply chain to thoroughly understand
packaging functions (containment, protection, convenience, communication), properties
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(physical and mechanical strength, barrier, migration, hygiene), product group specific
decay mechanisms, used packaging solutions, and shelf-life extension strategies.

Commonly available packaging solutions vary in material selection (glass, metal,
plastic, paper), as well as in shape (rigid, semi-rigid, flexible) and size. Therefore, each
packaging solution offers unique benefits and limitations regarding its optimization po-
tential. Important decay mechanisms mediated by packaging in cereal and confectionary
products and snacks include inter alia oxidative mechanisms and changes in moisture con-
tent. Especially for products for which quality is easily impaired through such mechanisms,
packaging solutions and technologies extending the shelf-life need to be considered as
ways to improve the products´ sustainability. This, in combination with a proper material
selection, includes the applications of MAP and AIP (e.g., scavengers, indicators, active
ingredients) as well as novel approaches (e.g., nanotechnology).

However, sustainability improvement includes different other aspects. After the
proper understanding of the packaging’s purpose in these certain product categories and
subcategories, the question of burden shares between the environmental impacts of the
food product itself in comparison to its packaging must be considered along the whole
life cycle. Thus, further research is deemed necessary to investigate data from related Life
Cycle Assessment (LCA) studies and to combine the findings with the current status quo,
in order to derive proper redesign steps for cereal and confectionary products. However,
LCA is by default limited to environmental analysis and does not cover all sustainability
dimensions. The inclusion of economic and social aspects would finally provide a holistic
picture on how to attain more sustainable products.
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