Trace-Level Determination of Polycyclic Aromatic Hydrocarbons in Dairy Products Available in Spanish Supermarkets by Semi-Automated Solid-Phase Extraction and Gas Chromatography–Mass Spectrometry Detection
Abstract
:1. Introduction
Samples | Sample Treatment a | Technique a | Analytical Characteristics a | Analytes a | Concentration Found in Real Samples b | References |
---|---|---|---|---|---|---|
Milk | LLE + SPE | GC–MS | R: 80–120% | 16 PAHs | Nap: 67,000–310,000 ng/L; Ap: 5000–12,000 ng/L; Ac: 58,000–98,000 ng/L; F: 5000–24,000 ng/L; Phe: 21,000–86,000 ng/L; Ant: 18,000 ng/L; Flu: 6000–13,000 ng/L; Pyr: 5000–135,000 ng/L; BaA: 8000–19,000 ng/L; Chry: 19,000–34,000 ng/L; BbF: 6000 ng/L; BkF: 4000 ng/L; BaP: 7000–9000 ng/L | [10] |
Milk and dairy product | Saponification + LLE + SPE | GC–MS | LOD: 40–200 ng/kg RSD: 6.8–13.3% R: 87–103% | 8 PAHs | Cheese: BaA: 280 ng/kg, BkF: 90 ng/kg, BbF: 340 ng/kg, BaP: 240 ng/kg, BP: 220 ng/kg, DBahA: 210 ng/kg | [11] |
Cheese | Saponification + LLE + SPE | HPLC–FLD | LOD: 250–1500 ng/kg RSD: 3.7–7.4% R:66–107% | 10 PAHs | Flu: 17,000–77,000 ng/kg; Phe: 44,000–47,000 ng/kg; BaA: 30–14,000 ng/kg; Chry: 30–8800 ng/kg; BbF: 1700–2900 ng/kg; BkF: 20–1600 ng/kg; BaP: 40–5400 ng/kg; B(ghi)P: 90–100 ng/kg; B(ghi)P: 1600–4200 ng/kg; IP: 1600–2800 ng/kg | [12] |
Cheese | Saponification + LLE + SPE | HPLC–FLD | LOD: 40–90 ng/kg RSD: 6.5–12.5% R: 73–93% | 9 PAHs | Nap: 240–7980 ng/kg; Ac: 100–3060 ng/kg; Ant: 210–820 ng/kg; Pyr: 90–1130 ng/kg; BaA: 80–90 ng/kg; BkF: 60–380 ng/kg; BaP: 60–690 ng/kg; DBahA: 60–730 ng/kg; BP: 70–270 ng/kg | [16] |
Heat-treated milk | Saponification + LLE + SPE | HPLC–FLD HPLC–MS | LOQ: 12–201 ng/kg RSD: 0.8−10.4% R: 89–94% | 8 PAHs | Phe:1425–1831 ng/kg; Ant:1296–2473 ng/kg; Pyr: 1351–2132 ng/kg; BaA: 813–1072 ng/kg; Chry: 104–261 ng/kg; BkF: 67 ng/kg; BaP: 35–270 ng/kg; BP: 13–39 ng/kg | [17] |
Milk | Saponification + LLE + SPE | HPLC–FLD | LOD: 5–110 ng/kg RSD <9% R: 65–89% | 14 PAHs | Ap: 210 ng/kg; Flu: 1690 ng/kg; Phe: 720 ng/kg; Ant: 17,420 ng/kg; F: 25,860 ng/kg; Pyr: 250 ng/kg; BaA: 1280 ng/kg; Chry: 770 ng/kg; BbF: 520 ng/kg; BkF: 2450 ng/kg; BaP: 540 ng/kg; DBahA: 460 ng/kg; BP:270 ng/kg; IP: 240 ng/kg | [18] |
Milk and milk powder | LLE + SPE | GC–MS | LOD: 40–75 ng/kg RSD: 3.2–10.1% R: 86–100% | 16 PAHs | Nap: 20–40 ng/kg; Ap: 20–70 ng/kg; Ac: 20–30 ng/kg; F: 20–80 ng/kg; Phe: 20–110 ng/kg; Ant: 20–90 ng/kg; Flu: 30–250 ng/kg; Pyr: 120–500 ng/kg; BaA: 30–110 ng/kg; Chry: 70–300 ng/kg; BbF: 200–520 ng/kg; BkF: 20–50 ng/kg; BaP: 20–40 ng/kg; IP: 20–70 ng/kg; DBahA: 20–40 ng/kg; BP: 80–350 ng/kg | [19] |
Skim milk | Magnetic SPE | HPLC–FLD | LOD: 0.2–0.6 ng/L RSD:1–9% R: 429–115% | 6 PAHs | nd | [20] |
Milk | SMPE | GC– MS | LOD: 100–800 ng/kg R: 75–108% | 6 PAHs | Phe: 4 100 ng/kg; Ant: 900 ng/kg; Flu:800 ng/kg; Pyr 200 ng/kg | [21] |
Milk | IT–SPME | HPLC–FLD | LOD: 0.10–2.36 ng/L RSD< 11% R: 76–119% | 10 PAHs | Flu: 0.84–1.32 ng/L; Chry: 1.51 ng/L | [22] |
Milk and dairy product | DI–SPME | GC–MS | LOD: 30–1560 ng/L RSD: 4.9–19.6% R: 88–112% | 16 PAHs | Fat milk: Flu: 830–1040 ng/L; Pyr: 630–1120 ng/L | [23] |
Milk | IL–HF–LPME | HPLC–DAD | LOD: 140–710 ng/L RSD 1.2−3.3% R: 94–103% | 3 PAHs | nd | [24] |
Milk and dairy products | Soxhlet + GPC | CG–MS/MS | – | 16 PHAs | ∑PHA16; Milk: 147,700 ng/kg; Cheese: 76,600 ng/kg; Yogurt: 12,800ng/kg; Butter: 7800 ng/kg | [25] |
Milk | QuEChERS | GC–MS/MS | LOD: 80–150 ng/kg RSD < 6% R: 63–105% | 16 PHAs | Nap: 90–1180 ng/kg; Ap: 80–120 ng/kg; Ac: 60–680 ng/kg; F: 120–1620 ng/kg; Phe: 240–920 ng/kg; Ant: 510–3850 ng/kg; Flu: 100–880 ng/kg; Pyr: 80–830 ng/kg; BaA: 490–1060 ng/kg; Chry: 220–770 ng/kg; BkF: 420–800 ng/kg; BbF: 230–880 ng/kg; BaP: 370–830 ng/kg; IP:450–1 690 ng/kg; DBahA: 240–1160 ng/kg; BP: 240–950 ng/kg | [26] |
Milk | Saponification + LLE | GC–FID | LOD: 50–450 ng/kg RSD < 7.8% R: 79–99% | 16 PAHs | ∑PHA16: 15,600–171,180 ng/kg | [27] |
Smoked cheeses | Soxhlet + SPE | GC–MS | LOQ: 900–20,000 ng/kg | 16 PAHS | Nap: 20,000–1,200,000 ng/kg; Ap: 2700–1,200,000 ng/kg; Ac: 1300–38,000 ng/kg; F: 6200–400,000 ng/kg; Phe: 8500–790,000 ng/kg; Ant: 1600 ng/kg; Flu: 2700–94,000 ng/kg; Pyr: 1 600 –67 000 ng/kg; BaA: 1500–9 700 ng/kg; Chry: 1600–7300 ng/kg; BbF: 970–1100 ng/kg; BkF: 1200–2300 ng/kg; BaP: 850–4500 ng/kg | [28] |
Yogurt | Saponification + LLE | HPLC–FLD | RSD: 2–20% R:33–130% | 13 PHAs | Yogurt whole: Ac: 1 850 ng/kg; F: 1 400g/kg; Phe: 4 700 ng/kg; Ant: 150 ng/kg; Flu: 1 000 ng/kg; Pyr: 600 ng/kg; Chry: 50 ng/kg; DBahA: 30 ng/kg; Yogurt skimmed: Ac: 650 ng/kg; F: 770 ng/kg; Phe: 2 420 ng/kg; Ant: 80 ng/kg; Flu: 630 ng/kg; Pyr: 320 ng/kg; Chry: 30 ng/kg; DBahA: 40 ng/kg | [29] |
Yogurt | Saponification + LLE | HPLC–FLD | LOD: 50–70 ng/kg RSD: 5.9−16.9% R: 84–106% | 4 PAHs | BaA: 90 ng/kg; Chry: 310 ng/kg; BaP: 160 ng/kg | [31] |
Milk and dairy product | LLE+ SPE | GC–MS | LOD: 1–200 ng/kg RSD: 5.0–11.3% R:80–107% | 16 PHAs | Nap: 260–1 900 ng/kg; Ac: 7.1–510 ng/kg; F:30–520 ng/kg; Phe: 88 ng/kg | This work |
2. Materials and Methods
2.1. Chemical and Solvents
2.2. Dairy Samples
2.3. Equipemnts
2.4. Extraction of PHAs
2.5. Method Validation
3. Results and Discussion
3.1. Optimization of the Sample Treatment
3.2. Analytical Performance
3.3. Analysis of Real Samples
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Górska-Warsewicz, H.; Rejman, K.; Laskowski, W.; Czeczotko, M. Milk and dairy products and their nutritional contribution to the average Polish diet. Nutrients 2019, 11, 1771. [Google Scholar] [CrossRef] [Green Version]
- Raza, N.; Kim, K.H. Quantification techniques for important environmental contaminants in milk and dairy products. TrAC-Trends Anal. Chem. 2018, 98, 79–94. [Google Scholar] [CrossRef]
- Rascón, A.J.; Azzouz, A.; Ballesteros, E. Multiresidue determination of polycyclic aromatic hydrocarbons in edible oils by liquid-liquid extraction–solid-phase extraction–gas chromatography–mass spectrometry. Food Control 2018, 94, 268–275. [Google Scholar] [CrossRef]
- Sirot, V.; Rivière, G.; Leconte, S.; Vin, K.; Traore, T.; Jean, J.; Carne, G.; Gorecki, S.; Veyrand, B.; Marchand, P.; et al. French infant total diet study: Dietary exposure to heat-induced compounds (acrylamide, furan and polycyclic aromatic hydrocarbons) and associated health risks. Food Chem. Toxicol. 2019, 130, 308–316. [Google Scholar] [CrossRef] [PubMed]
- Sun, K.; Song, Y.; He, F.; Jing, M.; Tang, J.; Liu, R. A review of human and animals exposure to polycyclic aromatic hydrocarbons: Health risk and adverse effects, photo-induced toxicity and regulating effect of microplastics. Sci. Total Environ. 2021, 773, 145403. [Google Scholar] [CrossRef] [PubMed]
- Acharya, N.; Gautam, B.; Subbiah, S.; Rogge, M.M.; Anderson, T.A.; Gao, W. Polycyclic aromatic hydrocarbons in breast milk of obese vs normal women: Infant exposure and risk assessment. Sci. Total Environ. 2019, 668, 658–667. [Google Scholar] [CrossRef]
- Martin-Tornero, E.; Luque-Uría, A.; Durán-Merás, I.; Espinosa-Mansilla, A. A novel analytical methodology for the determination of hydroxy polycyclic aromatic hydrocarbons in breast and cow milk samples. J. Chromatogr. B 2020, 1136, 121912. [Google Scholar] [CrossRef]
- Grova, N.; Monteau, F.; Le Bizec, B.; Feidt, C.; Andre, F.; Rychen, G. Determination of phenanthrene and hydroxyphenanthrenes in various biological matrices at trace levels using gas chromatography-mass spectrometry. J. Anal. Toxicol. 2005, 29, 175–181. [Google Scholar] [CrossRef] [Green Version]
- Amirdivani, S.; Khorshidian, N.; Ghobadi Dana, M.; Mohammadi, R.; Mortazavian, A.M.; Quiterio de Souza, S.L.; Barbosa Rocha, H.; Raices, R. Polycyclic aromatic hydrocarbons in milk and dairy products. Int. J. Dairy Technol. 2019, 72, 120–131. [Google Scholar] [CrossRef] [Green Version]
- Chung, T.L.; Liao, C.J.; Chen, M.F. Comparison of liquid-liquid extraction and solid-phase extraction for the determination of polycyclic aromatic hydrocarbons in the milk of Taiwan. J. Taiwan Inst. Chem. Eng. 2010, 41, 178–183. [Google Scholar] [CrossRef]
- Lee, S.Y.; Lee, J.Y.; Shin, H.S. Evaluation of chemical analysis method and determination of polycyclic aromatic hydrocarbons content from seafood and dairy products. Toxicol. Res. 2015, 31, 265–271. [Google Scholar] [CrossRef] [PubMed]
- Fasano, E.; Yebra-Pimentel, I.; Martínez-Carballo, E.; Simal-Gándara, J. Profiling, distribution and levels of carcinogenic polycyclic aromatic hydrocarbons in traditional smoked plant and animal foods. Food Control 2016, 59, 581–590. [Google Scholar] [CrossRef]
- European Commission. Commission Regulation (UE) No 835/2011 of 19 August 2011 ameding Regulation (EC) No 1881/2006 as regards maximum levels for polycyclic aromatic hydrocarbons in foodstuffs. Off. J. Eur. Comm. 2011, L215, 4–8. [Google Scholar]
- United States Environmental Protection Agency (USEPA). Appendix A to 40 CFR, Part 423–426; EPA: Washington, DC, USA, 2012. Available online: https://www3.epa.gov/region1/npdes/permits/generic/prioritypollutants.pdf (accessed on 11 February 2022).
- IARC. Some Non-Heterocyclic Polycyclic Aromatic Hydrocarbons and Some Related Exposures. IARC Monographs on the Evaluation of Carcinogenic Risks Humans; IARC: Lyon, France, 2010; Volume 92, pp. 1–853. Available online: http://publications.iarc.fr/110 (accessed on 11 February 2022).
- Gul, O.; Dervisoglu, M.; Mortas, M.; Aydemir, O.; Ilhan, E.; Aksehir, K. Evaluation of polycyclic aromatic hydrocarbons in Circassian cheese by high-performance liquid chromatography with fluorescence detection. J. Food Compos. Anal. 2015, 37, 82–86. [Google Scholar] [CrossRef]
- Naccari, C.; Cristani, M.; Giofrè, F.; Ferrante, M.; Siracusa, L.; Trombetta, D. PAHs concentration in heat-treated milk samples. Food Res. Int. 2011, 44, 716–724. [Google Scholar] [CrossRef]
- Santonicola, S.; Albrizio, S.; Murru, N.; Ferrante, M.C.; Mercogliano, R. Study on the occurrence of polycyclic aromatic hydrocarbons in milk and meat/fish based baby food available in Italy. Chemosphere 2017, 184, 467–472. [Google Scholar] [CrossRef]
- Shariatifar, N.; Dadgar, M.; Fakhri, Y.; Shahsavari, S.; Moazzen, M.; Ahmadloo, M.; Kiani, A.; Aeenehvand, S.; Nazmara, S.; Mousavi Khanegah, A. Levels of polycyclic aromatic hydrocarbons in milk and milk powder samples and their likely risk assessment in Iranian population. J. Food Compos. Anal. 2020, 85, 103331. [Google Scholar] [CrossRef]
- Zhang, S.; Niu, H.; Zhang, Y.; Liu, J.; Shi, Y.; Zhang, X.; Cai, Y. Biocompatible phosphatidylcholine bilayer coated on magnetic nanoparticles and their application in the extraction of several polycyclic aromatic hydrocarbons from environmental water and milk samples. J. Chromatogr. A 2012, 1238, 38–45. [Google Scholar] [CrossRef]
- Lin, W.; Wei, S.; Jiang, R.; Zhu, F.; Ouyang, G. Calibration of the complex matrix effects on the sampling of polycyclic aromatic hydrocarbons in milk samples using solid phase microextraction. Anal. Chim. Acta 2016, 933, 117–123. [Google Scholar] [CrossRef]
- Pang, J.; Yuan, D.; Huang, X. On-line combining monolith-based in-tube solid phase microextraction and high-performance liquid chromatography- fluorescence detection for the sensitive monitoring of polycyclic aromatic hydrocarbons in complex samples. J. Chromatogr. A 2018, 1571, 29–37. [Google Scholar] [CrossRef]
- Aguinaga, N.; Campillo, N.; Viñas, P.; Hernández-Córdoba, M. Determination of 16 polycyclic aromatic hydrocarbons in milk and related products using solid-phase microextraction coupled to gas chromatography-mass spectrometry. Anal. Chim. Acta 2007, 596, 285–290. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Cheng, C.; Liu, C.; Yang, Y. Hollow fiber supported ionic liquids liquid-phase micro-extraction followed by high-performance liquid chromatography for the determination of polycyclic aromatic hydrocarbons in milk samples. J. Chromatogr. Sci. 2018, 56, 74–80. [Google Scholar] [CrossRef] [PubMed]
- Luzardo, O.P.; Zumbado, M.; Boada, L.D. Concentrations of polycyclic aromatic hydrocarbons and organohalogenated contaminants in selected foodstuffs from Spanish Market basket: Estimated intake by the population from Spain. J. Food. Agric. Environ. 2013, 11, 437–443. [Google Scholar]
- Sun, Y.; Yan, K.; Wu, S.; Gong, G. Occurrence, Spatial distribution and impact factors of 16 polycyclic aromatic hydrocarbons in milks from nine countries. Food Control 2020, 113, 107197. [Google Scholar] [CrossRef]
- Iwegbue, C.M.A.; Bassey, F.I. Concentrations and health hazards of polycyclic aromatic hydrocarbons in selected commercial brands of milk. J. Food Meas. Charact. 2013, 7, 177–184. [Google Scholar] [CrossRef]
- Pluta-Kubica, A.; Filipczak-Fiutak, M.; Domagała, J.; Duda, I.; Migdał, W. Contamination of traditionally smoked cheeses with polycyclic aromatic hydrocarbons and biogenic amines. Food Control 2020, 112, 107115. [Google Scholar] [CrossRef]
- Battisti, C.; Girelli, A.M.; Tarola, A.M. Polycyclic aromatic hydrocarbons (PAHs) in yogurt samples. Food Addit. Contam. Part B Surveill. 2015, 8, 50–55. [Google Scholar] [CrossRef] [PubMed]
- Ciecierska, M.; Obiedziński, M.W. Polycyclic Aromatic hydrocarbons in infant formulae, follow-on formulae and baby foods available in the Polish market. Food Control 2010, 21, 1166–1172. [Google Scholar] [CrossRef]
- Kacmaz, S. Polycyclic aromatic hydrocarbons in retail Turkish yogurts. Qual. Assur. Saf. Crops Foods 2019, 11, 361–367. [Google Scholar] [CrossRef]
- Kishikawa, N.; Wada, M.; Kuroda, N.; Akiyama, S.; Nakashima, K. Determination of polycyclic aromatic hydrocarbons in milk samples by high-performance liquid chromatography with fluorescence detection. J. Chromatogr. B 2003, 789, 257–264. [Google Scholar] [CrossRef]
- Muñoz Hornillos, M.; Yoldi Bienzobas, G. Leche y derivados. In Alimentos Composición y Propiedades; Astiasarán Anchía, I., Martínez Hernández, J.A., Eds.; McGraw-Hill–Interamericana de España, S.A.U.: Madrid, Spain, 2003; pp. 69–108. [Google Scholar]
- Zougagh, M.; Redigolo, H.; Ríos, A.; Valcárcel, M. Screening and confirmation of PAHs in vegetable oil samples by use of supercritical fluid extraction in conjunction with liquid chromatography and fluorimetric detection. Anal. Chim. Acta 2004, 525, 265–271. [Google Scholar] [CrossRef]
- Rascón, A.J.; Azzouz, A.; Ballesteros, E. Use of semi-automated continuous solid-phase extraction and gas chromatography–mass spectrometry for the determination of polycyclic aromatic hydrocarbons in alcoholic and non-alcoholic drinks from Andalucía (Spain). J. Sci. Food Agric. 2019, 99, 1117–1125. [Google Scholar] [CrossRef] [PubMed]
- Matuszewski, B.K.; Constanzer, M.L.; Chavez-Eng, C.M. Strategies for the assessment of matrix effect in quantitative bioanalytical methods based on HPLC-MS/MS. Anal. Chem. 2003, 75, 3019–3030. [Google Scholar] [CrossRef] [PubMed]
Compound | Milk Sample | Butter Sample | cm/z | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
a LOD (ng/kg) | b r | Linear Range (ng/kg) | a LOD (ng/kg) | b r | Linear Range (ng/kg) | tR | [M+] | Additional Ions | ||||||||||||
Naphthalene (Nap) | 1 | 0.9932 | 4–20,000 | 2 | 0.9991 | 7–40,000 | 9.22 | 128 | 102, 126 | |||||||||||
Acenaphthylene (Ap) | 1 | 0.9955 | 4–20,000 | 2 | 0.9942 | 7–40,000 | 12.99 | 152 | 151, 153, 154 | |||||||||||
Acenaphthene (Ac) | 1 | 0.9943 | 4–20,000 | 2 | 0.9956 | 7–40,000 | 13.43 | 154 | 152, 153 | |||||||||||
Fluorene (F) | 2 | 0.9941 | 7–20,000 | 5 | 0.9981 | 16–40,000 | 14.67 | 166 | 165, 167 | |||||||||||
Phenanthrene (Phe) | 1 | 0.9955 | 4–20,000 | 2 | 0.9935 | 7–40,000 | 16.98 | 178 | 176, 179 | |||||||||||
Anthracene (Ant) | 8 | 0.9956 | 26–20,000 | 17 | 0.9967 | 55–40,000 | 17.10 | 178 | 159, 176 | |||||||||||
Fluoranthene (Flu) | 10 | 0.9951 | 35–20,000 | 19 | 0.9998 | 60–40,000 | 19.82 | 202 | 201, 203 | |||||||||||
Pyrene (Pyr) | 10 | 0.9954 | 35–20,000 | 20 | 0.9961 | 65–40,000 | 20.32 | 202 | 200, 203 | |||||||||||
Benzo(a)anthrancene (BaA) | 25 | 0.9982 | 85–20,000 | 48 | 0.9989 | 160–40,000 | 22.70 | 228 | 226, 229 | |||||||||||
Chrysene (Chry) | 25 | 0.9979 | 85–20,000 | 50 | 0.9936 | 170–40,000 | 22.87 | 228 | 114, 226 | |||||||||||
Benzo(b)fluoranthene (BbF) | 25 | 0.9957 | 85–20,000 | 50 | 0.9945 | 170–40,000 | 25.31 | 252 | 125, 249, 250 | |||||||||||
Benzo(k)fluoranthene (BkF) | 25 | 0.9951 | 85–20,000 | 49 | 0.9971 | 160–40,000 | 25.49 | 252 | 249, 250 | |||||||||||
Benzo(a)pyrene (BaP) | 25 | 0.9966 | 85–20,000 | 50 | 0.9950 | 175–40,000 | 26.34 | 252 | 129, 253 | |||||||||||
Dibenzo[a.h]anthracene (DBahA) | 100 | 0.9938 | 350–20,000 | 190 | 0.9949 | 620–40,000 | 30.88 | 278 | 139, 279 | |||||||||||
Benzo[ghi]perylene (BP) | 100 | 0.9984 | 350–20,000 | 200 | 0.9935 | 640–40,000 | 31.30 | 276 | 272, 277 | |||||||||||
Indeno[1.2.3–cd]pyrene (IP) | 100 | 0.9955 | 350–20,000 | 190 | 0.9973 | 630–40,000 | 32.23 | 276 | 138, 277 | |||||||||||
d RSD (%) | ||||||||||||||||||||
Compound | Milk | Yogurt | Butter | Cheese | Custard | Cream | Milkshake | Margarine | ||||||||||||
WD | BD | WD | BD | WD | BD | WD | BD | WD | BD | WD | BD | WD | BD | WD | BD | |||||
Nap | 8.6 | 10.5 | 8.5 | 10.3 | 8.2 | 9.8 | 7.0 | 9.0 | 8.7 | 10.1 | 7.9 | 9.3 | 9.0 | 10.1 | 7.5 | 9.2 | ||||
Ap | 7.6 | 9.3 | 7.9 | 9.4 | 9.8 | 11.0 | 8.7 | 9.4 | 8.6 | 9.6 | 9.2 | 8.4 | 10.0 | 10.5 | 8.0 | 9.5 | ||||
Ac | 8.9 | 10.5 | 9.5 | 10.9 | 7.9 | 10.8 | 8.6 | 10.5 | 9.1 | 10.5 | 5.0 | 8.9 | 8.7 | 9.3 | 8.1 | 10.0 | ||||
F | 8.9 | 9.8 | 8.9 | 11.0 | 8.9 | 10.2 | 5.9 | 9.3 | 7.9 | 8.8 | 7.1 | 10.6 | 8.9 | 10.0 | 6.1 | 8.8 | ||||
Phe | 7.9 | 10.6 | 9.6 | 11.3 | 8.9 | 10.7 | 9.1 | 10.0 | 5.9 | 7.9 | 7.5 | 9.9 | 8.0 | 11.3 | 9.0 | 10.1 | ||||
Ant | 8.1 | 9.4 | 9.0 | 10.9 | 7.9 | 10.7 | 10.1 | 11.3 | 8.6 | 10.2 | 8.5 | 10.1 | 7.9 | 9.6 | 8.5 | 11.3 | ||||
Flu | 8.0 | 8.8 | 9.1 | 10.0 | 5.9 | 8.8 | 8.1 | 9.6 | 7.9 | 11.0 | 9.1 | 10.9 | 8.9 | 9.8 | 8.6 | 9.7 | ||||
Pyr | 9.2 | 11.0 | 10.0 | 11.3 | 6.2 | 8.5 | 8.9 | 9.4 | 8.9 | 11.1 | 8.2 | 10.1 | 7.5 | 9.9 | 7.5 | 9.1 | ||||
BaA | 5.0 | 6.9 | 8.7 | 9.7 | 8.7 | 10.3 | 7.4 | 9.8 | 5.1 | 8.9 | 10.1 | 10.9 | 9.5 | 10.5 | 7.6 | 10.2 | ||||
Chry | 7.1 | 8.8 | 8.9 | 11.2 | 8.6 | 10.8 | 8.9 | 10.3 | 5.9 | 10.6 | 7.9 | 8.1 | 8.9 | 9.3 | 9.1 | 10.4 | ||||
BbF | 7.5 | 8.9 | 7.9 | 10.3 | 7.9 | 11.5 | 8.3 | 9.3 | 7.1 | 9.9 | 8.9 | 9.9 | 9.6 | 10.5 | 8.5 | 9.6 | ||||
BkF | 8.5 | 10.6 | 8.6 | 9.7 | 8.9 | 10.1 | 8.5 | 10.9 | 8.9 | 10.1 | 9.8 | 10.9 | 9.5 | 9.8 | 8.0 | 9.8 | ||||
BaP | 9.1 | 9.9 | 8.8 | 11.0 | 8.4 | 10.6 | 7.9 | 9.9 | 6.5 | 9.5 | 10.2 | 10.5 | 7.0 | 10.6 | 6.3 | 9.6 | ||||
DBahA | 8.9 | 10.1 | 8.9 | 11.2 | 9.0 | 10.1 | 8.6 | 9.2 | 6.6 | 9.9 | 9.9 | 10.7 | 8.7 | 9.5 | 7.2 | 9.0 | ||||
BP | 8.6 | 9.6 | 9.6 | 10.4 | 7.6 | 8.9 | 7.9 | 10.2 | 6.7 | 7.9 | 8.7 | 10.6 | 8.9 | 9.8 | 7.4 | 9.8 | ||||
IP | 7.9 | 8.3 | 7.9 | 10.7 | 8.6 | 10.9 | 7.8 | 10.3 | 7.8 | 8.7 | 9.9 | 10.3 | 5.9 | 8.9 | 8.6 | 10.1 |
Recoveries (% ± SD. n = 3) a | ||||||||
Milk | Yogurt | Butter | Cheese | Custard | Cream | Milkshake | Margarine | |
Naphthalene | 101 ± 8 | 100 ± 9 | 95 ± 8 | 99 ± 9 | 98 ± 9 | 99 ± 9 | 100 ± 10 | 96 ± 9 |
Acenaphthylene | 101 ± 8 | 105 ± 8 | 92 ± 8 | 107 ± 10 | 99 ± 9 | 97 ± 8 | 97 ± 10 | 105 ± 9 |
Acenaphthene | 82 ± 8 | 106 ± 10 | 93 ± 10 | 104 ± 10 | 89 ± 8 | 93 ± 8 | 100 ± 9 | 106 ± 10 |
Fluorene | 91 ± 6 | 107 ± 10 | 98 ± 10 | 97 ± 9 | 101 ± 8 | 105 ± 10 | 91 ± 2 | 107 ± 9 |
Phenanthrene | 100 ± 9 | 104 ± 9 | 93 ± 9 | 101 ± 10 | 89 ± 7 | 99 ± 10 | 95 ± 9 | 104 ± 10 |
Anthracene | 95 ± 8 | 101 ± 9 | 88 ± 8 | 96 ± 10 | 105 ± 10 | 87 ± 8 | 102 ± 11 | 101 ± 11 |
Fluoranthene | 101 ± 3 | 94 ± 8 | 98 ± 8 | 96 ± 9 | 100 ± 11 | 93 ± 9 | 97 ± 10 | 94 ± 9 |
Pyrene | 102 ± 10 | 94 ± 8 | 104 ± 9 | 87 ± 8 | 99 ± 10 | 100 ± 11 | 105 ± 10 | 95 ± 9 |
Benzo(a)anthracene | 106 ± 10 | 97 ± 9 | 85 ± 8 | 86 ± 8 | 105 ± 9 | 89 ± 8 | 99 ± 11 | 106 ±10 |
Chrysene | 105 ± 8 | 82 ± 6 | 94 ± 10 | 87 ± 8 | 99 ± 10 | 102 ± 6 | 101 ± 9 | 82 ± 8 |
Benzo(b)fluoranthene | 94 ± 6 | 106 ± 9 | 95 ± 10 | 83 ± 7 | 100 ± 10 | 97 ± 8 | 98 ± 10 | 106 ± 10 |
Benzo(k)fluoranthene | 97 ± 9 | 93 ± 8 | 104 ± 10 | 102 ± 9 | 105 ± 5 | 96 ± 9 | 103 ± 10 | 93 ± 9 |
Benzo(a)pyrene | 101 ± 9 | 85 ± 6 | 98 ± 10 | 83 ± 8 | 99 ± 9 | 106 ± 10 | 89 ± 8 | 85 ± 8 |
Dibenzo[a,h]anthracene | 87 ± 8 | 93 ± 8 | 99 ± 10 | 86 ± 7 | 102 ± 10 | 105 ± 11 | 99 ± 10 | 93 ± 8 |
Benzo[g,h,i]perylene | 99 ± 9 | 90 ± 7 | 106 ± 9 | 86 ± 7 | 103 ± 8 | 99 ± 10 | 94 ± 9 | 90 ± 9 |
Indeno[1,2,3-cd]pyrene | 80 ± 6 | 100 ± 10 | 97 ± 9 | 95 ± 9 | 99 ± 9 | 100 ± 10 | 101 ± 9 | 100 ± 10 |
Matrix Effect (%) b | ||||||||
Milk | Yogurt | Butter | Cheese | Custard | Cream | Milkshakes | Margarine | |
Naphthalene | 1.02 (2%) | 0.86 (−14%) | 0.92 (−8%) | 0.99 (−1%) | 0.91 (−9%) | 0.91 (−9%) | 1.02 (2%) | 1.03 (3%) |
Acenaphthylene | 1.10 (10%) | 0.96 (−4%) | 0.94 (−6%) | 1.03 (3%) | 0.93 (−7%) | 0.99 (−1%) | 0.96 (−4%) | 1.06 (6%) |
Acenaphthene | 1.09 (9%) | 0.91 (−9%) | 1.03 (3%) | 1.06 (6%) | 0.85 (−15%) | 0.86 (−14%) | 1.06 (6%) | 0.93 (−7%) |
Fluorene | 1.10 (10%) | 0.99 (−1%) | 0.85 (−15%) | 0.90 (−10%) | 1.06 (6%) | 1.06 (6%) | 0.99 (−1%) | 1.03 (3%) |
Phenanthrene | 1.03 (3%) | 1.03 (3%) | 0.88 (−12%) | 0.92 (−8%) | 1.06 (6%) | 0.93 (−7%) | 0.90 (−10%) | 1.12 (12%) |
Anthracene | 1.06 (6%) | 1.06 (6%) | 0.90 (−10%) | 0.81 (−19%) | 1.03 (3%) | 0.90 (−10%) | 1.03 (3%) | 0.90 (−10%) |
Fluoranthene | 0.91 (−9%) | 0.93 (−7%) | 0.84 (−16%) | 0.90 (−10%) | 1.03 (3%) | 0.97 (−3%) | 0.99 (−1%) | 1.10 (10%) |
Pyrene | 0.97 (−3%) | 1.14 (14%) | 1.14 (14%) | 0.82 (−18%) | 0.97 (−3%) | 1.03 (3%) | 1.03 (3%) | 0.99 (−1%) |
Benzo(a)anthracene | 1.03 (3%) | 1.12 (12%) | 1.04 (4%) | 0.82 (−18%) | 0.90 (−10%) | 0.93 (−7%) | 0.92 (−8%) | 1.06 (6%) |
Chrysene | 1.03 (3%) | 0.95 (−5%) | 0.96 (−4%) | 0.83 (−17%) | 1.03 (3%) | 1.07 (7%) | 1.06 (6%) | 0.93 (−7%) |
Benzo(b)fluoranthene | 1.05 (5%) | 1.02 (2%) | 0.81 (−19%) | 0.82 (−18%) | 1.14 (14%) | 0.91 (−9%) | 0.93 (−7%) | 0.88 (−12%) |
Benzo(k)fluoranthene | 1.03 (3%) | 1.04 (4%) | 0.98 (−2%) | 0.84 (−16%) | 1.04 (4%) | 0.99 (−1%) | 1.03 (3%) | 1.04 (4%) |
Benzo(a)pyrene | 1.09 (9%) | 0.93 (−7%) | 0.94 (−6%) | 0.90 (−10%) | 0.93 (−7%) | 1.03 (3%) | 0.82 (−18%) | 1.06 (6%) |
Dibenzo[a,h]anthracene | 1.06 (6%) | 1.07 (7%) | 0.93 (−7%) | 0.82 (−18%) | 1.03 (3%) | 1.06 (6%) | 0.83 (−17%) | 1.14 (14%) |
Benzo[g,h,i]perylene | 1.05 (5%) | 1.16 (16%) | 1.03 (3%) | 1.06 (6%) | 1.05 (5%) | 0.97 (−3%) | 0.82 (−18%) | 0.93 (−7%) |
Indeno[1,2,3-cd]pyrene | 0.86 (−14%) | 1.19 (19%) | 0.86 (−14%) | 1.06 (6%) | 0.99 (−1%) | 1.06 (6%) | 1.02 (2%) | 1.06 (6%) |
Sample a | Compounds | Concentration Found (ng/kg) | Sample a | Compounds | Concentration Found (ng/kg) | Sample a | Compounds | Concentration Found (ng/kg) |
---|---|---|---|---|---|---|---|---|
Skimmed cow’s milk 1 (0.3%/3.3%) | Naphthalene Acenaphthene ΣPAH | 580 ± 50 50 ± 5 630 ± 50 | Whole sheep´s milk (6.5%/5.4%) | Acenaphthene Fluorene ΣPAH | 17 ± 2 30 ± 3 47 ± 4 | Custard 3 (3.9%/3.4%) | Naphthalene | 1400 ± 100 |
Skimmed cow’s milk 2 (0.3%/3.3%) | Naphthalene | 620 ± 60 | Yoghurt cow´s 1 (2.6%/3.9%) | Naphthalene Acenaphthene ΣPAH | 860 ± 80 51 ± 5 911 ± 80 | Cheese 1 (12.1%/10.9%) | Naphthalene | 490 ± 40 |
Skimmed cow´s milk 3 (0.3%/3.3%) | Naphthalene | 800 ± 70 | Yoghurt cow´s 2 (3.0%/3.5%) | Naphthalene Acenaphthene ΣPAH | 1500 ± 100 35 ± 3 1535 ± 100 | Cheese 2 (13.1%/12.9%) | Naphthalene Acenaphthene Fluorene Phenanthrene ΣPAH | 900 ± 80 50 ± 5 44 ± 4 88 ± 8 1082 ± 80 |
Semi-skimmed cow´s milk 1 (1.6%/4.9%) | Naphthalene Acenaphthene ΣPAH | 560 ± 50 7.1 ± 0.6 567.1 ± 50 | Yoghurt cow´s 3 (2.6%/3.9%) | Naphthalene Acenaphthene ΣPAH | 1100 ± 100 35 ± 3 1135 ± 100 | Cheese 3 (12.9%/10.1%) | Fluorene | 150 ± 10 |
Semi-skimmed cow´s milk 2 (1.6%/4.9%) | Naphthalene | 530 ± 40 | Milkshake 1 (1.0%/1.6%) | Naphthalene | 580 ± 50 | Butter (82.0%/0.7%) | Naphthalene Acenaphthene ΣPAH | 1000 ± 100 300 ± 30 1300 ± 100 |
Semi-skimmed cow´s milk 2 (1.6%/4.9%) | Naphthalene | 570 ± 50 | Milkshake 2 (1.0%/1.6%) | Naphthalene | 260 ± 20 | Butter (81.0%/0.5%) | Naphthalene Acenaphthene ΣPAH | 440 ± 40 510 ± 50 950 ± 60 |
Whole cow´s milk 1 (3.6%/3.2%) | Naphthalene | 380 ± 30 | Cream 1 (18.0%/2.4%) | Naphthalene | 330 ± 30 | Butter (82.2%/0.5%) | nq b | |
Whole cow´s milk 2 (3.6%/3.2%) | Naphthalene | 520 ± 40 | Cream 2 (18.1%/2.5%) | Naphthalene | 290 ± 30 | Margarine (60.0%/0.5%) | Naphthalene Fluorene ΣPAH | 1200 ± 100 520 ± 50 1720 ± 110 |
Whole cow´s milk 3 (3.6%/3.2%) | nq b | Custard 1 (2.9%/3.4%) | Naphthalene | 960 ± 90 | Margarine (60.0%/0.5%) | Naphthalene Fluorene ΣPAH | 1900 ± 200 220 ± 20 2120 ± 200 | |
Whole goat´s milk (3.9%/3.4%) | Naphthalene Acenaphthene ΣPAH | 550 ± 50 23 ± 2 573 ± 50 | Custard 2 (2.4%/2.3%) | Naphthalene | 780 ± 70 | Margarine (60.5%/0.5%) | nqb |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palacios Colón, L.; Rascón, A.J.; Ballesteros, E. Trace-Level Determination of Polycyclic Aromatic Hydrocarbons in Dairy Products Available in Spanish Supermarkets by Semi-Automated Solid-Phase Extraction and Gas Chromatography–Mass Spectrometry Detection. Foods 2022, 11, 713. https://doi.org/10.3390/foods11050713
Palacios Colón L, Rascón AJ, Ballesteros E. Trace-Level Determination of Polycyclic Aromatic Hydrocarbons in Dairy Products Available in Spanish Supermarkets by Semi-Automated Solid-Phase Extraction and Gas Chromatography–Mass Spectrometry Detection. Foods. 2022; 11(5):713. https://doi.org/10.3390/foods11050713
Chicago/Turabian StylePalacios Colón, Laura, Andrés J. Rascón, and Evaristo Ballesteros. 2022. "Trace-Level Determination of Polycyclic Aromatic Hydrocarbons in Dairy Products Available in Spanish Supermarkets by Semi-Automated Solid-Phase Extraction and Gas Chromatography–Mass Spectrometry Detection" Foods 11, no. 5: 713. https://doi.org/10.3390/foods11050713
APA StylePalacios Colón, L., Rascón, A. J., & Ballesteros, E. (2022). Trace-Level Determination of Polycyclic Aromatic Hydrocarbons in Dairy Products Available in Spanish Supermarkets by Semi-Automated Solid-Phase Extraction and Gas Chromatography–Mass Spectrometry Detection. Foods, 11(5), 713. https://doi.org/10.3390/foods11050713