Characteristics and Mechanism of Crayfish Myofibril Protein Gel Deterioration Induced by Autoclaving
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Extraction of CMP
2.3. Autoclaving Treatment of CMP
2.4. Texture Analysis
2.5. Sodium Dodecyl Sulfate–Polyacrylamide Gel Electrophoresis (SDS-PAGE)
2.6. Degree of Hydrolysis
2.7. Particle Size Analysis
2.8. Gelation Forces Analysis
2.9. Low Field Nuclear Magnetic Resonance Measurements
2.10. Scanning Electron Microscopy (SEM)
2.11. Statistical Analysis
3. Results and Discussion
3.1. Texture of CMP Gel
3.2. Change in Proteins in CMP Gels
3.3. Aggregation and Cross-Linking Forces of CMP
3.4. Low Field Nuclear Magnetic Resonance (LF-NMR) Analysis
3.5. Microstructure of CMP Gel
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, H.-L.; Cao, M.-J.; Cai, Q.-F.; Su, W.-J.; Mao, H.-Y.; Liu, G.-M. Purification and characterisation of sarcoplasmic calcium-binding protein, a novel allergen of red swamp crayfish (Procambarus clarkii). Food Chem. 2013, 139, 213–223. [Google Scholar] [CrossRef] [PubMed]
- Shao, Y.; Xiong, G.; Ling, J.; Hu, Y.; Shi, L.; Qiao, Y.; Yu, J.; Cui, Y.; Liao, L.; Wu, W.; et al. Effect of ultra-high pressure treatment on shucking and meat properties of red swamp crayfish (Procambarus clarkia). LWT-Food Sci. Technol. 2018, 87, 234–240. [Google Scholar] [CrossRef]
- Sun, F.; Huang, Q.; Hu, T.; Xiong, S.; Zhao, S. Effects and mechanism of modified starches on the gel properties of myofibrillar protein from grass carp. Int. J. Biol. Macromol. 2014, 64, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Fang, C.-D.; Hao, G.-J.; Zhang, Y.-Y. Effect of kappa-carrageenan oligosaccharides on myofibrillar protein oxidation in peeled shrimp (Litopenaeus vannamei) during long-term frozen storage. Food Chem. 2018, 245, 254–261. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.; Han, M.; Bai, Y.; Xu, X.; Zhou, G. Combination of high pressure and heat on the gelation of chicken myofibrillar proteins. Innov. Food Sci. Emerg. Technol. 2019, 52, 122–130. [Google Scholar] [CrossRef]
- Xia, X.F.; Kong, B.H.; Zhang, H.W. Research progresses on gel formation mechanism and affecting factors of myofibrillar protein. Food Sci. 2009, 30, 264–268. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, F.; Wang, X. Effects of hydrolyzed wheat gluten on the properties of high-temperature (≥100 °C) treated surimi gels. Food Hydrocoll. 2015, 45, 196–202. [Google Scholar] [CrossRef]
- Ma, Y.C.; Ma, L.; Zhang, Y.H. Surimi Product Deterioration and Improvement after High Temperature Sterilization. Agric. Eng. 2016, 6, 37–42. [Google Scholar] [CrossRef]
- Zhang, T.; Xue, Y.; Li, Z.; Wang, Y.; Xue, C. Effects of deacetylation of konjac glucomannan on Alaska Pollock surimi gels subjected to high-temperature (120 °C) treatment. Food Hydrocoll. 2015, 43, 125–131. [Google Scholar] [CrossRef]
- Ma, L.; Zhang, B.; Deng, S.-G.; Xie, C. Comparison of the Cryoprotective Effects of Trehalose, Alginate, and Its Oligosaccharides on Peeled Shrimp (Litopenaeus Vannamei) During Frozen Storage. J. Food Sci. 2015, 80, C540–C546. [Google Scholar] [CrossRef]
- Fan, M.; Hu, T.; Zhao, S.; Xiong, S.; Xie, J.; Huang, Q. Gel characteristics and microstructure of fish myofibrillar protein/cassava starch composites. Food Chem. 2017, 218, 221–230. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.-M.; Yuan, J.-L.; Li, R.-X.; Kang, X. Characterization and embedding potential of bovine serum albumin cold-set gel induced by glucono-δ-lactone and sodium chloride. Food Hydrocoll. 2019, 95, 273–282. [Google Scholar] [CrossRef]
- Laemmli, U.K. Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4. Nature 1970, 227, 680–685. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, P.M.; Petersen, D.; Dambmann, C. Improved Method for Determining Food Protein Degree of Hydrolysis. J. Food Sci. 2001, 66, 642–646. [Google Scholar] [CrossRef]
- Gómez-Guillén, M.C.; Borderías, A.J.; Montero, P. Chemical Interactions of Nonmuscle Proteins in the Network of Sardine (Sardina pilchardus) Muscle Gels. LWT-Food Sci. Technol. 1997, 30, 602–608. [Google Scholar] [CrossRef]
- Hu, Y.; Liu, W.; Yuan, C.; Morioka, K.; Chen, S.; Liu, D.; Ye, X. Enhancement of the gelation properties of hairtail (Trichiurus haumela) muscle protein with curdlan and transglutaminase. Food Chem. 2015, 176, 115–122. [Google Scholar] [CrossRef]
- Zhu, K.; Yu, D.; Chen, X.; Song, G. Preparation, characterization and controlled-release property of Fe3+ cross-linked hydrogels based on peach gum polysaccharide. Food Hydrocoll. 2019, 87, 260–269. [Google Scholar] [CrossRef]
- Westphalen, A.D.; Briggs, J.L.; Lonergan, S.M. Influence of muscle type on rheological properties of porcine myofibrillar protein during heat-induced gelation. Meat Sci. 2005, 72, 697–703. [Google Scholar] [CrossRef]
- Khan, M.A.; Ali, S.; Yang, H.; Kamboh, A.A.; Ahmad, Z.; Tume, R.K.; Zhou, G. Improvement of color, texture and food safety of ready-to-eat high pressure-heat treated duck breast. Food Chem. 2019, 277, 646–654. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, X.; Xue, Y.; Xue, C.; Zhao, Y. The process of heat-induced gelation in Litopenaeus vannamei. Food Hydrocoll. 2020, 98, 105260. [Google Scholar] [CrossRef]
- Xia, W.; Ma, L.; Chen, X.; Li, X.; Zhang, Y. Physicochemical and structural properties of composite gels prepared with myofibrillar protein and lecithin at various ionic strengths. Food Hydrocoll. 2018, 82, 135–143. [Google Scholar] [CrossRef]
- Kang, H.B.; Zou, L.L.; Zhang, H.Y.; Cai, C.Q.; Wang, B.; Ke, H.R. Effect of High Temperature Treatment on Chemical Forces of Beef Proteins and Structure of Myofibrillar Protein. Food Sci. 2018, 39, 80–86. [Google Scholar] [CrossRef]
- Runglertkreingkrai, J.; Banlue, K.; Raksakulthai, N. Quality of Fish Ball from Surimi as Affected by Starch and Sterilizing Conditions. Kasetsart Univ. Fish. Res. Bull. 2008, 32, 39–47. [Google Scholar]
- Tornberg, E. Effects of heat on meat proteins—Implications on structure and quality of meat products. Meat Sci. 2004, 70, 493–508. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.Y.; Liu, H.; Ma, L.Z.; Ma, C.W. Characteristics of Porcine Proteins by Heat Treatment. Food Sci. 2008, 29, 73–77. [Google Scholar] [CrossRef]
- Wang, X.; He, Z.; Zeng, M.; Qin, F.; Adhikari, B.; Chen, J. Effects of the size and content of protein aggregates on the rheological and structural properties of soy protein isolate emulsion gels induced by CaSO4. Food Chem. 2017, 221, 130–138. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Xue, Y.; Xu, J.; Li, Z.; Xue, C. Effects of high-temperature treatment (≥100 °C) on Alaska Pollock (Theragra chalcogramma) surimi gels. J. Food Eng. 2013, 115, 115–120. [Google Scholar] [CrossRef]
- Tomiak, P. Exploring the application of high-temperature isothermal heating experiments to examine protein degradation in Porites coral skeleton. Quat. Int. 2012, 279–280, 495. [Google Scholar] [CrossRef]
- Zhao, X.; Han, G.; Wen, R.; Xia, X.; Chen, Q.; Kong, B. Influence of lard-based diacylglycerol on rheological and physicochemical properties of thermally induced gels of porcine myofibrillar protein at different NaCl concentrations. Food Res. Int. 2020, 127, 108723. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Y.; Han, K.; Cai, Y.; Ma, M.; Tong, Q.; Sheng, L. Effect of nano-TiO2 on the physical, mechanical and optical properties of pullulan film. Carbohydr. Polym. 2019, 218, 95–102. [Google Scholar] [CrossRef]
- Xue, S.; Wang, H.; Yang, H.; Yu, X.; Bai, Y.; Tendu, A.A.; Xu, X.; Ma, H.; Zhou, G. Effects of high-pressure treatments on water characteristics and juiciness of rabbit meat sausages: Role of microstructure and chemical interactions. Innov. Food Sci. Emerg. Technol. 2017, 41, 150–159. [Google Scholar] [CrossRef]
- Guo, Z.; Li, Z.; Wang, J.; Zheng, B. Gelation properties and thermal gelling mechanism of golden threadfin bream myosin containing Ca, Cl2 induced by high pressure processing. Food Hydrocoll. 2019, 95, 43–52. [Google Scholar] [CrossRef]
Treatment | T21 (ms) | P21 (%) | T22 (ms) | P22 (%) | T23 (ms) | P23 (%) |
---|---|---|---|---|---|---|
100 ± 0.1 °C | 5.5 ± 0.3 a | 0.8 ± 0.0 a | 209.8 ± 8.5 a | 89.7 ± 1.3 a | 1367.5 ± 1.7 a | 9.7 ± 1.3 a |
105 ± 0.1 °C | 7.8 ± 0.3 b | 0.9 ± 0.0 a | 214.7 ± 8.5 ab | 75.4 ± 0.2 bc | 1399.8 ± 2.3 ab | 23.9 ± 0.1 b |
110 ± 0.1 °C | 11.1 ± 0.4 d | 0.9 ± 0.0 a | 252.4 ± 9.1 b | 74.2 ± 0.3 c | 1431.5 ± 0.2 b | 24.9 ± 0.3 bc |
115 ± 0.1 °C | 9.0 ± 0.3 bc | 0.9 ± 0.0 a | 266.4 ± 9.8 b | 73.0 ± 2.1 cd | 1438.8 ± 6.0 b | 26.2 ± 2.1 cd |
118 ± 0.1 °C | 11.1 ± 0.4 d | 0.7 ± 0.0 a | 289.9 ± 0.0 c | 65.1 ± 0.9 d | 1544.7 ± 12.8 c | 33.9 ± 0.8 d |
121 ± 0.1 °C | 9.7 ± 0.4 c | 0.8 ± 0.0 a | 310.8 ± 0.0 c | 62.2 ± 0.1 e | 1602.2 ± 11.5 d | 37.0 ± 0.2 e |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, X.; Ma, M.; Yuan, J.; Huang, Y. Characteristics and Mechanism of Crayfish Myofibril Protein Gel Deterioration Induced by Autoclaving. Foods 2022, 11, 929. https://doi.org/10.3390/foods11070929
Kang X, Ma M, Yuan J, Huang Y. Characteristics and Mechanism of Crayfish Myofibril Protein Gel Deterioration Induced by Autoclaving. Foods. 2022; 11(7):929. https://doi.org/10.3390/foods11070929
Chicago/Turabian StyleKang, Xu, Meihu Ma, Jianglan Yuan, and Yaming Huang. 2022. "Characteristics and Mechanism of Crayfish Myofibril Protein Gel Deterioration Induced by Autoclaving" Foods 11, no. 7: 929. https://doi.org/10.3390/foods11070929
APA StyleKang, X., Ma, M., Yuan, J., & Huang, Y. (2022). Characteristics and Mechanism of Crayfish Myofibril Protein Gel Deterioration Induced by Autoclaving. Foods, 11(7), 929. https://doi.org/10.3390/foods11070929