Bacteriocin-Producing Strain Lactiplantibacillus plantarum LP17L/1 Isolated from Traditional Stored Ewe’s Milk Cheese and Its Beneficial Potential
Abstract
:1. Introduction
2. Materials and Methods
2.1. Isolation and Identification of Lactiplantibacillus plantarum (Lactobacillus plantarum) LP17L/1
2.2. Hemolysis, Antibiotic Phenotype Profile, Biofilm-Forming Ability, and Enzyme Production of Lpb. plantarum LP17L/1
2.3. Tolerance to Oxgall/Bile, Low pH and Growth in Skim Milk (Biofermentor Biosan)
2.4. Structural Plantaricin Genes Analysis and Bacteriocin Activity of LP17L/1
Target | PCR Primers | Amplicons (pb) | Temperature of Annealing | References |
---|---|---|---|---|
pln A | F-GTACAGTACTAATGGGAG | |||
R-CTTACGCCATCTATACG | 450 | 53.5 | [26,27] | |
pln B | F-GCTTCTTATTTAAGTAGAGGATTTCTG | |||
R-GCCACGATTACTACCCTTAG | 927 | 53.5 | ||
pln C | F-AGCAGATGAAATTCGGCAG | |||
R-ATAATCCAACGGTGCAATCC | 108 | 53.5 | ||
pln D | F-TGAGGACAAACAGACTGGAC | |||
R-GCATCGGAAAAATTGCGGATAC | 414 | 54 | ||
pln K | F-CTGTAAGCATTGCTAACCAATC | |||
R-ACTGCTGACGCTGAAAAG | 246 | 53.5 | ||
pln J | F-TAACGACGGATTGCTCTG | |||
R-AATCAAGGAATTATCACATTAGTC | 475 | 53.5 | ||
pln L | F-ACGGCGTCTGAGATCCAATG | |||
R-GTTCTGGAAGTCACTGCGATTG | 413 | 56.5 | ||
pln M | F-AAGCGGTATATTAAAAGCGTAGAG | |||
R-CATTTCCTCCTTAAAGCATTCAAC | 444 | 54 | ||
pln N | F-ATTGCCGGGTTAGGTATCG | |||
R-CCTAAACCATGCCATGCAC | 46 | 35.5 | ||
pln R | F-CCCAGCAGTCCCATCACTAA | |||
R-TTACGGAGCGGCATCTATGTC | 236 | 56.5 |
2.5. To Confirm Proteinaceous Character of Bacteriocin Substance
2.6. In Vivo Safety Control and Effect against Coliform Bacteria
3. Results
3.1. Identification, Hemolysis, Antibiotic Phenotype Profile, Biofilm-Forming Ability, and Enzyme Production of Lpb. plantarum LP17L/1
3.2. Tolerance to Oxgall/Bile, Low pH and Growth in Skim Milk (Biofermentor Biosan), Enzyme Analysis
3.3. Structural Plantaricin Genes Analysis, Bacteriocin Activity of LP17L/1 and Proteinaceous Character of Substance
3.4. In Vivo Control of Safety and Activity of LP17L/1
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Herian, M. Benefit of sheep milk products to human health. Milk Lett. (Mlékářské listy) 2014, 143, 1–6. (In Slovak) [Google Scholar]
- The Slovak Spectator. Available online: https://spectator.sme.sk (accessed on 6 August 2011).
- Medveďová, A.; Valík, Ľ.; Liptáková, D. Study of the Fresco culture inhibitory effect against Staphylococcus aureus in milk and in lump cheese. J. Food Nutr. Res. 2011, 50, 193–198. [Google Scholar]
- Klapáčová, L.; Greif, G.; Greifová, M.; Tomáška, M.; Hanuš, O.; Dudríková, E. Antimicrobially active lactobacilli from goat’s milk that do not produce biogenic amines. J. Food Nutr. Res. 2015, 54, 270–274. [Google Scholar]
- Lauková, A.; Pogány Simonová, M.; Focková, V.; Kološta, M.; Tomáška, M.; Dvrožňáková, E. Susceptibility to bacteriocins in biofilm-forming, variable staphylococci isolated from local Slovak ewe`s milk lump cheese. Foods 2020, 9, 1335. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Wittouck, S.; Salvetti, E.; Frany, C.M.A.P.; Harris, H.M.B.; Mattaralli, P.; O’Toole, P.W.; Pot, B.; Vandamme, P.; Walter, J.; et al. Taxonomic note on the genus Lactobacillus: description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillacae and Leuconostocacae. Int. J. Syst. Evol. Microbiol. 2020, 70, 2782–2858. [Google Scholar] [CrossRef] [PubMed]
- Tosukhowong, A.; Visessanguan, W.; Pumpuang, L.; Tepkasikul, P.; Panya, A.; Valyasevi, R. Biogenic amine formation in Nham, a Thai fermented sausage, and the reduction by commercial starter culture, Lactobacillus plantarum BCC9546. Food Chem. 2011, 129, 846–853. [Google Scholar] [CrossRef]
- Arena, M.P.; Silvian, A.; Normanno, G.; Grieco, F.; Drider, D.; Spano, G. Use of Lactobacillus plantarum strains as a bio-control strategy against food-borne pathogenic microorganisms. Front. Microbiol. 2016, 7, 464. [Google Scholar] [CrossRef] [Green Version]
- Barbosa, J.; Albano, H.; Silva, B.; Almeida, M.H.; Noguiera, T.; Teixeira, P. Characterization of a Lactiplantibacillus plantarum R23 isolated from Arugula by whole-genome sequencing and its bacteriocin production ability. Int. J. Environ. Res. Public Health 2021, 18, 5515. [Google Scholar] [CrossRef]
- Chen, C.; Chen, X.; Jiang, M.; Rui, X.; Li, W.; Dong, M. A newly discovered bacteriocin from Weisella hellenica 1501 associated with Chinese Dong fermented meat (Nanx Wudl). Food Control 2014, 42, 116–124. [Google Scholar] [CrossRef]
- Verma, K.D.; Thakur, M.; Singh, A.; Tripathy, S.; Gupta, K.A.; Baranwal, D.; Patel, A.R.; Shah, N.; Utama, G.L.; Niamah, A.K.; et al. Bacteriocins as antimicrobial and preservative agents in food:Biosynthesis, separation and application. Food Biosci. 2022, 46, 101594. [Google Scholar] [CrossRef]
- Bujňáková, D.; Kmeť, V. Functional properties of Lactobacillus strains isolated from dairy products. Folia Microbiol. 2012, 57, 263–267. [Google Scholar] [CrossRef] [PubMed]
- Thakkar, P.; Modi, H.; Dabhi, B.; Prajapati, J. Bile tolerance, bile deconjugation and cholesterol reducing properties of Lactobacillus strains isolated form traditional fermented foods. Int. J. Ferm. Foods 2014, 3, 157–165. [Google Scholar] [CrossRef]
- Tajbakhsh, M.; Karimi, A.; Fallah, F.; Akhavan, M.M. Overview of ribosomal and non-ribosomal antimicrobial peptides produced by gram-positive bacteria. Cell. Mol. Biol. 2017, 63, 20–32. [Google Scholar] [CrossRef] [PubMed]
- Alatoom, A.A.; Cunningham, S.A.; Ihde, S.; Mandrekar, J.; Patel, R. Comparison of direct colony method versus extraction method for identification of Gram-positive cocci by use of Bruker Biotyper matrix-assissted laser desorption ionization-time of flight mass spectrometry. J. Clin. Microbiol. 2011, 49, 2868–2873. [Google Scholar] [CrossRef] [Green Version]
- Bertier, F.; Ehrlich, S. Rapid species identification with the two groups of closely related lactobacilli using PCR that target the 16S/23S rRNA spece region. FEMS Microbiol. Lett. 1998, 23229783. [Google Scholar] [CrossRef] [Green Version]
- De Vos, P.; Garrity, G.M.; Jones, D.; Krieg, N.R.; Ludwig, W.; Rainey, F.A.; Schelifer, K.H.; Whitman, W.P. The Firmicutes. In Bergey`s Manual of Systematic Bacteriology, genus Lactobacillus, 2nd ed.; Springer: New York, NY, USA, 2009; Volume 3. [Google Scholar]
- Drončovský, M.; Lauková, A.; Tomáška, M.; Kološta, M. Selected properties of lactic acid bacteria, isolated from goats milk. In Proceedings of the Hygiena a technologie potravin XLIX. Lenfeldovy a Höklovy dny, Brno, Czech Republic, 16–17 October 2019; pp. 122–125. (In Slovak). [Google Scholar]
- Semedo-Lemsadek, T.; Santos, M.A.; Martins, P.; Lopes, M.F.S.; Marques, J.F.; Tenreiro, R.; Crespo, M.T.B. Comparative study using type strains and clinical and food isolates to examine hemolytic activity and occurrence of the cyl operon in enterococci. J. Clin. Microbiol. 2003, 41, 2569–2576. [Google Scholar] [CrossRef] [Green Version]
- CLSI. Clinical and Laboratory Standards Institute Guideline. In Performance Standards for Antimicrobial Susceptibility Testing M100S, 26th ed.; Electronic: Wayne, PA, USA, 2016; ISBN 978-1-68440-067-6. [Google Scholar]
- Chaieb, K.; Chehab, O.; Ymantar, T.; Rouabhia, M.; Mahdouani, K.; Bakhrouf, A. In vitro effect of pH and ethanol on biofilm formation by clinical ica-positive Staphylococcus epidermidis strains. Ann. Microbiol. 2007, 57, 431–437. [Google Scholar] [CrossRef]
- Slížová, M.; Nemcová, R.; Maďar, M.; Hadryová, J.; Gancarčíková, S.; Popper, M.; Pistl, J. Analysis of biofilm formation by intestinal lactobacilli. Can. J. Microbiol. 2015, 61, 437–466. [Google Scholar] [CrossRef]
- Lauková, A.; Focková, V.; Pogány Simonová, M. Enterococcus mundtii isolated from Slovak raw goat milk and its bacteriocinogenic potential. Int. J. Environ. Res. Pub. Health 2020, 17, 9504. [Google Scholar] [CrossRef]
- Gilliland, S.E.; Walker, K. Factors to consider when selecting a culture of Lactobacillus acidophilus as a dierat adjunct to produce a hypocholesterolemic effect in humans. J. Dairy Sci. 1990, 73, 905–911. [Google Scholar] [CrossRef]
- Arboleya, S.; Ruas-Madiedo, P.; Margolles, A.; Solis, G.; Salminen, S.; de los Rezes-Gavilán, C.; Gueimonde, M. Characteriyation and in vitro properties of potentially Bifidobacterium strains isolated from breast-milk. Int. J. Food Microbiol. 2011, 149, 28–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Remiger, A.; Matthias, A.; Ehrmann, M.A.; Vogel, R.F. Identification of bacteriocin encoding genes in lactobacilli by polymerase chain reaction (PCR). Syst. Appl. Microbiol. 1996, 19, 28–30. [Google Scholar] [CrossRef]
- Sáenz, C.; Tapia, S.; Chavey, J.; Pay, R. Microencapsulation by spray drying of bioactive compounds from cactus Opuntia ficus-indica. Food Chem. 2009, 114, 616–622. [Google Scholar] [CrossRef]
- Skalka, B.; Pillich, J.; Pospíšil, L. Further observation on Corynebacterium renale as an indicator organism in the detection of exfoliation-positive strains of Staphylococcus aureus. Zentralbl. Bacteriol. Hyg. 1983, A256, 168–174. [Google Scholar] [CrossRef]
- De Vuyst, L.; Callaewart, B.; Pot, B. Characterization of antagonistic activity of Lactobacillus amylovorus DCE471 and large-scale isolation of its bacteriocin amylovorin L471. Syst. Appl. Microbiol. 1996, 19, 9–20. [Google Scholar] [CrossRef]
- Vargová, M.; Hurníková, Z.; Revajová, V.; Lauková, A.; Dvorožňáková, E. Probiotic bacteria can modulate murine macrophage`s superoxide production in Trichinella spiralis infection. Helminthologia 2020, 57, 226–234. [Google Scholar] [CrossRef]
- Strompfová, V.; Lauková, A.; Mudroňová, D. Effect of bacteriocin-like substance produced by Enterococcus faecium EF55 on the composition of avian gastrointestinal microflora. Acta Vet. Brno 2003, 72, 559–564. [Google Scholar] [CrossRef] [Green Version]
- Giraffa, G. Enterococci from foods. FEMS Microbiol. Rev. 2002, 26, 163–171. [Google Scholar] [CrossRef]
- Dudríková, E.; Naas, H.T.; Pilipčinec, E.; Burdová, O. Staphylococci as environment contaminants in raw cow’s milk production. In Procedeengs of the 4th International Conference Ecology and Veterinary Medicine, Košice, Slovakia, 13–16 May 1998; pp. 265–271. (In Slovak). [Google Scholar]
- Lauková, A.; Czikková, S.; Burdová, O. Anti-staphylococcal effect of enterocin in Sunar and yoghurt. Folia Microbiol. 1999, 44, 707–711. [Google Scholar] [CrossRef]
- Lauková, A.; Czikková, S.; Dobránsky, T.; Burdová, O. Inhibition of Listeria monocytogenes and Staphylococcus aureus by enterocin CCM 4231 in milk products. Food Microbiol. 1999, 16, 93–96. [Google Scholar] [CrossRef]
- Gong, H.S.; Meng, X.C.; Wang, H. Plantaricin MG, active against Gram-negative bacteria produced by Lactobacillus plantarum KLDS1.0391 isolated from “Jiaok”, a traditional fermented cream from China. Food Control 2010, 21, 89–96. [Google Scholar] [CrossRef]
- Cukrowska, B.; Motyl, I.; Kozáková, H.; Schwarzer, M.; Górecki, R.K.; Klewicka, E.; Slizewska, K.; Libudzisz, Z. Probiotic Lactobacillus strains:in vitro and in vivo studies. Folia Microbiol. 2009, 54, 533–537. [Google Scholar] [CrossRef] [PubMed]
- Dvorožňáková, E.; Bucková, B.; Hurníková, Z.; Revajová, V.; Lauková, A. Effect of probiotic bacteria on phagocytosis and respiratory burst activity of blood polymorphonuclear leucocytes (PMNL) in mice infected with Trichinella spiralis. Vet. Parasitol. 2016, 231, 69–76. [Google Scholar] [CrossRef]
- Bucková, B.; Hurníková, Z.; Lauková, A.; Revajová, V.; Dvorožňáková, E. The anti-parasitic effect of probiotic bacteria via limiting the fecundicity of Trichinella spiralis female adults. Helmithologia 2018, 55, 102–111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeinat, K.; Nawal Magdy, M.; Farahat, M.G. Optimization of culture conditions for production of β-galactosidase by Bacillus megaterium NM56 isolated from rae milk. Res. J. Pharm. Biol. Chem. 2016, 7, 366–376. [Google Scholar]
Time of Cultivation | ||
---|---|---|
90 min | 180 min | |
LP17/1Ox | 5.6 × 106 | 4.0 × 105 |
Control | 9.0 × 107 | 2.0 × 106 |
LP17/1pH | 4.5 ×105 | 2.7 × 104 |
Control | 3.8 × 108 | 2.0 × 108 |
Indicators | Inhibitory Activity |
---|---|
Listeria monocytogenes | |
P3300 | 100 |
P5258 | 200 |
P6501 | 100 |
P7223 | 3 200 |
P7395 | 100 |
P7401 | 100 |
Ve40 | 100 |
P10811 | 100 |
P7395 | 100 |
S. aureus | |
Kek2 | 800 |
Nip/1 | 100 |
Rum/1 | 100 |
Bel/1 | 100 |
31/5 | 400 |
31/6 | 400 |
33/4 | 400 |
39/9 | 100 |
39/10 | 400 |
SA5/3ch | 100 |
Sa3/1ch | 200 |
SA6/1ch | 800 |
SA3/4ch | 200 |
SA2/1 | 100 |
Feces | LP17L/1 | LAB | Coliforms |
---|---|---|---|
Sampling I n = 10 day 0/1 | nt | 6.96 ± 2.60 | 3.24 ± 1.84 |
Sampling II n = 5 day 7 | 3.63 ± 1.83 | 6.48 ± 2.54 | 3.60 ± 1.89 |
Sampling III n = 5 day 30 | 1.21 ± 0.10 | 7.38 ± 2.71 | 3. 60 ± 1.89 |
Jejunum Sampling I n = 3 day 0/1 | nt | 4.98 ± 2.20 | 4.21 ± 2.05 |
Sampling I n = 5 day 7 | 2.07 ± 1.43 | 4.19 ± 2.04 | 1.50 ± 0.22 |
Sampling I n = 5 day 30 | <1.0 | 5.23 ± 2.28 | 1.15 ± 0.07 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lauková, A.; Tomáška, M.; Fraqueza, M.J.; Szabóová, R.; Bino, E.; Ščerbová, J.; Pogány Simonová, M.; Dvorožňáková, E. Bacteriocin-Producing Strain Lactiplantibacillus plantarum LP17L/1 Isolated from Traditional Stored Ewe’s Milk Cheese and Its Beneficial Potential. Foods 2022, 11, 959. https://doi.org/10.3390/foods11070959
Lauková A, Tomáška M, Fraqueza MJ, Szabóová R, Bino E, Ščerbová J, Pogány Simonová M, Dvorožňáková E. Bacteriocin-Producing Strain Lactiplantibacillus plantarum LP17L/1 Isolated from Traditional Stored Ewe’s Milk Cheese and Its Beneficial Potential. Foods. 2022; 11(7):959. https://doi.org/10.3390/foods11070959
Chicago/Turabian StyleLauková, Andrea, Martin Tomáška, Maria Joao Fraqueza, Renáta Szabóová, Eva Bino, Jana Ščerbová, Monika Pogány Simonová, and Emília Dvorožňáková. 2022. "Bacteriocin-Producing Strain Lactiplantibacillus plantarum LP17L/1 Isolated from Traditional Stored Ewe’s Milk Cheese and Its Beneficial Potential" Foods 11, no. 7: 959. https://doi.org/10.3390/foods11070959
APA StyleLauková, A., Tomáška, M., Fraqueza, M. J., Szabóová, R., Bino, E., Ščerbová, J., Pogány Simonová, M., & Dvorožňáková, E. (2022). Bacteriocin-Producing Strain Lactiplantibacillus plantarum LP17L/1 Isolated from Traditional Stored Ewe’s Milk Cheese and Its Beneficial Potential. Foods, 11(7), 959. https://doi.org/10.3390/foods11070959