Reasonableness of Enriching Cow’s Milk with Vitamins and Minerals
Abstract
:1. Introduction
2. Market Analysis
3. Consumer Demands
4. Minerals and Vitamins in Milk
- Vitamin A (30% loss during the storage period of five–six weeks);
- Vitamin B6 (almost complete loss after several weeks of storage);
- Vitamin B12 (almost complete loss after prolonged storage);
- Vitamin C (almost complete loss up to two weeks of storage).
4.1. Calcium
4.2. Vitamin D
4.3. Vitamin A
4.4. Other Nutrients
5. The Comparison of Nutritional Value of Cow’s Milk with Other Mammal’s and Plant-Based Milks
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pereira, P.C. Milk nutritional composition and its role in human health. Nutrition 2014, 30, 619–627. [Google Scholar] [CrossRef] [PubMed]
- Scholz-Ahrens, K.E.; Ahrens, F.; Barth, C.A. Nutritional and health attributes of milk and milk imitations. Eur. J. Nutr. 2020, 59, 19–34. [Google Scholar] [CrossRef] [PubMed]
- Kasalová, E.; Aufartová, J.; Krčmová, L.K.; Solichová, D.; Solich, P. Recent trends in the analysis of vitamin D and its metabolites in milk-a review. Food Chem. 2015, 171, 177–190. [Google Scholar] [CrossRef] [PubMed]
- Grillo, K.M.; Dunne, J.; Marshall, F.; Prendergast, M.E.; Casanova, E.; Gidna, A.O.; Janzen, A.; Karega-Munene; Keute, J.; Mabulla,, A.Z.P.; et al. Molecular and isotopic evidence for milk, meat, and plants in prehistoric eastern African herder food systems. Proc. Natl. Acad. Sci. USA 2020, 117, 9793–9799. [Google Scholar] [CrossRef]
- Pellegrino, L.; Marangoni, F.; Muscogiuri, G.; D’Incecco, P.; Duval, G.T.; Annweiler, C.; Colao, A. Vitamin D fortification of consumption cow’s milk: Health, nutritional and technological aspects. A multidisciplinary lecture of the recent scientific evidence. Molecules 2021, 26, 5289. [Google Scholar] [CrossRef]
- Marangoni, F.; Pellegrino, L.; Verduci, E.; Ghiselli, A.; Bernabei, R.; Calvani, R.; Cetin, I.; Giampietro, M.; Perticone, F.; Piretta, L.; et al. Cow’s milk consumption and health: A health professional’s guide. J. Am. Coll. Nutr. 2019, 38, 197–208. [Google Scholar] [CrossRef]
- Barca, J.; Carriquiry, M.; Olazabal, L.; Fajardo, M.; Chilibroste, P.; Meikle, A. Milk fatty acid profile from cows fed with mixed rations and different access time to pastureland during early lactation. J. Anim. Physiol. Anim. Nutr. 2018, 102, 620–629. [Google Scholar] [CrossRef]
- Gama, M.A.S.; de Paula, T.A.; Véras, A.S.C.; Guido, S.I.; Borges, C.A.V.; Antoniassi, R.; Lopes, F.C.F.; Neves, M.L.M.W.; Ferreira, M.A. Partially replacing sorghum silage with cactus (Opuntia stricta) cladodes in a soybean oil-supplemented diet markedly increases trans-11 18:1, cis-9, trans-11 CLA and 18:2 n-6 contents in cow milk. J. Anim. Physiol. Anim. Nutr. 2021, 105, 232–246. [Google Scholar] [CrossRef]
- Nagarajappa, V.; Battula, S.N. Effect of fortification of milk with omega-3 fatty acids, phytosterols and soluble fibre on the sensory, physicochemical and microbiological properties of milk. J. Sci. Food Agric. 2017, 97, 4160–4168. [Google Scholar] [CrossRef]
- Zemel, M.B. Role of calcium and dairy products in energy partitioning and weight management. Am. J. Clin. Nutr. 2004, 79, 907S–912S. [Google Scholar] [CrossRef] [Green Version]
- Jarosz, M.; Rychlik, E.; Stoś, K.; Charzewskiej, J. Normy Żywienia dla Populacji Polski [Nutrition Standards for the Polish Population]; Narodowy Instytut Zdrowia Publicznego–Państwowy Zakład Higieny: Warszawa, Poland, 2020. [Google Scholar]
- Pimpin, L.; Wu, J.H.; Haskelberg, H.; Del Gobbo, L.; Mozaffarian, D. Is butter back? A systematic review and meta-analysis of butter consumption and risk of cardiovascular disease, diabetes, and total mortality. PLoS ONE 2016, 11, e0158118. [Google Scholar] [CrossRef] [PubMed]
- Dehghan, M.; Mente, A.; Rangarajan, S.; Sheridan, P.; Mohan, V.; Iqbal, R.; Gupta, R.; Lear, S.; Wentzel-Viljoen, E.; Avezum, A.; et al. Prospective Urban Rural Epidemiology (PURE) study investigators. Association of dairy intake with cardiovascular disease and mortality in 21 countries from five continents (PURE): A prospective cohort study. Lancet 2018, 392, 2288–2297. [Google Scholar] [CrossRef]
- Mądry, E.; Krasińska, B.; Drzymała-Czyż, S.; Sands, D.; Lisowska, A.; Grebowiec, P.; Minarowska, A.; Oralewska, B.; Mańkowski, P.; Moczko, J.; et al. Lactose malabsorption is a risk factor for decreased bone mineral density in pancreatic insufficient cystic fibrosis patients. Eur. J. Hum. Genet. 2012, 20, 1092–1095. [Google Scholar] [CrossRef] [PubMed]
- Mądry, E.; Lisowska, A.; Kwiecień, J.; Marciniak, R.; Korzon-Burakowska, A.; Drzymała-Czyż, S.; Mojs, E.; Walkowiak, J. Adult-type hypolactasia and lactose malabsorption in Poland. Acta Biochim. Pol. 2010, 57, 585–588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drzymała-Czyż, S.; Jończyk-Potoczna, K.; Lisowska, A.; Stajgis, M.; Walkowiak, J. Supplementation of ursodeoxycholic acid improves fat digestion and absorption in cystic fibrosis patients with mild liver involvement. Eur. J. Gastroenterol. Hepatol. 2016, 28, 645–649. [Google Scholar] [CrossRef] [PubMed]
- Macdonald, L.E.; Brett, J.; Kelton, D.; Majowicz, S.E.; Snedeker, K.; Sargeant, J.M. A systematic review and meta-analysis of the effects of pasteurization on milk vitamins, and evidence for raw milk consumption and other health-related outcomes. J. Food Prot. 2011, 74, 1814–1832. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Mleko i Produkty Mleczne [Milk and Dairy Products]. Available online: https://ec.europa.eu/info/food-farming-fisheries/animals-and-animal-products/animal-products/milk-and-dairy-products_pl (accessed on 11 June 2020).
- Eurostat. UHT Milk Consumption as a Percentage of Total Milk Consumption in Europe in 2017. Available online: https://mapsontheweb.zoom-maps.com/post/184269515692/uht-milk-consumption-as-a-percentage-of-total-milk (accessed on 18 April 2019).
- Food and Agriculture Organization of the United Nations (FAOSTAT). Crops and Livestock Products Food and Agriculture Organization (FAO). Available online: http://www.fao.org/faostat/ (accessed on 30 January 2022).
- Śmigielska, D. Produkcja i Spożycie Mleka–Stan i Perspektywy [Production and Consumption of Milk-State and Prospects] Hodowla i Chów Bydła. Available online: https://holstein.pl/produkcja-i-spozycie-mleka-stan-i-perspektywy/ (accessed on 27 September 2019).
- Kowalska, M.; Ambroziak, A.; Aljewicz, M.; Cichosz, G. Wzbogacone w wapń i magnez produkty mleczarskie [Dairy products enriched in calcium and magnesium]. Postęp. Tech. Przetw. Spoż. 2012, 1, 93–98. [Google Scholar]
- Tylavsky, F.A.; Cheng, S.; Lyytikäinen, A.; Viljakainen, H.; Lamberg-Allardt, C. Strategies to improve vitamin D status in northern European children: Exploring the merits of vitamin D fortification and supplementation. J. Nutr. 2006, 136, 1130–1134. [Google Scholar] [CrossRef] [Green Version]
- Food and Agriculture Organization of the United Nations; World Health Organization. Codex Alimentarius: International Food Standard; Codex Stan; General Standard for Food additives: Rome, Italy, 1995. [Google Scholar]
- International Dairy Federation (IDF). Dairy’s Role in Healthy and Sustainable Diets (Version 6 March 2020). Available online: https://fil-idf.org/wp-content/uploads/2020/03/IDF-position-to-FAO-WHO-guiding-principles-on-sustainable-healthy-diets.pdf (accessed on 21 June 2021).
- Shiby, V.K.; Mishra, H.N. Fermented milks and milk products as functional foods—A review. Crit. Rev. Food Sci. Nutr. 2013, 53, 482–496. [Google Scholar] [CrossRef]
- Gómez-Fernández, A.R.; Faccinetto-Beltrán, P.; Orozco-Sánchez, N.E.; Pérez-Carrillo, E.; Marín-Obispo, L.M.; Hernández-Brenes, C.; Santacruz, A.; Jacobo-Velázquez, D.A. Sugar-free milk chocolate as a carrier of omega-3 polyunsaturated fatty acids and probiotics: A potential functional food for the diabetic population. Foods 2021, 10, 1866. [Google Scholar] [CrossRef]
- Kewuyemi, Y.O.; Kesa, H.; Adebo, O.A. Trends in functional food development with three-dimensional (3D) food printing technology: Prospects for value-added traditionally processed food products. Crit. Rev. Food Sci. Nutr. 2021, 61, 1–38. [Google Scholar] [CrossRef] [PubMed]
- Moore, L.L. Functional foods and cardiovascular disease risk: Building the evidence base. Curr. Opin. Endocrinol. Diabetes Obes. 2011, 18, 332–335. [Google Scholar] [CrossRef] [PubMed]
- Comunian, T.A.; Chaves, I.E.; Thomazini, M.; Moraes, I.C.F.; Ferro-Furtado, R.; de Castro, I.A.; Favaro-Trindade, C.S. Development of functional yogurt containing free and encapsulated echium oil, phytosterol and sinapic acid. Food Chem. 2017, 237, 948–956. [Google Scholar] [CrossRef] [PubMed]
- O’Neill, C.M.; Kazantzidis, A.; Ryan, M.J.; Barber, N.; Sempos, C.T.; Durazo-Arvizu, R.A.; Jorde, R.; Grimnes, G.; Eiriksdottir, G.; Gudnason, V.; et al. Seasonal changes in vitamin D-effective UVB availability in Europe and associations with population serum 25-hydroxyvitamin D. Nutrients 2016, 8, 533. [Google Scholar] [CrossRef] [Green Version]
- Cashman, K.D.; Dowling, K.G.; Škrabáková, Z.; Gonzalez-Gross, M.; Valtueña, J.; De Henauw, S.; Moreno, L.; Damsgaard, C.T.; Michaelsen, K.F.; Mølgaard, C.; et al. Vitamin D deficiency in Europe: Pandemic? Am. J. Clin. Nutr. 2016, 103, 1033–1044. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saad, F.; Rogers, L.; Doggui, R.; Al-Jawaldeh, A. Assessment of vitamin A supplementation practices in countries of the Eastern Mediterranean Region: Evidence to implementation. J. Nutr. Sci. Vitaminol. 2021, 67, 1–12. [Google Scholar] [CrossRef]
- Kunachowicz, H. Nutritional Value of Selected Food Products and Typical Dishes. In Wartość Odżywcza Wybranych Produktów Spożywczych i Typowych Potraw; PZWL: Warszawa, Poland, 2016. [Google Scholar]
- Fox, P.F.; Kelly, A.L. Indigenous enzymes in milk: Overview and historical aspects—Part 1. Int. Dairy J. 2016, 16, 500–516. [Google Scholar] [CrossRef]
- LeJeune, J.T.; Rajala-Schultz, P.J. Unpasteurized milk: A continued public health threat. Food Saf. 2009, 48, 93–100. [Google Scholar] [CrossRef]
- Lindmark-Månsson, H.; Akesson, B. Antioxidative factors in milk. Br. J. Nutr. 2000, 84, 103–110. [Google Scholar] [CrossRef] [Green Version]
- Xu, Q.B.; Zhang, Y.D.; Zheng, N.; Wang, Q.; Li, S.; Zhao, S.G.; Wen, F.; Meng, L.; Wang, J.Q. Short communication: Decrease of lipid profiles in cow milk by ultra-high-temperature treatment but not by pasteurization. J. Dairy Sci. 2020, 103, 1900–1907. [Google Scholar] [CrossRef]
- FDA (Food and Drug Administration). Code of Federal Regulations Title 21 Food and Drugs. 2017. Available online: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=1240.61 (accessed on 6 January 2022).
- Widyastuti, Y.; Febrisiantosa, A. Milk and Different Types of Milk Products. Adv. Food Sci. Nutr. 2014, 2, 49–68. [Google Scholar] [CrossRef]
- Nowak, J.K.; Kurek, S.; Walkowiak, J.; Drzymała-Czyż, S. Infant formula fatty acid profile following microwave heating. PLoS ONE 2020, 15, e0237391. [Google Scholar] [CrossRef] [PubMed]
- Heeschen, W.H. Wartość odżywcza mleka UHT [The nutritional value of UHT milk]. Żywieniowe, higieniczne i technologiczne aspekty mleka UHT [Nutritional, hygienic and technological aspects of UHT milk]. Prace Inst. Żywn. Żywienia 1996, 73, 61. [Google Scholar]
- Gracia-Marco, L. Calcium, vitamin D, and health. Nutrients 2020, 12, 416. [Google Scholar] [CrossRef] [Green Version]
- Vannucci, L.; Fossi, C.; Quattrini, S.; Guasti, L.; Pampaloni, B.; Gronchi, G.; Giusti, F.; Romagnoli, C.; Cianferotti, L.; Marcucci, G.; et al. Calcium intake in bone health: A focus on calcium-rich mineral waters. Nutrients 2018, 10, 1930. [Google Scholar] [CrossRef] [Green Version]
- Chang, S.W.; Lee, H.C. Vitamin D and health-The missing vitamin in humans. Pediatr. Neonatol. 2019, 60, 237–244. [Google Scholar] [CrossRef] [Green Version]
- Dobson, R.; Cock, H.R.; Brex, P.; Giovannoni, G. Vitamin D supplementation. Pract. Neurol. 2018, 18, 35–42. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Fang, F.; Tang, J.; Jia, L.; Feng, Y.; Xu, P.; Faramand, A. Association between vitamin D supplementation and mortality: Systematic review and meta-analysis. BMJ 2019, 366, l4673. [Google Scholar] [CrossRef] [Green Version]
- Zmijewski, M.A. Vitamin D and human health. Int. J. Mol. Sci. 2019, 20, 145. [Google Scholar] [CrossRef] [Green Version]
- Rizzoli, R. Vitamin D supplementation: Upper limit for safety revisited? Aging Clin. Exp. Res. 2021, 33, 19–24. [Google Scholar] [CrossRef]
- Rusińska, A.; Płudowski, P.; Walczak, M.; Borszewska-Kornacka, M.K.; Bossowski, A.; Chlebna-Sokół, D.; Czech-Kowalska, J.; Dobrzańska, A.; Franek, E.; Helwich, E.; et al. Vitamin D supplementation guidelines for general population and groups at risk of vitamin D deficiency in Poland-Recommendations of the Polish Society of Pediatric Endocrinology and Diabetes and the Expert Panel with participation of National Specialist Consultants and representatives of Scientific Societies-2018 Update. Front. Endocrinol. 2018, 9, 246. [Google Scholar] [CrossRef]
- Pludowski, P.; Holick, M.F.; Grant, W.B.; Konstantynowicz, J.; Mascarenhas, M.R.; Haq, A.; Povoroznyuk, V.; Balatska, N.; Barbosa, A.P.; Karonova, T.; et al. Vitamin D supplementation guidelines. J. Steroid Biochem. Mol. Biol. 2018, 175, 125–135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weker, H.; Barańska, M.; Riahi, A.; Strucińska, M.; Więch, M.; Rowicka, G.; Dyląg, H.; Klemarczyk, W.; Bzikowska, A.; Socha, P. Nutrition of infants and young children in Poland-Pitnuts 2016. Dev. Period. Med. 2017, 21, 13–28. [Google Scholar] [CrossRef] [PubMed]
- O’Mahony, L.; Stepien, M.; Gibney, M.J.; Nugent, A.P.; Brennan, L. The potential role of vitamin D enhanced foods in improving vitamin D status. Nutrients 2011, 3, 1023–1041. [Google Scholar] [CrossRef] [Green Version]
- Ministry of Health (Poland). Regulation of the Minister of Health of 16 September 2010 on Foods for Particular Nutritional Uses. J. Laws No. 180. Available online: https://isap.sejm.gov.pl/isap.nsf/download.xsp/WDU20110910525/O/D20110525.pdf (accessed on 22 April 2011).
- Itkonen, S.T.; Erkkola, M.; Lamberg-Allardt, C.J.E. Vitamin D fortification of fluid milk products and their contribution to vitamin D intake and vitamin D status in observational studies-A review. Nutrients 2018, 10, 1054. [Google Scholar] [CrossRef] [Green Version]
- Madsen, K.H.; Rasmussen, L.B.; Andersen, R.; Mølgaard, C.; Jakobsen, J.; Bjerrum, P.J.; Andersen, E.W.; Mejborn, H.; Tetens, I. Randomized controlled trial of the effects of vitamin D–fortified milk and bread on serum 25-hydroxyvitamin D concentrations in families in Denmark during winter: The VitmaD study. Am. J. Clin. Nutr. 2013, 98, 374–382. [Google Scholar] [CrossRef]
- Kruger, M.C.; Ha, P.C.; Todd, J.M.; Kuhn-Sherlock, B.; Schollum, L.M.; Ma, J.; Qin, G.; Lau, E. High-calcium, vitamin D fortified milk is effective in improving bone turnover markers and vitamin D status in healthy postmenopausal Chinese women. Eur. J. Clin. Nutr. 2012, 66, 856–861. [Google Scholar] [CrossRef] [Green Version]
- Houghton, L.A.; Gray, A.R.; Szymlek-Gay, E.A.; Heath, A.L.; Ferguson, E.L. Vitamin D-fortified milk achieves the targeted serum 25-hydroxyvitamin D concentration without affecting that of parathyroid hormone in New Zealand toddlers. J. Nutr. 2011, 141, 1840–1846. [Google Scholar] [CrossRef] [Green Version]
- Moore, C.; Murphy, M.M.; Keast, D.R.; Holick, M.F. Vitamin D intake in the United States. J. Am. Diet. Assoc. 2004, 104, 980–983. [Google Scholar] [CrossRef]
- Yeh, E.B.; Barbano, D.M.; Drake, M. Vitamin fortification of fluid milk. J. Food Sci. 2017, 82, 856–864. [Google Scholar] [CrossRef] [Green Version]
- Redfern, C.P.F. Vitamin A and its natural derivatives. Methods Enzymol. 2020, 637, 1–25. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Lai, J.; Gu, X.; Gong, J.; Zhu, R.; Liu, H.; Yan, S.; Yan, X.; Wang, Y. Association of vitamin A with bone mineral density in middle-aged and aged females. Wei Sheng Yan Jiu 2011, 40, 723–726. [Google Scholar] [PubMed]
- Soares, M.M.; Silva, M.A.; Garcia, P.P.C.; Silva, L.S.D.; Costa, G.D.D.; Araújo, R.M.A.; Cotta, R.M.M. Efect of vitamin A suplementation: A systematic review. Cienc. Saude Colet. 2019, 24, 827–838. [Google Scholar] [CrossRef] [PubMed]
- Asson-Batres, M.A. How dietary deficiency studies have illuminated the many roles of vitamin A during development and postnatal life. Subcell. Biochem. 2020, 95, 1–26. [Google Scholar] [CrossRef] [PubMed]
- Hombali, A.S.; Solon, J.A.; Venkatesh, B.T.; Nair, N.S.; Peña-Rosas, J.P. Fortification of staple foods with vitamin A for vitamin A deficiency. Cochrane Database Syst. Rev. 2019, 5, CD010068. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Global Prevalence of Vitamin A Deficiency in Populations at Risk 1993–2005; World Health Organization: Geneva, Switzerland, 2009.
- Perdijk, O.; van Splunter, M.; Savelkoul, H.F.J.; Brugman, S.; van Neerven, R.J.J. Cow’s milk and immune function in the respiratory tract: Potential mechanisms. Front. Immunol. 2018, 9, 143. [Google Scholar] [CrossRef] [Green Version]
- Ahvanooei, M.R.R.; Norouzian, M.A.; Vahmani, P. Beneficial effects of vitamins, minerals, and bioactive peptides on strengthening the immune system against COVID-19 and the role of cow’s milk in the supply of these nutrients. Biol. Trace Elem. Res. 2021, 199, 1–14. [Google Scholar] [CrossRef]
- Public Health Service. Grade “A” Pasteurized Milk Ordinance; Recommendations of the Public Health Service. Public Health Service Publication No. 229; US Department of Health, Education and Welfare, US Government Printing Office: Washington, DC, USA, 1965.
- Sachdeva, B.; Kaushik, R.; Arora, S.; Khan, A. Effect of processing conditions on the stability of native vitamin A and fortified retinol acetate in milk. Int. J. Vitam. Nutr. Res. 2021, 91, 133–142. [Google Scholar] [CrossRef]
- Whited, L.J.; Hammond, B.H.; Chapman, K.W.; Boor, K.J. Vitamin A degradation and light-oxidized flavor defects in milk. J. Dairy Sci. 2002, 85, 351–354. [Google Scholar] [CrossRef]
- Rajwar, E.; Parsekar, S.S.; Venkatesh, B.T.; Sharma, Z. Effect of vitamin A, calcium and vitamin D fortification and supplementation on nutritional status of women: An overview of systematic reviews. Syst. Rev. 2020, 9, 1–11. [Google Scholar] [CrossRef]
- The European Parliament and of the Council. Regulation (EC) No. 1925/2006 of the European Parliament and of the Council of 20 December 2006 on adding vitamins and ingredients to foods minerals and other substances. Off. J. EUR L 404 2006, 26, 26–38. [Google Scholar]
- Volpe, S.L. Magnesium in disease prevention and overall health. Adv. Nutr. 2013, 4, 378S–383S. [Google Scholar] [CrossRef] [PubMed]
- Sazawal, S.; Dhingra, U.; Dhingra, P.; Hiremath, G.; Sarkar, A.; Dutta, A.; Menon, V.P.; Black, R.E. Micronutrient fortified milk improves iron status, anemia and growth among children 1–4 years: A double masked, randomized, controlled trial. PLoS ONE 2010, 5, e12167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sazawal, S.; Dhingra, U.; Dhingra, P.; Hiremath, G.; Kumar, J.; Sarkar, A.; Menon, V.P.; Black, R.E. Effects of fortified milk on morbidity in young children in north India: Community based, randomised, double masked placebo controlled trial. BMJ 2007, 334, 140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Semba, R.D.; Moench-Pfanner, R.; Sun, K.; de Pee, S.; Akhter, N.; Rah, J.H.; Campbell, A.A.; Badham, J.; Bloem, M.W.; Kraemer, K. Consumption of micronutrient-fortified milk and noodles is associated with lower risk of stunting in preschool-aged children in Indonesia. Food Nutr. Bull. 2011, 32, 347–353. [Google Scholar] [CrossRef]
- Eichler, K.; Wieser, S.; Rüthemann, I.; Brügger, U. Effects of micronutrient fortified milk and cereal food for infants and children: A systematic review. BMC Public Health 2012, 12, 506. [Google Scholar] [CrossRef] [Green Version]
- Verduci, E.; D’Elios, S.; Cerrato, L.; Comberiati, P.; Calvani, M.; Palazzo, S.; Martelli, A.; Landi, M.; Trikamjee, T.; Peroni, D.G. Cow’s milk substitutes for children: Nutritional aspects of milk from different mammalian species, special formula and plant-based beverages. Nutrients 2019, 11, 1739. [Google Scholar] [CrossRef] [Green Version]
- Craig, W.J.; Fresán, U. International analysis of the nutritional content and a review of health benefits of non-dairy plant-based beverages. Nutrients 2021, 13, 842. [Google Scholar] [CrossRef]
- Singhal, S.; Baker, R.D.; Baker, S.S. A comparison of the nutritional value of cow’s milk and non-dairy beverages. J. Pediatr. Gastroenterol. Nutr. 2017, 64, 799–805. [Google Scholar] [CrossRef]
- Collard, K.M.; McCormick, D.P. A nutritional comparison of cow’s milk and alternative milk products. Acad. Pediatr. 2021, 21, 1067–1069. [Google Scholar] [CrossRef]
- Vanderhout, S.M.; Aglipay, M.; Torabi, N.; Jüni, P.; da Costa, B.R.; Birken, C.S.; O’Connor, D.L.; Thorpe, K.E.; Maguire, J.L. Whole milk compared with reduced-fat milk and childhood overweight: A systematic review and meta-analysis. Am. J. Clin. Nutr. 2020, 111, 266–279. [Google Scholar] [CrossRef] [PubMed]
- Szajnar, K.; Znamirowska, A.; Kalicka,, D.; Zaguła, G. Fortification of yoghurts with calcium compounds. J. Elem. 2017, 22, 869–879. [Google Scholar] [CrossRef]
- Idjradinata, P.; Pollitt, E. Reversal of developmental delays in iron-deficient anaemic infants treated with iron. Lancet 1993, 341, 1–4. [Google Scholar] [CrossRef]
- Griebler, U.; Bruckmüller, M.U.; Kien, C.; Dieminger, B.; Meidlinger, B.; Seper, K.; Hitthaller, A.; Emprechtinger, R.; Wolf, A.; Gartlehner, G. Health effects of cow’s milk consumption in infants up to 3 years of age: A systematic review and meta-analysis. Public Health Nutr. 2016, 19, 293–307. [Google Scholar] [CrossRef] [Green Version]
Product | 2016 | 2018 | 2020 | |||
---|---|---|---|---|---|---|
mln Tones | % | mln Tones | % | mln Tones | % | |
whole fresh cow milk | 147.71 | 96.60 | 151.27 | 96.51 | 154.40 | 96.40 |
whole fresh sheep milk | 2.99 | 1.96 | 2.84 | 1.81 | 2.97 | 1.85 |
whole fresh goat milk | 2.00 | 1.31 | 2.36 | 1.51 | 2.50 | 1.56 |
whole fresh buffalo milk | 0.21 | 0.14 | 0.27 | 0.17 | 0.29 | 0.18 |
Product | Calcium | Phosphorus | Potassium | Magnesium | Zinc |
---|---|---|---|---|---|
pasteurised milk 3.5% fat | 118 | 85 | 138 | 12 | 0.32 |
pasteurised milk 3.2% fat | 118 | 85 | 139 | 12 | 0.32 |
pasteurised milk 2.0% fat | 120 | 86 | 141 | 12 | 0.32 |
pasteurised milk 1.5% fat | 120 | 97 | 141 | 12 | 0.37 |
pasteurised milk 0.5% fat | 121 | 97 | 141 | 12 | 0.40 |
UHT milk 3.2% fat | 113 | 81 | 139 | 12 | 0.32 |
UHT milk 1.5% fat | 110 | 92 | 141 | 12 | 0.37 |
UHT milk 0.5% fat | 111 | 91 | 141 | 12 | 0.40 |
Vitamin | % Loss in Pasteurised Milk | % Loss in UHT Milk |
---|---|---|
folate | 5–20 | 10–20 |
vitamin A | no significant changes | no significant changes |
vitamin B1 | <10 | 10–20 |
vitamin B2 | <1 | no significant changes |
vitamin B6 | <3–5 | <10–15 |
vitamin B12 | <10 | 0–30 |
vitamin C | 0–10 | <15–25 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Woźniak, D.; Cichy, W.; Dobrzyńska, M.; Przysławski, J.; Drzymała-Czyż, S. Reasonableness of Enriching Cow’s Milk with Vitamins and Minerals. Foods 2022, 11, 1079. https://doi.org/10.3390/foods11081079
Woźniak D, Cichy W, Dobrzyńska M, Przysławski J, Drzymała-Czyż S. Reasonableness of Enriching Cow’s Milk with Vitamins and Minerals. Foods. 2022; 11(8):1079. https://doi.org/10.3390/foods11081079
Chicago/Turabian StyleWoźniak, Dagmara, Wojciech Cichy, Małgorzata Dobrzyńska, Juliusz Przysławski, and Sławomira Drzymała-Czyż. 2022. "Reasonableness of Enriching Cow’s Milk with Vitamins and Minerals" Foods 11, no. 8: 1079. https://doi.org/10.3390/foods11081079
APA StyleWoźniak, D., Cichy, W., Dobrzyńska, M., Przysławski, J., & Drzymała-Czyż, S. (2022). Reasonableness of Enriching Cow’s Milk with Vitamins and Minerals. Foods, 11(8), 1079. https://doi.org/10.3390/foods11081079