Detection of Cherry Quality Using YOLOV5 Model Based on Flood Filling Algorithm
Abstract
:1. Introduction
2. Model and Algorithm
2.1. Convolutional Neural Network
2.2. Flooding Filling Algorithm
2.3. YOLOv5 Model
3. Experiment and Results
3.1. Data Set Preparation
3.2. Experimental Settings
3.3. Results
4. Discussion
5. Conclusions and Shortcomings
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, Y.; Cheng, H.; Chen, L.; Wu, Y.; Wu, Y.; Li, Y.; Zhao, Y.; Xu, J. Distribution of Chinese Cherry and Sweet Cherry Germplasm Resources in China. Hebei Fruit Tree 2019, 2, 3–4. [Google Scholar] [CrossRef]
- Li, Z.; Hu, X.; Shen, P.; Tian, H. Spatial distribution of soil fertility in sweet cherry planting areas in Guanzhong, Shaanxi. Soil Fertil. China 2018, 5, 134–140. [Google Scholar]
- Zhang, L. Origin, distribution and cultivation status of sweet cherry. North. Fruit Tree 2000, 4, 31. [Google Scholar] [CrossRef]
- Hu, Z. Distribution and production status of cherry in China. Deciduous Fruit Tree 1996, 3, 29–30. [Google Scholar]
- Shao, D. Introduction of excellent sweet cherry varieties abroad. Deciduous Fruit Tree 1988, 3, 38–39. [Google Scholar] [CrossRef]
- Wang, B.; Li, W.; Hou, Y.; Miao, F.; Shi, L. Study on the quality changes of sweet cherry stored at different temperatures after normal temperature transportation. Packag. Eng. 2015, 36, 28–32. [Google Scholar] [CrossRef]
- Wang, B.; Li, W.; Hou, Y.; Yang, J.; Miao, F.; Feng, X. Quality changes of sweet cherry during logistics and controlled atmosphere storage. J. Fruit Trees 2014, 31, 953–958. [Google Scholar] [CrossRef]
- Bao, J.; Qiao, G.; Liu, P.; Chen, N.; Wen, X. Evaluation of fruit quality of different varieties of large cherry. J. Huazhong Agric. Univ. 2016, 35, 1216. [Google Scholar] [CrossRef]
- Wu, P.; Jia, C.; Fan, S.; Sun, Y. Principal Component Analysis and Fuzzy Comprehensive Evaluation of Fruit Quality Factors of Cherry Varieties. Chin. J. Agric. Eng. 2018, 34, 291–300. [Google Scholar]
- Jing, C.; Song, T.; Zhuang, L.; Liu, G.; Wang, L.; Liu, K. Overview of face recognition technology based on deep convolutional neural network. Comput. Appl. Softw. 2018, 35, 223–231. [Google Scholar]
- Zhao, Z.; Yang, S.; Ma, Q. Research on license plate character recognition based on convolution neural network LeNet-5. J. Syst. Simul. 2010, 22, 638–641. [Google Scholar] [CrossRef]
- Zeng, P.; Li, L. Research on fruit image classification and recognition based on convolutional neural network. Mech. Des. Res. 2019, 35, 23–26. [Google Scholar] [CrossRef]
- Huang, Y.; Pu, Y.; Zhang, H. Research on fruit image recognition algorithm based on multi-scale feature fusion. J. Changchun Univ. Technol. (Nat. Sci. Ed.) 2021, 44, 87–94. [Google Scholar]
- Liu, C.; Wang, W. Design of fruit recognition system based on TensorFlow. Comput. Knowl. Technol. 2021, 17, 190–191. [Google Scholar] [CrossRef]
- Luo, Z.; Hu, R.; Zhao, Q.; Deng, X. Fruit recognition system based on BP neural network. Comput. Knowl. Technol. 2021, 17, 187–189. [Google Scholar] [CrossRef]
- Sun, W.; Zhang, X.; Zhang, S.; Chi, Z. Research on multi-feature fusion image recognition algorithm based on optimized PSO-BP. J. Qingdao Univ. (Eng. Technol. Ed.) 2021, 36, 72–82. [Google Scholar] [CrossRef]
- Lei, S.; Yao, H. Application of Near Infrared Spectroscopy in Nondestructive Testing of Fruit Quality. Spectr. Lab. 2009, 26, 775–779. [Google Scholar]
- Luo, F.; Zhang, P.; Chen, S.; Li, J.; Lu, X. Discrimination of shelf-life cherry quality by near infrared diffuse reflectance technology. Zhejiang J. Agric. 2015, 27, 1468–1472. [Google Scholar]
- Luo, F.; Lu, X.; Zhang, P.; Chen, S.; Li, J. Near infrared diffuse reflectance detection of sweet cherry fruit texture. Food Ind. Technol. 2015, 36, 293–297. [Google Scholar] [CrossRef]
- Muresan, H.; Oltean, M. Fruit Recognition from Images Using Deep Learning. Acta Univ. Sapientiae Inform. 2018, 10, 26–42. Available online: https://mihaioltean.github.io (accessed on 10 February 2022). [CrossRef] [Green Version]
- Cao, H.; Gong, S. Target detection of plateau yak images based on YOLOv5. Inf. Comput. (Theor. Ed.) 2021, 33, 84–87. [Google Scholar]
- Pei, Y.; Lian, M.; Jiang, Y.; Ye, J.; Han, X.; Gu, Y. Detection and recognition of cherry defects based on machine vision. Food Mach. 2019, 35, 137–140. [Google Scholar] [CrossRef]
- Ma, L.; Ma, J.; Han, J.; Li, Y. Research on target detection algorithm based on YOLOv5s. Comput. Knowl. Technol. 2021, 17, 100–103. [Google Scholar] [CrossRef]
- Losso, K.; Bec, K.B.; Mayr, S.; Grabska, J.; Stuppner, S.; Jones, M.; Jakschitz, T.; Rainer, M.; Bonn, G.K.; Huck, C.W. Rapid discrimination of Curcuma longa and Curcuma xanthorrhiza using Direct Analysis in Real Time Mass Spectrometry and Near Infrared Spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 265, 120347. [Google Scholar] [CrossRef]
- Beć, K.B.; Grabska, J.; Plewka, N.; Huck, C.W. Insect protein content analysis in handcrafted fitness bars by NIR Spectroscopy. Gaussian process regression and data fusion for performance enhancement of miniaturized cost-effective consumer-grade sensors. Molecules 2021, 26, 6390. [Google Scholar] [CrossRef]
- Yang, S. Grading and packaging of protected sweet cherry fruits. Deciduous Fruit Trees 2011, 43, 5. [Google Scholar] [CrossRef]
Configuration | Parameters | |
---|---|---|
Software | System | Windows 10 |
IDEL | Pycharm | |
Python | Python 3.8 | |
Hardware | CPU | Intel(R) Core(TM) i7-8750H CPU @ 2.20 GHz |
Graphics card | NVIDIA GeForce GTX 1050 Ti | |
Training parameters | Pre-training weight | YOLOv5s.PT |
Epochs | 50 | |
Sample size | 2000 |
Dataset | Precision | Recall | Average Precision (IoU Threshold: 0.5) | Average Precision (IoU Threshold: 0.5–0.95) |
---|---|---|---|---|
Original images | 99.6% | 99.4% | 96.7% | 95.4% |
Images extracted by flooding filling algorithm | 78.6% | 58.7% | 41.5% | 17.8% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, W.; Jiang, F.; Zhu, Z. Detection of Cherry Quality Using YOLOV5 Model Based on Flood Filling Algorithm. Foods 2022, 11, 1127. https://doi.org/10.3390/foods11081127
Han W, Jiang F, Zhu Z. Detection of Cherry Quality Using YOLOV5 Model Based on Flood Filling Algorithm. Foods. 2022; 11(8):1127. https://doi.org/10.3390/foods11081127
Chicago/Turabian StyleHan, Wei, Fei Jiang, and Zhiyuan Zhu. 2022. "Detection of Cherry Quality Using YOLOV5 Model Based on Flood Filling Algorithm" Foods 11, no. 8: 1127. https://doi.org/10.3390/foods11081127
APA StyleHan, W., Jiang, F., & Zhu, Z. (2022). Detection of Cherry Quality Using YOLOV5 Model Based on Flood Filling Algorithm. Foods, 11(8), 1127. https://doi.org/10.3390/foods11081127