Evaluation of the Antimicrobial Activity of Four Plant Essential Oils against Some Food and Phytopathogens Isolated from Processed Meat Products in Egypt
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling and Preparation
2.2. Determination of Microbial Contamination
2.2.1. Total Bacterial Count
2.2.2. Total Enterobacteriaceae Count
2.2.3. Total Pseudomonas Count
2.2.4. Detection of Escherichia coli
2.2.5. Total Yeast and Mold Count
2.3. Extraction of Essential Oils
2.4. Antimicrobial Activity
2.4.1. Bacterial Isolation and Identification
2.4.2. Mold Isolation and Identification
2.4.3. In Vitro Antibacterial Assay
2.4.4. In Vitro Antifungal Assay
2.5. Sensory Test of Organoleptic Properties
2.6. Statistical Analysis
3. Results
3.1. Microbial Contamination
3.1.1. Isolation and Total Counting
3.1.2. Bacterial Molecular Identification
3.1.3. Mold Molecular Identification
3.2. In Vitro Antimicrobial Activity of EOs
3.2.1. Antibacterial Activity Assay
3.2.2. Antifungal Activity Assay
3.3. Sensory Test
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Micheal Ikechukwu, N. Bacteriological Analysis of Ready-to-Eat Barbecue Meat (Suya) Sold in Yenagoa, Bayelsa State Nigeria. Int. J. Microbiol. Biotechnol. 2019, 4, 24. [Google Scholar] [CrossRef] [Green Version]
- Inyang, C.; Igyor, M.; Uma, E. Bacterial quality of a smoked meat product (“Suya”). Niger. Food J. 2006, 23, 239–242. [Google Scholar] [CrossRef]
- Dupont, J.; Harms, T.; Fiebelkorn, F. Acceptance of cultured meat in Germany—Application of an extended theory of planned behaviour. Foods 2022, 11, 424. [Google Scholar] [CrossRef] [PubMed]
- Raharjo, S.; Schmidt, G.R. Kirk-Othmer Encyclopedia of chemical technology. Ref. Rev. 2007, 21, 49–50. [Google Scholar]
- Mohammed, S.S.D.; Adeniyi, O.D.; Damisa, D.; Bala, E. Mycological assessment of Suya Sold in some parts of Minna, Niger State. Nig. J. Biotech. 2017, 32, 33–40. [Google Scholar] [CrossRef] [Green Version]
- Bhat, R.; Rai, R.; Karim, A. Mycotoxins in food and feed: Present status and future concerns. Compr. Rev. Food Sci. Food Saf. 2010, 9, 57–81. [Google Scholar] [CrossRef]
- European Commission. Regulation (EU) 519/2014 Amending Regulation (EC) No 401/2006 as Regards Methods of Sampling of Large Lots, Spices and Food Supplements, Performance Criteria for T-2, HT-2 Toxin and Citrinin and Screening Methods of Analysis; European Commission: Bruxelles, Belgium, 2014. [Google Scholar]
- Aziz, N.; Youssef, Y. Occurrence of aflatoxins and aflatoxin-producing moulds in fresh and processed meat in Egypt. Food Addit. Contam. 1991, 8, 321–331. [Google Scholar] [CrossRef]
- Edema, M.O.; Osho, A.T.; Diala, C.I. Evaluation of Microbial Hazards associated with the processing of Suya (a grilled meat product). Sci. Res. Essays 2008, 3, 621–626. [Google Scholar]
- Fapohunda, S.O.; Moore, G.G.; Ganiyu, O.T.; Beltz, S.B. Toxigenic Aspergillus flavus and other fungi of public health concern in food and organic matter in southwest Nigeria. Mycology 2012, 3, 210–219. [Google Scholar]
- Elsayed, M.E.; Algammal, A.M.; El-Diasty, E.M.; Abouelmaatti, R.R.; Abbas, S.M. Prevalence of Aspergillus spp and Aflatoxins in luncheon, minced meat and sausage. Global Anim. Sci. J. 2018, 6, 17–23. [Google Scholar]
- Zain, M.E. Impact of mycotoxins on humans and animals. J. Saudi Chem. Soc. 2011, 15, 129–144. [Google Scholar] [CrossRef] [Green Version]
- Shaltout, F.A.; Amin, R.A.; Nassif, M.Z.; Abd-Elwahab, S.A. Detection of aflatoxins in some meat products. Benha Vet. Med. J. 2014, 27, 368–374. [Google Scholar]
- Tewari, A.; Abdullah, S. Bacillus cereus food poisoning: International and Indian perspective. J. Food Sci. Technol. 2015, 52, 2500–2511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, H.; Franzetti, L.; Kaushal, A.; Kumar, D. Pseudomonas fluorescens: A potential food spoiler and challenges and advances in its detection. Ann. Microbiol. 2019, 69, 873–883. [Google Scholar] [CrossRef]
- Quintieri, L.; Fanelli, F.; Caputo, L. Antibiotic resistant Pseudomonas Spp. spoilers in fresh dairy products: An Underestimated Risk and the Control Strategies. Foods 2019, 8, 372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sakr, S.H.; Elshafie, H.S.; Camele, I.; Sadeek, S.A. Synthesis, spectroscopic, and biological studies of mixed ligand complexes of gemifloxacin and glycine with Zn(II), Sn(II), and Ce(III). Molecules 2018, 23, 1182. [Google Scholar] [CrossRef] [Green Version]
- Camele, I.; Grul’ová, D.; Elshafie, H.S. Chemical composition and antimicrobial properties of Mentha x piperita cv. ‘Kristinka’ essential oil. Plants 2021, 10, 1567. [Google Scholar] [CrossRef]
- Rossolini, G.M.; Arena, F.; Pecile, P.; Pollini, S. Update on the antibiotic resistance crisis. Curr. Opin. Pharmacol. 2014, 18, 56–60. [Google Scholar] [CrossRef]
- Ventola, C.L. The antibiotic resistance crisis: Part 1: Causes and threats. Pharm. Ther. J. 2015, 40, 277–283. [Google Scholar]
- Anyanwu, M.U.; Okoye, R.C. Antimicrobial activity of Nigerian medicinal plants. J. Intercult. Ethnopharmacol. 2017, 6, 240–259. [Google Scholar] [CrossRef]
- Cazella, L.N.; Glamoclija, J.; Sokovic, M.; Gonçalves, J.E.; Linde, G.A.; Colauto, N.B.; Gazim, Z.C. Antimicrobial activity of essential oil of Baccharis dracunculifolia DC (Asteraceae) aerial parts at flowering period. Front. Plant Sci. 2019, 10, 27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elshafie, H.S.; Gruľová, D.; Baranová, B.; Caputo, L.; De Martino, L.; Sedlák, V.; Camele, I.; De Feo, V. Antimicrobial activity and chemical composition of essential oil extracted from Solidago canadensis L. growing wild in Slovakia. Molecules 2019, 24, 1206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elshafie, H.S.; Caputo, L.; De Martino, L.; Gruľová, D.; Zheljazkov, V.D.; De Feo, V.; Camele, I. Biological investigations of essential oils extracted from three Juniperus species and evaluation of their antimicrobial, antioxidant and cytotoxic activities. J. Appl. Microbiol. 2020, 129, 1261–1271. [Google Scholar] [CrossRef] [PubMed]
- Gruľová, D.; Caputo, L.; Elshafie, H.S.; Baranová, B.; De Martino, L.; Sedlák, V.; Camele, I.; De Feo, V. Thymol chemotype Origanum vulgare L. essential oil as a potential selective bio-based herbicide on monocot plant species. Molecules 2020, 25, 595. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ou, M.C.; Hsu, T.F.; Lai, A.C.; Lin, Y.T.; Lin, C.C. Pain relief assessment by aromatic essential oil massage on outpatients with primary dysmenorrhea: A randomized, double-blind clinical trial. J. Obstet. Gynaecol. Res. 2012, 38, 817–822. [Google Scholar] [CrossRef]
- Yavari Kia, P.; Safajou, F.; Shahnazi, M.; Nazemiyeh, H. The effect of lemon inhalation aromatherapy on nausea and vomiting of pregnancy: A double-blinded, randomized, controlled clinical trial. Iran. Red Crescent Med. J. 2014, 16, 14360. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, E.; Kuchta, K.; Kimura, M.; Rauwald, H.W.; Kamei, T.; Imanishi, J. Effects of bergamot (Citrus bergamia (Risso) Wright & Arn.) essential oil aromatherapy on mood states, parasympathetic nervous system activity, and salivary cortisol levels in 41 healthy females. Forsch Komplementmed 2015, 22, 43–49. [Google Scholar]
- Elshafie, H.S.; Camele, I. An overview of the biological effects of some Mediterranean essential oils on human health (Review article). Biomed. Res. Int. 2017, 2017, 9268468. [Google Scholar] [CrossRef]
- ISO 4833-1:2013; Microbiology of the Food Chain—Horizontal Method for the Enumeration of Microorganisms—Part 1: Colony Count at 30 °C by the Pour Plate Technique. International Organization for Standardization: Geneva, Switzerland, 2013.
- ISO 21528-2:2004; Microbiology of Food and Animal Feeding Stuffs—Horizontal Methods for the Detection and Enumeration of Enterobacteriaceae—Part 2: Colony-Count Method. International Organization for Standardization: Geneva, Switzerland, 2004.
- ISO 13720:2010(E); Meat and Meat Products—Enumeration of Presumptive Pseudomonas spp. International Organization for Standardization: Geneva, Switzerland, 2010.
- ISO 4831:2006; Microbiology of Food and Animal Feeding STUFFS—Horizontal Method for the Detection and Enumeration of Coliforms—Most Probable Number Technique. International Organization for Standardization: Geneva, Switzerland, 2006.
- ISO 7251:2005; Microbiology of Food and Animal Stuffs—Horizontal Method for the Detection and Enumeration of Presumptive Escherichia coli—Most Probable Number Technique. International Organization for Standardization: Geneva, Switzerland, 2005.
- ISO 21527-1:2008 (E); Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Enumeration of Yeasts and Moulds—Part 1: Colony Count Technique in Products with Water Activity Greater Than 0.95. International Organization for Standardization: Geneva, Switzerland, 2008.
- Council of Europe. European Pharmacopoeia, 5th ed.; Council of Europe: Strasbourg, France, 2004; Volume I, p. 2017. [Google Scholar]
- King, E.O.; Ward, M.K.; Raney, D.E. Two simple media for demonstration of pyocyanin and fluorescin. J. Lab. Clin. Med. 1954, 44, 301–307. [Google Scholar]
- Bertani, G. Lysogeny at mid-twentieth century: P1, P2, and other experimental systems. J. Bacteriol. 2004, 186, 595–600. [Google Scholar] [CrossRef] [Green Version]
- Young, J.P.W.; Downer, H.L.; Eardly, B.D. Phylogeny of the phototrophic Rhizobium strain BTAi1 by polymerase chain reaction-based sequencing of a 16S rRNA gene segment. J. Bacteriol. 1991, 173, 2271–2277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Altschul, S.F.; Madden, T.L.; Schaffer, A.A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D.J. Gapped BLAST and PSIBLAST: A new generation of protein database search programs. Nucleic Acids Res. 1997, 25, 3389–3402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Camele, I.; Marcone, C.; Cristinzio, G. Detection and identification of Phytophthora species in southern Italy by RFLP and sequence analysis of PCR-amplified nuclear ribosomal DNA. Eur. J. Plant Pathol. 2005, 113, 1–14. [Google Scholar] [CrossRef]
- White, T.J.; Bruns, T.; Lee, S.; Taylor, J.W. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications; Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J., Eds.; Academic Press: New York, NY, USA, 1990; pp. 315–322. [Google Scholar]
- Elshafie, H.S.; Viggiani, L.; Mostafa, M.S.; El-Hashash, M.A.; Bufo, S.A.; Camele, I. Biological activity and chemical identification of ornithine lipid produced by Burkholderia gladioli pv. agaricicola ICMP 11096 using LC-MS and NMR analyses. J. Biol. Res. 2017, 90, 96–103. [Google Scholar] [CrossRef]
- Elshafie, H.S.; Sakr, S.H.; Sadeek, S.A.; Camele, I. Biological investigations and spectroscopic studies of new Moxifloxacin/Glycine-Metal complexes. Chem. Biodiver. 2019, 16, 1800633. [Google Scholar] [CrossRef]
- Sofo, A.; Elshafie, H.S.; Scopa, A.; Mang, S.M.; Camele, I. Impact of airborne zinc pollution on the antimicrobial activity of olive oil and the microbial metabolic profiles of Zn-contaminated soils in an Italian olive orchard. J. Trace Elem. Med. Biol. 2018, 49, 276–284. [Google Scholar] [CrossRef]
- Elshafie, H.S.; Mancini, E.; Sakr, S.; De Martino, L.; Mattia, C.A.; De Feo, V.; Camele, I. Antifungal activity of some constituents of Origanum vulgare L. essential oil against postharvest disease of peach fruit. J. Med. Food 2015, 18, 929–934. [Google Scholar] [CrossRef]
- Elshafie, H.S.; Ghanney, N.; Mang, S.M.; Ferchichi, A.; Camele, I. An in vitro attempt for controlling severe phyto and human pathogens using essential oils from Mediterranean plants of genus Schinus. J. Med. Food 2016, 19, 266–273. [Google Scholar] [CrossRef]
- Elshafie, H.S.; Armentano, M.F.; Carmosino, M.; Bufo, S.A.; De Feo, V.; Camele, I. Cytotoxic activity of Origanum vulgare L. on Hepatocellular carcinoma cell line HepG2 and evaluation of its biological activity. Molecules 2017, 22, 1435. [Google Scholar] [CrossRef] [Green Version]
- Elshafie, H.S.; Sakr, S.; Mang, S.M.; De Feo, V.; Camele, I. Antimicrobial activity and chemical composition of three essential oils extracted from Mediterranean aromatic plants. J. Med. Food 2016, 19, 1096–1103. [Google Scholar] [CrossRef]
- Zygadlo, J.A.; Guzman, C.A.; Grosso, N.R. Antifungal properties of the leaf oils of Tagetes minuta L. and Tagetes filifolia Lag. J. Essent. Oil Res. 1994, 6, 617–621. [Google Scholar] [CrossRef]
- Bintsis, T. Foodborne pathogens. AIMS Microbiol. 2017, 3, 529–563. [Google Scholar] [CrossRef] [PubMed]
- Marin, S.; Sanchis, V.; Vinas, I.; Canela, R.; Magan, N. Effect of water activity and temperature on growth and fumonisin B1 and B2 production by Fusarium proliferatum and F. moniliforme on maize grain. Lett. Appl. Microbiol. 1995, 21, 298–301. [Google Scholar] [CrossRef]
- Sanchis, V.; Magan, N. Environmental conditions affecting mycotoxins. In Mycotoxins in Food; Magan, N., Olsen, M., Eds.; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar]
- Assunção, R.; Martins, C.; Dupont, D.; Alvito, P. Patulin and ochratoxin a co-occurrence and their bioaccessibility in processed cereal-based foods: A contribution for Portuguese children risk assessment. Food Chem. Toxicol. 2016, 96, 205–214. [Google Scholar] [CrossRef] [PubMed]
- Navale, V.; Vamkudoth, K.R.; Ajmera, S.; Dhuri, V. Aspergillus derived mycotoxins in food and the environment: Prevalence, detection, and toxicity. Toxicol. Rep. 2021, 8, 1008–1030. [Google Scholar] [CrossRef] [PubMed]
- El-Massry, K.F.; El-Ghorab, A.H.; Shaaban, H.A.; Shibamoto, T. Chemical compositions and antioxidant/antimicrobial activities of various samples prepared from Schinus terebinthifolius leaves cultivated in Egypt. J. Agricul. Food Chem. 2009, 57, 5265–5270. [Google Scholar] [CrossRef] [PubMed]
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological effects of essential oils—A review. Food Chem. Toxicol. 2008, 46, 446–475. [Google Scholar] [CrossRef]
- Lopez-Reyes, J.G.; Spadaro, D.; Gullino, M.L.; Garibaldi, A. Efficacy of plant essential oils on post-harvest control of rot caused by fungi on four cultivars of apples in vivo. Flav. Frag. J. 2010, 25, 171–177. [Google Scholar] [CrossRef]
- Elshafie, H.S.; Mancini, E.; Camele, I.; Martino, L.D.; De Feo, V. In vivo antifungal activity of two essential oils from Mediterranean plants against postharvest brown rot disease of peach fruit. Indus. Crops Prod. 2015, 66, 11–15. [Google Scholar] [CrossRef]
- Baser, K.H.C.; Buchbauer, G. Handbook of Essential Oils: Science, Technology and Applications; CRC Press: Boca Raton, FL, USA, 2010; ISBN 978-1-4200-6315-8. [Google Scholar]
- Cheurfa, M.; Allem, R.; Sebaihia, M.; Belhireche, S. Effect of essential oil of Thymus vulgaris on bacterial pathogens responsible for gastroenteritis. Phytotherapie 2013, 11, 154–160. [Google Scholar] [CrossRef]
- de Almeida, L.F.R.; Frei, F.; Mancini, E.; De Martino, L.; De Feo, V. Phytotoxic activities of Mediterranean essential oils. Molecules 2010, 15, 4309–4323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Camele, I.; De Feo, V.; Altieri, L.; Mancini, E.; De Martino, L.; Rana, G.L. An attempt of postharvest orange fruit rot control using essential oils from Mediterranean plants. J. Med. Food 2010, 13, 1515–1523. [Google Scholar] [CrossRef] [PubMed]
- Tabanca, N.; Demirci, B.; Ozek, T.; Kirimer, N.; Can Baser, K.H.; Bedir, E.; Khand, I.A.; Wedge, D.E. Gas chromatographic–mass spectrometric analysis of essential oils from Pimpinella species gathered from Central and Northern Turkey. J. Chromatogr. A 2006, 1117, 194–205. [Google Scholar] [CrossRef] [PubMed]
- Singh, G.; Maurya, S.; de Lampasona, M.P.; Catalan, C. Chemical constituents, antifungal and antioxidative potential of Foeniculum vulgare volatile oil and its acetone extract. Food Control 2006, 17, 745–752. [Google Scholar] [CrossRef]
- Elshafie, H.S.; Aliberti, L.; Amato, M.; De Feo, V.; Camele, I. Chemical composition and antimicrobial activity of chia (Salvia hispanica L.) essential oil. Europ. Food Res. Technol. 2018, 244, 1675–1682. [Google Scholar] [CrossRef]
- Elshafie, H.S.; Camele, I. Chapter 5: Investigating the effects of plant essential oils on post- harvest fruit decay. In Fungal Pathogenicity; Intech: Rijeka, Croatia, 2016; p. 16. ISBN 978-953-51-4624-7. [Google Scholar]
- Adebayo, O.; Dang, T.; Bélanger, A.; Khanizadeh, S. Antifungal studies of selected essential oils and a commercial formulation against Botrytis cinerea. J. Food Res. 2013, 2, 217–226. [Google Scholar] [CrossRef]
- Yousefi, M.; Khorshidian, N.; Hosseini, H. Potential application of essential oils for mitigation of Listeria monocytogenes in meat and poultry products. Front. Nutr. 2020, 7, 577287. [Google Scholar] [CrossRef]
Scale | Definition |
---|---|
0 | No difference from control |
0–1 | Similar to control |
1–2 | Low difference from control |
2–3 | Highly different from control |
Samples | TBC (×105) | Pseudomonas (×103) | Enterobacteriaceae (×101) | E. coli | Mould (×102) | Yeast (×102) | |
---|---|---|---|---|---|---|---|
Minced meat | CA | 6.4 ± 0.8 a | 10 ± 7.5ab | 6.2 ± 2.3 a | + | 1.2 ± 0.6 a | 1.8 ± 0.2 b |
GZ | 54 ± 16 a | 10.8 ± 2.3 ab | 17.4 ± 10 a | ++ | 1 ± 0.8 a | 15 ± 7 a | |
QA | 78 ± 10 a | 30 ± 12 a | 79.8 ± 12 a | ++ | 0.2 ± 0.1 a | 4.6 ± 2.8 ab | |
SH | 9.33 ± 2 a | 0.67 ± 0.2 b | 3.33 ± 1.3 a | + | 0.2 ± 0.1 a | 1.3 ± 0.7 b | |
BH | 16 ± 1.3 a | 18 ± 9 ab | 2.8 ± 0.4 a | + | 1.2 ± 0.3 a | 2.2 ± 1.5 b |
Samples | TBC (×105) | Pseudomonas (×103) | Enterobacteriaceae (×101) | E. coli | Mould (×102) | Yeast (×102) | |
---|---|---|---|---|---|---|---|
Sausage | CA | 320 ± 94.9 b | 24 ± 8.1 ab | 118 ± 43.4 ab | + | 1.6 ± 0.8 a | 0.6 ± 0.5 c |
GZ | 2 ± 2.2 c | 18 ± 7.4 ab | 14.8 ± 5.6 b | ++ | 2.6 ± 1 a | 2.2 ± 1.2 bc | |
QA | 42.5 ± 8 bc | 57.5 ± 12.1 a | 205 ± 81.5 a | ++ | 0.75 ± 0.3 a | 12.25 ± 3 a | |
SH | 850 ± 67.7 a | 12 ± 1.0 c | 22 ± 9 b | + | 2 ± 0.6 a | 6.5 ± 2 b | |
BH | 200 ± 42.4 ab | 10 ± 2.4 c | 2.6 ± 0.8 b | + | 0.8 ± 0.2 a | 2.2 ± 0.3 bc |
Samples | TBC (×105) | Pseudomonas (×103) | Enterobacteriaceae (×101) | E. coli | Mould (×102) | Yeast (×102) | |
---|---|---|---|---|---|---|---|
Burger | CA | 50 ± 4.6 ab | 260 ± 51.6 a | 158 ± 15 a | ++ | 1.2 ± 0.9 a | 1 ± 0.3 b |
GZ | 4.4 ± 3.3 b | 3.4 ± 4.2 b | 53.6 ± 7 bc | + | 2.4 ± 0.4 a | 6.6 ± 2 ab | |
QA | 126 ± 67.5 a | 100 ± 10 ab | 16.6 ± 6 bc | ++ | 0.47 ± 0.2 a | 18.2 ± 8 a | |
SH | 3.8 ± 1.1 b | 120 ± 65 ab | 106 ± 20 ab | + | 1.4 ± 0.5 a | 2.8 ± 0.8 ab | |
BH | 28 ± 9.2 ab | 12 ± 7 b | 2.2 ± 2.2c | + | 0.8 ± 0.2 a | 1 ± 0.5 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elshafie, S.S.; Elshafie, H.S.; El Bayomi, R.M.; Camele, I.; Morshdy, A.E.M.A. Evaluation of the Antimicrobial Activity of Four Plant Essential Oils against Some Food and Phytopathogens Isolated from Processed Meat Products in Egypt. Foods 2022, 11, 1159. https://doi.org/10.3390/foods11081159
Elshafie SS, Elshafie HS, El Bayomi RM, Camele I, Morshdy AEMA. Evaluation of the Antimicrobial Activity of Four Plant Essential Oils against Some Food and Phytopathogens Isolated from Processed Meat Products in Egypt. Foods. 2022; 11(8):1159. https://doi.org/10.3390/foods11081159
Chicago/Turabian StyleElshafie, Shahenda S., Hazem S. Elshafie, Rasha M. El Bayomi, Ippolito Camele, and Alaa Eldin M. A. Morshdy. 2022. "Evaluation of the Antimicrobial Activity of Four Plant Essential Oils against Some Food and Phytopathogens Isolated from Processed Meat Products in Egypt" Foods 11, no. 8: 1159. https://doi.org/10.3390/foods11081159
APA StyleElshafie, S. S., Elshafie, H. S., El Bayomi, R. M., Camele, I., & Morshdy, A. E. M. A. (2022). Evaluation of the Antimicrobial Activity of Four Plant Essential Oils against Some Food and Phytopathogens Isolated from Processed Meat Products in Egypt. Foods, 11(8), 1159. https://doi.org/10.3390/foods11081159