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Abstract: Food fraud, even when not in the news, is ubiquitous and demands the development of
innovative strategies to combat it. A new non-targeted method (NTM) for distinguishing spelt and
wheat is described, which aids in food fraud detection and authenticity testing. A highly resolved
fingerprint in the form of spectra is obtained for several cultivars of spelt and wheat using liquid
chromatography coupled high-resolution mass spectrometry (LC-HRMS). Convolutional neural
network (CNN) models are built using a nested cross validation (NCV) approach by appropriately
training them using a calibration set comprising duplicate measurements of eleven cultivars of wheat
and spelt, each. The results reveal that the CNNs automatically learn patterns and representations to
best discriminate tested samples into spelt or wheat. This is further investigated using an external
validation set comprising artificially mixed spectra, samples for processed goods (spelt bread and
flour), eleven untypical spelt, and six old wheat cultivars. These cultivars were not part of model
building. We introduce a metric called the D score to quantitatively evaluate and compare the
classification decisions. Our results demonstrate that NTMs based on NCV and CNNs trained using
appropriately chosen spectral data can be reliable enough to be used on a wider range of cultivars
and their mixes.

Keywords: non-targeted methods; LC-MS; fingerprinting; machine learning; convolutional neural
networks; wheat; spelt; food fraud

1. Introduction

Public awareness around food fraud and food authenticity is mainly driven by high-
visibility media discussions, e.g., in connection with public health consequences or when a
large-scale operation is uncovered and the ensuing scandal brings disrepute to companies or
regulatory authorities [1,2]. However, even when not topical, food fraud is widespread and
exacts considerable economic costs [3,4]. Its manifold manifestations include adulteration,
mislabeling, dilution, substitution, etc. [5]. Establishing procedures and quality indicators
to detect food fraud, therefore, continues to be an important and urgent task [4].

Being one of the most important food crops in the world, wheat, its varieties, and
derived products are defenseless against rampant fraud [6]. Analytical testing for determi-
nation of authenticity and detection of fraud is an important control measure to identify,
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monitor, and act—to ensure consumer safety and punish the perpetrators [7]. The testing
can range from differentiating grain types, e.g., durum, einkorn, spelt, etc. [8], tracing
geographic identity [9], especially protected geographic identity, e.g., that of Fränkischer
Grünkern (a spelt product) [10], testing the presence of adulterants [11,12], and checking
crop growing or harvesting conditions (e.g., organic wheat) [13], among others.

It is reported that spelt (Triticum spelta) is one of the three ancient wheats that are
considered to be the ancestors of modern wheat. The other two are emmer and einkorn.
Genetic data suggests that spelt can occur from the hybridization of bread wheat and emmer
wheat, but only after the first Aegilops-tetraploid wheat hybridization. The considerably
later development of spelt in Europe might be attributed to a later, second hybridization
between emmer and bread wheat [14]. Hence, for centuries, spelt (or “Dinkel” in German)
has remained a major grain in the DACH region (Germany, Switzerland, and Austria) [15].
They are very resilient to austere irrigation conditions while having favorable digestive
and nutritional values [16]. As a consequence, its demand and market price are on the
rise. Lately, spelt has become part of many bakery products, pasta, noodles, and even
beer [17]. In light of accelerating demand and consumption of spelt and spelt-derived
products, it is hard to ignore the possibility of market-driven fraudulent practices. As these
grains command a premium price, there is an economic benefit to devising new tactics for
adulteration, tampering, substitution, etc. Thus, there is a need to address this through the
development of new methods for distinguishing spelt and wheat [18,19]. At this point, it
is necessary to mention that addressing the economic or nutritional benefits of spelt over
wheat is outside the scope of this work.

Spelt is mostly referred to by its phylogenetic and morphological characteristics, but
in practice, unequivocal identification of spelt based on physiological properties is non-
trivial [20–23]. Perhaps this is because of its close botanical relationship with wheat and
crossbreeding over hundreds of years. Consequently, determining whether a cultivar
can be classified as spelt is challenging [22]. Switzerland maintains guidelines laid out
through IP-SUISSE and Bio-Suisse in cooperation with IG Dinkel to regulate the growing
and selling of certain old spelt species (Urdinkel in German) [24]. Thus, the questions
arise: which cultivars are true spelt, and how can they be determined?—the latter being
the more challenging question. The general European Union (EU) legal framework, as
put forward in regulations such as 2017/625 and 1169/2011, aims to ensure food safety
and consumer protection by compelling producers to correctly label ingredients and their
sources [25,26]. In this case, product labeling must be combined with an authentication
analysis of grain ingredients and additives. Under the circumstances of the lack of con-
sensus on which cultivars are truly spelt, the challenge of performing an authentication
analysis is formidable. The challenges of discerning species only snowball when it comes
to processed goods, such as bakery items. In Germany, there is a guideline (Leitsätze des
Deutschen Lebensmittelbuchs für Brot und Kleingebäck) that serves as a guiding principle
for the manufacture and sale of spelt bread [27]. It states that spelt bread must contain at
least 90% spelt. Thereby, processed goods will certainly contain wheat along with spelt,
which only further complicates the process of identifying or detecting spelt for authenticity
testing. Adding newer cultivars of spelt to the mix, such as “pre-spelt,” or “wheat-spelt”
crossed cultivars (together referred to in this work as “untypical spelts”), only increases the
challenge to unequivocally define what is spelt and what is not.

Non-targeted methods (NTMs) are being increasingly developed and deployed in
the detection of food fraud and ratifying the authenticity of food substances [28–30]. An
NTM encompasses analytical measurement, resulting in, e.g., a highly resolved fingerprint
(referred to herein as the wet lab procedure), followed by mathematical modeling and data
evaluation (referred to as the dry lab procedure), without laying a special spotlight on
predetermined analytes of interest [31].

In the wet lab part, mass spectrometry (MS) based testing is a dominant and useful
kind of NTM [32]. Coupling with liquid chromatographic (LC) separation and connection
to a high-resolution (HR) mass analyzer like the time of flight (TOF) enables precise mass
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determination at different retention times (Rt) [33]. The resulting LC-HRMS spectra are
useful to capture the slightest differences between sample populations, which arise because
peptides and proteins in food substances are expressed differentially, not only due to
inherent genetic composition but also due to external factors that might have their genesis
in nature (such as soil type and quality, climatic conditions) or be caused by humans
(agricultural practices, adulteration, mixing, etc.) [34].

The other important component of an NTM is the dry lab, which includes statistical
modeling [31]. Given the complexity and size of the measurement data that is generated
with LC-HRMS, there is a need to resort to contemporary machine learning methods like
neural networks [35,36]. Neural networks have become increasingly popular in different
application areas, including MS, because several studies have been reported in the literature
exploiting neural networks for MS data. The strategies in the reported studies can be
essentially grouped by the different tasks undertaken, for instance, (1) peak pre-processing
such as normalization [37] and peak alignment [38], (2) evaluation of peak features [39–42],
(3) spectra prediction [43], (4) spectral annotation and molecular structure prediction [44,45],
and (5) classification of samples based on the associated spectra. The fifth strategy can be
divided into two types: one that utilizes a peak list or feature list, and the other that uses
the entire spectrum. With the latter, a few reports have explored using 1-d MS spectra with
convolutional neural networks (CNN) [46–48].

CNNs are a type of neural network that have been shown to be powerful for image
processing tasks like face classification and recognition [49,50]. Herein, we aim to apply
these capabilities to parse HR mass spectra with normalized mass windows (SWATH
acquisition) [51] and, thereby, classify spelt or wheat (as illustrated in Figure 1A). An
image can be formed from the 2-d spectral data using the peak height intensities for each
mass/charge (m/z) and Rt (see Figure 1B,C). The combination of 2-D spectral data with
CNNs as an NTM for the classification of spelt and wheat has not been previously reported,
to the best of our knowledge. To this end, in this work, we describe an NTM in which the
wet lab component captures the food fingerprint (peptide marker profile) using LC-HRMS
and the dry lab component uses CNN to learn the differences between the fingerprints and
eventually classify the tested sample. The predicted outcomes are compared using a new
metric that we call the D score.
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Figure 1. Schematic illustration showing the high-resolution liquid chromatography mass spec-
trometry (LC-HRMS) based non-targeted method (NTM) proposed and developed in this work to 
distinguish spelt and wheat. (A) Duplicate samples for each cultivar of spelt and wheat were pre-
pared, and (B) measured using a SCIEX ESI-TripleTOF 5600 with SWATH acquisition. (C) The 2-D 
spectra are depicted as an image with mass by charge (m/z) as the x-axis, retention time (Rt) as the 
y-axis, and intensity as the z-axis. The exemplary images shown are the duplicate measurement 
spectra for Bernstein wheat and Badekrone spelt. (D) A nested cross validation (NCV) approach 
was adopted with a separate calibration and external validation set. Convolutional neural network 
(CNN) models trained with 11-fold internal validation. The log odds values are calculated using 
the output probabilities of the CNN models. (E) Using the log odds, a standardized value called the 
D score is calculated and plotted on a Youden plot. The scores help in the identification of the 
tested sample. A decision threshold score of zero is used in this case. The plot shows exemplary 
point clouds for the spelt (orange squares) and wheat (brown circles) cultivars. 

Figure 1. Schematic illustration showing the high-resolution liquid chromatography mass spec-
trometry (LC-HRMS) based non-targeted method (NTM) proposed and developed in this work
to distinguish spelt and wheat. (A) Duplicate samples for each cultivar of spelt and wheat were
prepared, and (B) measured using a SCIEX ESI-TripleTOF 5600 with SWATH acquisition. (C) The
2-D spectra are depicted as an image with mass by charge (m/z) as the x-axis, retention time (Rt) as
the y-axis, and intensity as the z-axis. The exemplary images shown are the duplicate measurement
spectra for Bernstein wheat and Badekrone spelt. (D) A nested cross validation (NCV) approach was
adopted with a separate calibration and external validation set. Convolutional neural network (CNN)
models trained with 11-fold internal validation. The log odds values are calculated using the output
probabilities of the CNN models. (E) Using the log odds, a standardized value called the D score is
calculated and plotted on a Youden plot. The scores help in the identification of the tested sample. A
decision threshold score of zero is used in this case. The plot shows exemplary point clouds for the
spelt (orange squares) and wheat (brown circles) cultivars.
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2. Materials and Methods
2.1. Description of Spelt and Wheat Samples

Samples for all spelt and wheat cultivars were kindly sourced and provided by the
Institut für Getreideverarbeitung (IGV) GmbH, Nuthetal, Germany. Eleven cultivars each
of typical spelt and wheat were used to train the CNN models. The distinction of whether
it is spelt or wheat was made according to investigations of their marker peptide profiles,
as previously described elsewhere [52]. For the list of eleven cultivars each for spelt and
wheat, see supplementary Table S1. Each of the cultivars was measured in duplicate on
different days (different runs). Together, 44 MS1 spectra constitute the “calibration dataset,”
i.e., all the spectra that were used to train the CNN models. In this communication, we
choose to refer to this as the calibration dataset in accordance with other reports [46,53].
For each of the internal validation folds, the calibration set was split into the training and
testing sets (see Figure 1D). The term “training of models” refers to obtaining the weights
and biases of the neural network through a process of back propagation [54]. Further
details are described in Section 2.3.

Two processed samples were prepared to keep in mind commonly available processed
spelt goods. The first sample was a mixture of spelt flour made of Oberkulmer Rotkorn
with 10% wheat flour T405. The second sample was a spelt bread baked using spelt
flour T630 with 10% soft wheat flour T550. To simulate the flour and bread samples, an
artificial spectral mix was generated by the weighted addition of two spectra. Duplicate
measurements for each of the eleven wheat cultivars were 10% down-weighted and added
to 90% of the spectral intensities of one spectrum of Oberkulmer Rotkorn spelt to yield eleven
pairs of artificial mix spectra. As per the guiding principle for the manufacture and sale
of spelt bread [27], which states that the spelt bread must contain at least 90% spelt, the
maximum possible wheat content of 10% was chosen.

Additionally, eleven cultivars of untypical spelt were sourced. These cultivars of spelt
are known to be either “newer” cultivars of spelt or wheat-spelt crosses; hence, they are
collectively referred to herein as “untypical spelt.” Furthermore, six wheat cultivars were
also sourced whose pedigrees can be be traced to the late 18th to early 19th centuries,
hence being referred to herein as “old wheat” cultivars. For a list of untypical spelt and
old wheat cultivars, see supplementary Table S1. Together, these constitute the “external
validation dataset,” which consists of unseen data used to test the trained models. Just like
the calibration set, for each of the mixture samples and cultivars, duplicate measurements
were performed.

2.2. Wet Lab Procedure

This section briefly describes the sample preparation and LC-HRMS measurements
as part of the wet lab procedure. The detailed MS procedure has been reported as part of
previously conducted targeted studies [51,52].

2.2.1. Sample Preparation, Protein Digestion and Purification

All buffer solutions and dilutions were prepared with water suitable for LC-MS
analysis. Each sample was weighed to 1.0 ± 0.001 g in a 50 mL centrifuge tube, to which
10 mL of extraction buffer was added. Extraction buffer was prepared with 100 mM
ammonium bicarbonate, 4 M urea, and 5 mM 1,4-Dithiothreitol (DTT) (all from Carl Roth
GmbH, Karlsruhe, Germany). The tube was shaken at room temperature for 1 h using an
overhead shaker, after which it was centrifuged at 4000 g for 5 min. 2 mL of the supernatant
was transferred to a 15 mL centrifuge tube and centrifuged again at 7000× g for 5 min.
1 mL of the supernatant was removed and transferred to another 15 mL centrifuge tube,
to which 30 µL of 0.5 M Iodoacetamide (IAA) solution was added. 0.5 M IAA solution
was prepared fresh, as it is light sensitive, by dissolving 11.55 mg of IAA (Sigma-Aldrich,
Taufkirchen, Germany) in 1.25 mL water. The resulting solution was incubated for 20 min by
shaking at 50 ◦C, after which (a) 3000 µL of digestion buffer and (b) 100 µL of chymotrypsin
solution (from bovine pancreas for enzymatic digestion purchased from Sigma Aldrich,



Foods 2023, 12, 141 6 of 17

Taufkirchen, Germany) were added. This is followed by incubation of the reaction mixture
overnight at 25 ◦C. The (a) digestion buffer was prepared by dissolving 1.304 g ammonium
bicarbonate in 25 mL Acetonitrile (ACN) (both from Carl Roth GmbH, Karlsruhe, Germany)
and diluting with 140 mL of water. The (b) chymotrypsin solution was freshly prepared
using activated chymotrypsin (>1000 USP-U/mg) (Carl Roth GmbH, Karlsruhe, Germany)
at a concentration of 8 mg /mL. The digestion reaction was stopped by adding 100 µL of
40% formic acid (FA) (Carl Roth GmbH, Karlsruhe, Germany). The extract obtained was
stored for at least 1 h in the freezer at −20 ◦C, so that most of the fat or wax components
precipitated. The reaction tubes were then centrifuged at 7000× g for 2 min.

The sample extract was desalted and concentrated using an SPE column (Carl Roth
GmbH, Karlsruhe, Germany). For this purpose, the SPE columns were conditioned with
6 mL of buffer A followed by 6 mL water. Buffer A was made by mixing 100 mL water,
100 mL can, and 200 µL FA. Then the entire sample extract was added to the column and
unbound components were washed out by subsequent rinsing with 6 mL of buffer B. Buffer
B was prepared by mixing 200 µL water with 200 µL FA. The eluted peptides were then
concentrated to dryness under nitrogen at 30 ◦C and resuspended in a mixture of 450 µL
buffer B and 50 µL buffer A. Lastly, the mix was centrifuged for 2 min at 7000× g. The
supernatant was diluted with buffer B in a ratio of 1:100 and then measured.

2.2.2. Liquid Chromatography Mass Spectrometry (LC-MS)

Data were acquired using ultra-high performance liquid chromatography triple time
of flight mass spectrometry (UHPLC Triple ToF) (MS/MS) consisting of a micro-flow UH-
PLC expert microLC 200 with an autosampler CTC Pal system and a SCIEX electrospray
ionization (ESI) TripleTOF 5600 with SWATH (sequential window acquisition of all theoret-
ical fragment-ion spectra) acquisition. HRMS data acquisition of MS/MS data was done
using data-independent acquisition (DIA-SWATH) [55]. Although MS2 SWATH data was
also acquired, it was not utilized for the analysis shown in this work. As mentioned earlier,
every measurement was performed in duplicate.

2.3. Dry Lab Pipeline
2.3.1. Spectral Data Preparation

The acquired data were first converted to the mzXML file format from the WIFF
and WIFFSCAN formats using ProteoWizard [56]. All MS datasets were used without
undergoing any preprocessing (e.g., peak alignment, baseline correction) or feature selection
steps. The mzXML file was read in the Python programming language (python.org), and
the MS1 spectra were aggregated to integer mass accuracy. The resulting data were a matrix
of size 1375 (number of scans) and 801 (values of m/z ranging from 400 to 1200 Da). The
aggregation of spectra was performed to make it manageable for CNN model training on a
personal computer. The data matrices were obtained for all the samples in the calibration
set and external validation set, which were then used as input to the CNN models. Each
scan was z-normalized, i.e., subtract the mean of a scan from every peak intensity value
and divide by the standard deviation (SD) of the scan.

2.3.2. Nested Cross Validation (NCV)

Central to the analysis pipeline was the NCV approach shown in Figure 1D. The
calibration set comprised eleven cultivars each for typical spelt and wheat as the two classes
for the CNN model classifier. In this, separate models were trained with a training set
comprising duplicate spectra for (randomly chosen) ten cultivars each of typical spelt and
wheat (totaling forty spectra) and tested on the spectra for the remaining eleventh cultivar
for typical spelt and wheat (totaling four spectra). For instance, in the first fold, spectra for
Badekrone spelt and Bernstein wheat cultivars were kept aside for testing the model trained
on the remaining spectra of the cultivars. In the next fold, spectra for Badensonne spelt and
Brilliant wheat cultivars were kept aside for testing the model trained on the spectra for
the remaining cultivars. In this way, eleven models were trained, corresponding to each
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fold of the internal validation loop. In other words, every cultivar in the calibration set was
used once to test the trained models. The NCV procedure is advantageous because it can
deal with the availability of a limited number of distinct samples (cultivars), each having a
large number of features (peaks). For the external validation dataset, every spectrum was
run through models for each fold of the NCV to obtain a classification outcome in the form
of a probability. The final classification probability for the external validation spectra was
obtained by averaging across all the model outcomes (i.e., the average of eleven models’
outcomes).

2.3.3. Neural Network Analysis

In this communication, a short description is provided for how the neural network
was constructed, assuming that the reader is aware of terms used in the field. The reader is
referred to rich literature available elsewhere for (a) the theoretical fundamentals behind
neural networks and (b) an exhaustive review on the types of neural network architec-
tures [57–61]. A shallow CNN architecture was used with convolutional layers and pooling
layers, each of which was setup using standard settings [62]. All programming was done
in Python (python.org) using the Keras and Tensorflow libraries [63,64]. Four convolution
layers were stacked together to hierarchically capture the inherent patterns within the
spectra. The convolution layers were interspersed with “maximum pooling” layers, which
help reduce the effect of spectral noise in the learned features and emphasize the larger
peak intensities [65]. Together, the above-described apparatus tries to automatically extract
the “features”—which, in this context, are the spectral peaks (or their combinations). We
hypothesize that the features learned by the CNNs directly help to identify a particular
class (spelt or wheat), which otherwise would have been done by a human expert.

For each fold of internal validation, the calibration set was split into a training and a
testing set. According to the NCV approach, CNN models were trained on the training set
and then checked using the testing set. The CNN was trained using gradient descent, which
minimizes a loss function by calculating its partial derivative with respect to the learnable
parameters through backpropagation and iteratively updating them until they converge
for each layer [46,47,54]. The output of the CNN was a probability value (used for the D
score calculation as described in the next section), based on which a binary classification
was obtained (spelt or wheat). The performance of the classifier was tracked by looking at
the confusion matrix, i.e., counts of true positives (TP), true negatives (TN), false negatives
(FN), and false positives (FP). Using these values, Matthew’s correlation coefficient (MCC)
was calculated according to Equation (1). MCC = 1 means a perfect prediction, whereas
MCC = −1 means completely flipped (incorrect) predictions.

MCC =
TP × TN − FP × FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(1)

In this study, the features available to train the CNNs were ample, i.e., ~1 million per
measurement, while the number of cultivars per class was limited (11 each). Hence, it
was important to keep the models “simple” and avoid extensive hyperparameter tuning.
Hyperparameters can be thought of as knobs and dials available to design CNNs and
determine how they are trained. For instance, the number of layers in a CNN, the learning
rate of the gradient descent algorithm, the number of epochs, etc. [40,57]. Tuning these
parameters can result in model predictions being overly dependent on the underlying
training data, i.e., lead to overfitting. This means that when models are trained for a set of
cultivars, they may not perform very well on other types of cultivars.

2.4. Decision Based on D Scores

The newly proposed quantitative score, called the D score, is a measure of the classifi-
cation outcome that can be easily compared for different types of samples, experimental
runs, models, or even laboratories. The classification outcome from the CNN models was
extracted in the form of probabilities (pi). The probabilities were converted to log odds
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ratios. A linear transformation was then performed on the log odds ratio values to scale the
values such that the mean values of the spelt and wheat classes are +1 and −1, respectively
(Equations (2)–(4)). The resultant values are referred to as “D scores.” The linear transfor-
mation parameters (λ, θ) were obtained based on the calibration set of samples, i.e., using
the means of log odds for spelt (µspelt) and wheat (µwheat). The calculated D scores for the
duplicate measurements were then plotted on a Youden plot, as shown in Figure 1E. A
Youden plot is essentially a scatter plot that helps to visualize and analyze data when two
measurement runs on the same type of sample (in this case, the cultivar).

Di = ln
(

pi
1 − pi

)
× λ + θ; f or ith measured sample (2)

where, λ =
2

µspelt − µwheat
and (3)

θ = 1 − λ × µspelt (4)

The decision for classification would be based on a decision threshold, which is chosen
to be zero in this study. Hence, when the D score is positive (Di > 0), then spelt, and when
it is negative (Di < 0), then wheat. In comparison to a qualitative binary classification
(yes/no) outcome, D scores offer three main advantages. First, the distribution of D scores
allows one to evaluate the performance of the model or the method as a whole by calculating
the variation of the scores within a class. This is further discussed in Section 3.3. Secondly,
it allows direct comparison of samples and informs about the relationship between the
compared samples. For instance, 2 samples with D scores of 0.8 and 1 are expected to be
closely related (from their prediction classification) compared to samples with D scores of
+0.8 and −0.8. This is further illustrated in Section 3.2. Finally, D scores are model- and
class-agnostic. Hence, the procedure for calculation and interpretation of D scores will not
change on (a) replacing the neural network model with another (type of) classifier and (b)
when the classes are changed from spelt or wheat to any other generic class A or B (for
example, a white wine from Germany and a white wine from France).

3. Results
3.1. Wet Lab LC-HRMS Measurements

With the purpose of utilizing complete and raw spectra from the LC-MS measurements,
the 2-D spectra for each sample were obtained. The 2-D spectrum can be visualized as
an image. Figure 1C shows exemplary heatmap images for duplicate measurements of
spelt and wheat. The x-axis of the image shows the m/z and the y-axis shows the scans
corresponding to different retention times, and the intensity of the values is indicated by
the color map. The heatmaps are plotted with power-law normalization of the intensity
for better visual contrast. Even on closer inspection, distinction between the patterns (or
fingerprints) is hard to make only with the human eye. Hence, the need for devising
suitable models that are able to parse the data, capture the underlying patterns, and help
distinguish the food items (here, spelt and wheat) is apparent. These images were used as
input for the dry lab model.

3.2. Internal Validation: Youden Plot with the D Scores for Calibration Set

After going through the NCV procedure for internal validation, D scores were obtained
for each of the spectra in the calibration set. Recall, two extracted samples were measured,
hence, two sets of spectra are available for each cultivar, and each cultivar is tested once
with a model trained on cultivars other than itself. Hence, this gives us a D score for the
entire calibration set. The λ and θ values calculated according to Equations (2) and (3) are
−0.13 and −0.02, respectively (see supplementary results Section S2.1). Figure 2A shows a
list of spelt cultivars, where each cultivar is indicated by a point in the magnified cluster of
the plot shown in Figure 2B. Figure 2C shows a Youden plot with point clouds for the spelt
(orange squares) and wheat (brown circles) cultivars in the calibration set. Figure 2D shows
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a magnified cluster of points where each point on the plot represents a wheat cultivar
that is listed in Figure 2E. The Youden plot allows us to intuitively establish the extent of
discrimination (a) between the samples of the two classes (spelt and wheat) and (b) among
the samples of the same class.
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in the calibration set are plotted. (A) List of spelt cultivars along with their D scores. (B) A magnified
view of the Youden plot for spelt cultivars. (C) Youden plot with the D scores. (D) A magnified view
of the Youden plot for wheat cultivars. (E) List of wheat cultivars along with their D scores.

The lack of any overlap between the point clouds directly shows the high discrimi-
natory power of the trained models. Considering zero as the decision threshold for the D
scores, when a D score is positive for both measurements, it lies in the first quadrant (top
right) and is predicted to be spelt. Likewise, when it is negative for both D scores, it lies in
the third quadrant (lower left) and is predicted to be wheat. Here, the advantage of the D
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score is evident in being able to immediately identify if the classification outcome is spelt
or wheat (for a list of D scores for the calibration set, see Supplementary Table S2A,B). If
visual proof is insufficient, the classification performance can be summarized using the
Matthews correlation coefficient (MCC), which is suggested to be the most informative of
all the different classification metrics [66]. MCC of +1 is obtained, which shows complete
agreement between the true and predicted classes, making the high classification perfor-
mance very evident. The separation in the D score point clouds shows that CNNs prove
effective in learning visual representations of 2-D spectral data that are passed as images. It
is expected that convolution layers are able to capture the local shifts in the peaks (that are
typically then aligned, corrected, etc. in spectral preprocessing).

3.3. Precision Parameters

It is essential to ensure that the discriminatory power remains adequate (a) when
applied to other sets of data than the training set, covering the entire population falling
under the scope of the method, and (b) under all in-house testing conditions or when
applied to data from different laboratories. Using the D scores, various precision estimates
can be obtained based on concepts laid out in ISO 5725-3 [67]. Note that the standard
describes precision parameters that are given for a sample, but in this context the parameters
are provided for the class (e.g., spelt or wheat and not for a specific cultivar). Here we
calculate the classification SD (the variation of D scores for cultivars within a class) and
intermediate SD (the average variation of D scores for several measurements (at least 2)
of the same cultivar under intermediate conditions, averaged across cultivars of the same
class). The precision estimates for the D score can be obtained by using the approach
described in previous reports [68,69] (see supplementary Table S3).

The single laboratory classification SD is used to check whether the decision threshold
can be considered reliable for the whole population falling within the scope of the classifica-
tion method. SD values of 0.393 and 0.391 are obtained for spelt and wheat, respectively. If
we assume that D scores are normally distributed within each of the two classes, then with
a mean value of 1 and SD of 0.393, the risk of misclassification for spelt, i.e., a value below
zero, would have a probability of Φ

(
−1

0.393

)
≈ 0.5%. Similarly, the risk of misclassification

for wheat, would be 1 − Φ
(

1
0.391

)
≈ 0.5%. Here, Φ denotes the cumulative distribution

function of the standard normal distribution. There is no indication that the point clouds of
D scores for each class are not normally distributed. Thus, the risk of misclassification is
very low (<1%).

With the intermediate SD, the in-house reproducibility of the D score can be described.
We obtained an intermediate SD of 0.075 and 0.074 for spelt and wheat, respectively, which
means that the analytical variability is almost equal to the variability between different
cultivars. It can, therefore, be stated that the analytical variability is more than sufficient for
the purpose of classification between wheat and spelt; on the other hand, the differences
within the spelt cultivars studied are very small and cannot be precisely measured with the
D score. The next section describes how the trained models perform on external validation
samples. Predictions on external validation samples were performed using all the models
trained in the internal validation NCV loops.

3.4. External Validation Set: Processed Goods and Artificial Mixes

Even with the limited number of distinct cultivars used for training a CNN model, the
present study was designed to determine whether successful classification models can be
built using LC-HRMS spectra, and thereby laying the groundwork for an NTM that can be
used in routine (e.g., for official control). The models trained with typical spelt and wheat
varieties are put to the test by using real-world processed goods. Remember that each of the
eleven internal validation models provided an output prediction, which was then averaged
to get an average D score for each external validation sample. Figure 3A shows spelt bread
(orange square) and spelt flour mix (orange diamond) in the expected spelt quadrant, hence
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showing the correct classification. Figure 3B shows a magnified view of the points (for a list
of D scores, see Supplementary Table S4). The resulting D scores for both measurements of
spelt bread are around 0.79 and the scores for the duplicate measurements of spelt flour
mix are around 0.78 and 0.75. Together, the D scores for processed goods indicate a correct
prediction.
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Figure 3. Youden plot showing the D scores for processed goods and artificial mix in the external
validation set in (A) and a magnified section in (B). Spelt bread (orange square), spelt flour mix
(orange diamonds), and artificial spectral mix (orange circles) are shown to be correctly predicted as
spelt.

Turning now to predicting the artificially generated spectral mixes, Figure 3 shows the
D scores (orange circles) for each of the eleven wheat cultivars whose spectra were 10%
downweighed and added to 90% of the spectral intensities of Oberkulmer Rotkorn spelt. The
average D score for these eleven points is around 0.9. Interestingly, the point cloud for the
artificial mix is further away (top right) from the actual processed goods. In other words,
the predictions from CNN models are relatively (and marginally) more confident about the
artificial mix being spelt than the spelt bread and flour. Perhaps this is because the spectra
for bread and flour have a more complex fingerprint than the one resulting from the linear
combination of their constituents. In summary, the predictions on the external validation
set show that successful distinction can be made even on processed spelt samples.

3.5. External Valdiation with Untypical Spelt Cultivars

The next question was to check if other spelt cultivars (that were not used in the
calibration set) could be correctly identified as spelt. Figure 4A shows the cluster of eleven
cultivars (brown squares) lying in the spelt quadrant of the Youden plot, indicating correct
classification. Figure 4B is the zoomed-in section of the plot showing the distribution of
D scores with the corresponding cultivar name (see Supplementary Table S5 for a list of
D scores for untypical spelt). The point cloud is in the first quadrant, showing the correct
classification for spelt. The average D score is 0.57. Comparing this to the average of 1 for
the spelt cultivars in the calibration set (Figure 2B), there is a difference in the prediction
outcome of these untypical (for external validation) and typical (for the calibration set)
spelt. This suggests that the fingerprints, as learned by the CNNs through the spectra of
typical spelt, are dissimilar to those of untypical spelt. This could be linked to the evolving
proteomic fingerprints of older cultivars of spelt (used in the calibration set) compared
to the newer ones in untypical spelt. The larger spread of the points in the Youden plot
for untypical spelt (Figure 4) in comparison to the spread of typical spelt (Figure 2) is
a remarkable result. This can be owing to the dissimilarities between the learned and
predicted fingerprints of typical and untypical spelt cultivars.
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Figure 4. Youden plot showing the D scores for untypical spelt cultivars (A) with the magnified
section in (B). Untypical spelt (brown squares) with their corresponding names, shown to be correctly
predicted as spelt.

3.6. External Validation with Other Wheat Cultivars (Old Wheat Cultivars)

On a similar line of inquiry, further investigations were made to determine whether
old wheat cultivars, which were not part of the model building, can be distinguished from
spelt (or wheat). Figure 5A shows the D scores for six cultivars with the zoomed view
in Figure 5B (brown circles) (see Supplementary Table S6 for a list of D scores for old
wheat). We see that even though five of the six cultivars lie in the wheat quadrant, i.e.,
D scores for five of the six cultivars are negative. However, for one cultivar, Ackermanns
Bayernkoenig, it is positive. With zero as the decision threshold, it can be said that one
cultivar is misclassified. However, all six cultivars are very close to the decision threshold.
The mean D score for the other five is −0.1. Comparing this to the mean value of −1 for
the wheat cultivars in the calibration set, there is a clear distancing from it.
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By connecting these results to the pedigree of the cultivar, it may be possible to
explain why they have either positive or close to zero D scores. For instance, Ackermanns
Bayernkoenig an old cultivar, is a cross between wheat and spelt wheat, which could explain
why CNN identifies it as being closer to spelt than wheat. Overall, these samples proved to
be “challenging samples” for the method with the CNN models in their current form [31].
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4. Discussion

This paper describes an NTM comprising LC-HRMS data acquisition as the wet lab
component and using the 2-D MS1 spectral data as inputs for the CNN for classification
tasks as the dry lab component. Note that the wet lab part involves duplicate measurements,
which proves advantageous in capturing the variation due to sample preparation and
measurement. In the dry lab part, the model development employs an NCV approach
that relies on a calibration data set that is split into training and validation sets for each
iteration. The study shows the merits of appropriately (and carefully) choosing datasets
to train classification models. The classification probabilities obtained at the output layer
of the CNN are transformed into a set of standardized numerical values that we call D
scores. D scores provide a quantitative appraisal of the discrimination of two classes, and
the results show how they also provide a visual representation of how clusters of samples
are “related” to each other.

Catering to the question of differentiating spelt from wheat, the distribution of D
scores shows that the CNN models are able to completely distinguish typical spelt and
wheat cultivars with a very low risk of misclassification (<1%). The developed models
were then put to the test to classify processed goods (spelt bread, spelt flour mix) and
artificial mixes. These were correctly identified in all instances tested. We foresee the
use of such an NTM on-site by laboratories of food production companies and official
control, to aid with testing food authenticity and ensuring correct labeling of spelt products.
After the labs have obtained the spectral measurement, it can be run through the models
accessed by means of a suitable application interface, which will provide the D score. We
believe this method adds to the battery of methods that have been reported thus far that
utilize electrophoresis or molecular methods to distinguish spelt and wheat [12,15,19,21].
LC-HRMS measurements give a vast, high resolution, and high-fidelity database for the
cost trade-off. However, when utilized appropriately by training CNNs using NCV, as
described herein, it provides rapid, accurate and cost-effective results.

The CNN models developed as part of the dry lab procedure were further challenged
with cultivars of spelt and wheat that were not part of the training. The untypical spelt were
all correctly classified. D scores for old wheat cultivars were close to the decision, proving
to be challenging samples for the NTM, with one out of six cultivars being misclassified.
Systematic inclusion of such challenging cultivars along with additional ones that were
not considered in the study would indeed help to upgrade the NTM. The discriminatory
power of the method can be further improved by mobilizing the complete fragment-ion
MS/MS spectrum.

An initial objective of the project was to make use of raw aggregated spectra without
any alignment or peak picking, and this work describes a procedure to fulfill that objective.
This is increasingly beneficial when (a) there is no a priori knowledge of which peaks to
focus on, or (b) a combination pattern of several peaks is contributing to the identification
or discrimination of the measured entity (in this case, spelt and wheat), or (c) processed
food samples and matrix effects make it hard to detect the presence of specific marker
peaks.

As previously discussed, bucketing of cultivars into spelt, wheat-spelt, and spelt-
wheat are subjective with overlapping boundaries. All this leads to an unclear definition of
spelt for both consumers and producers, which can be taken advantage of by the latter for
economic benefits. Thus, raising questions about “what is true spelt?” As well as when does
an untypical spelt cultivar stop being referred to as spelt? The NTM described here can help
answer those questions by quantifying (using D scores) the deviations in characteristics
(captured through the LC-MS fingerprint). The results described in Sections 3.5 and 3.6
attest to the potential of the approaches described in this work to help get to a definition
of spelt buckets. A further study involving the utilization of D scores to define what can
be regarded as spelt (or not) is therefore proposed. For example, subjective buckets with
diffused boundaries for spelt can be replaced by well-defined buckets by establishing
suitable quantitative criteria (e.g., a D score greater than 0.5 results in true spelts).
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A variety of NTMs involving proteomic- or metabolomic-based approaches are being
developed to keep pace with new ways of deception with food substances. It is the view of
the authors that NTMs in food testing clearly stand at a crossroads—with great promise for
wide applicability and adoption that can be ushered in by establishing method validation
schemes. Method validation schemes allow for the evaluation of the method’s performance,
which can help standardize the method and bring it into routine use [31]. The provision of a
complete method validation scheme is outside the scope of this work. However, a suitable
scheme can be contemplated to utilize the quantitative D scores to evaluate the precision
parameters. Consequently, performance characteristics like sensitivity and specificity, false-
positive and false-negative rates can also be evaluated based on a chosen threshold score (D
score of zero). The advantages of the proposed procedure of transforming the classification
probabilities into standardized D scores become more evident when measurements across
different laboratories can be directly compared in a validation study (single- or multi-
laboratory).

From one perspective, the study is limited by the small dataset for training neural
networks (calibration set). In such a scenario, one has to be careful with over-fitting
issues. To alleviate these issues, the NCV approach was used, which helps achieve greater
generalization on unseen data. This can be seen in the results for the external validation
samples. Firstly, all processed goods were correctly classified. Secondly, untypical cultivars
and old wheat cultivars were also meaningfully identified. The reader should bear in mind
that this work does not aim and claim to provide the “best” models for classification of
spelt vs. wheat with matchless classification metrics. Rather, the study aims to establish
effective approaches and, thereby, contribute to the growing area of NTMs for food fraud.

In food fraud testing, one can imagine that data corresponding to “authentic” food
samples will always be “limited,” as obtaining truly authentic samples might be burden-
some or impractical. As in this study, knowledge about the real identity of the cultivar relies
on elaborate biochemical tests and known cross-breeding histories. There is an increased
role for the means by which the dataset is obtained or generated to reduce reliance on
large datasets for model building. (a) Conducting duplicate measurements of cultivars, (b)
selecting suitable cultivars as the two classes for the training, and (c) designing folds of the
NCV approach are some of the procedures for systematic curation proposed in this work.

Overall, the described method can be easily (a) extended to include more cultivars
and their mixes and (b) adapted for other application areas, such as the prediction of
geographical identity. Furthermore, the modular nature of the method (wet lab + dry
lab) means alternative approaches (e.g., different LC-MS instruments) can be used. The
procedures, including duplicate measurements, NCV, and calculation of D scores, would
still be applicable, as stated here.

5. Conclusions

This study describes a new NTM in which the wet lab component records the food
fingerprint using LC-HRMS and the dry lab component utilizes CNN to identify the tested
sample. The D score results show correct identification of relevant cultivars, with very low
risk of misclassification. We see promise in the method’s usefulness not only in connection
with the question of the authenticity of different food items and matrices but also, e.g., in
characterizing blood plasma in connection with diagnostic, prognostic, and therapeutic
research.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/foods12010141/s1, Table S1: List of spelt and wheat varieties
used in the study; Table S2A: Log odds and D scores for spelt cultivars in the calibration set; Table S2B:
Log odds and D scores for wheat cultivars in the calibration set; Table S3: Summary of precision
parameters for spelt and wheat; Table S4: Log odds and D scores for processed goods and artificial
mixes; Table S5: Log odds and D scores for untypical spelt cultivars; Table S6: Log odds and D scores
for old wheat cultivars.
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