Monitoring Changes in the Volatile Compounds of Tea Made from Summer Tea Leaves by GC-IMS and HS-SPME-GC-MS
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Materials
2.2. HS-GC-IMS Analysis Methods
2.3. HS-SPME-GC-MS Analysis Methods
2.4. Identification of Key Aroma Compounds
2.5. Statistical Analysis
3. Results and Discussion
3.1. Volatile Compounds Identified by GC-IMS
3.1.1. Analysis of the Topographic Plots of Volatile Components in Teas by GC-IMS
3.1.2. Differences of Volatile Compounds in Teas by GC-IMS
3.2. Volatile Compounds Identified by GC-MS
3.3. Key-Aroma Analysis by ROAV
3.4. Combination of GC-IMS and HS-SPME-GC-MS
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Guo, X.Y.; Ho, C.-T.; Schwab, W.; Wan, X.C. Aroma profiles of green tea made with fresh tea leaves plucked in summer. Food Chem. 2021, 363, 130328. [Google Scholar] [CrossRef] [PubMed]
- Ji, H.-G.; Lee, Y.-R.; Lee, M.-S.; Hwang, K.H.; Park, C.Y.; Kim, E.-H.; Park, J.S.; Hong, Y.-S. Diverse metabolite variations in tea (Camellia Sinensis L.) leaves grown under various shade conditions revisited: A metabolomics study. J. Agric. Food Chem. 2018, 66, 1889–1897. [Google Scholar] [CrossRef]
- Dai, W.D.; Qi, D.D.; Yang, T.; Lv, H.P.; Guo, L.; Zhang, Y.; Zhu, Y.; Peng, Q.; Xie, D.; Tan, J.; et al. Nontargeted analysis using ultraperformance liquid chromatography–quadrupole time-of-flight mass spectrometry uncovers the effects of harvest season on the metabolites and taste quality of tea (Camellia sinensis L.). J. Agric. Food Chem. 2015, 63, 9869–9878. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.J.; Kan, Z.P.; Thompson, H.J.; Ling, T.J.; Ho, C.-T.; Li, D.; Wan, X. Impact of six typical processing methods on the chemical composition of tea leaves using a single Camellia sinensis cultivar, Longjing 43. J. Agric. Food Chem. 2018, 67, 5423–5436. [Google Scholar] [CrossRef] [PubMed]
- Baba, R.; Kumazawa, K. Characterization of the Potent odorants contributing to the characteristic aroma of chinese green tea infusions by aroma extract dilution analysis. J. Agric. Food Chem. 2014, 62, 8308–8313. [Google Scholar] [CrossRef]
- Feng, Z.H.; Li, Y.F.; Li, M.; Wang, Y.J.; Zhang, L.; Wan, X.C.; Yang, X.G. Tea aroma formation from six model manufacturing processes. Food Chem. 2019, 285, 347–354. [Google Scholar] [CrossRef]
- Yang, Z.Y.; Baldermann, S.; Watanabe, N. Recent studies of the volatile compounds in tea. Food Res. Int. 2013, 53, 585–599. [Google Scholar] [CrossRef]
- Wang, M.Q.; Zhu, Y.; Zhang, Y. Analysis of volatile compounds “XihuLongjing” tea by stir bar sorptive extraction combine with gas chromatography-mass spectrometry. Food Sci. 2020, 41, 140–148. (In Chinese) [Google Scholar] [CrossRef]
- Liang, S.; Fu, Y.Q.; Wang, F.; Chen, J.X.; Yin, J.F.; Xu, Y.Q. Studies on the Suitability of Summer Fresh Tea Leaves for the Production of Congou Black Tea. J. Chin. Inst. Food Sci. Technol. 2022, 22, 163–176. (In Chinese) [Google Scholar] [CrossRef]
- Vautz, W.; Franzke, J.; Zampolli, S.; Elmi, I.; Liedtke, S. On the potential of ion mobility spectrometry coupled to GC pre-separation—A tutorial. Anal. Chim. Acta 2018, 1024, 52–64. [Google Scholar] [CrossRef]
- Wang, S.Q.; Chen, H.T.; Sun, B.G. Recent progress in food flavor analysis using gas chromatography-ion mobility spectrometry (GC–IMS). Food Chem. 2020, 315, 126158. [Google Scholar] [CrossRef] [PubMed]
- Gu, S.; Zhang, J.; Wang, J.; Wang, X.Y.; Du, D.D. Recent development of HS-GC-IMS technology in rapid and non-destructive detection of quality and contamination in agri-food products. TrAC Trends Anal. Chem. 2021, 144, 116435. [Google Scholar] [CrossRef]
- Lopez, P.; van Sisseren, M.; De Marco, S.; Jekel, A.; Nijs, M.; Mol, H.G. A straightforward method to determine flavouring substances in food by GC–MS. Food Chem. 2015, 174, 407–416. [Google Scholar] [CrossRef]
- Yu, Z.H.; He, X.X.; Ding, Y.; Chang, H.S. Research progress on solid phase micro-extraction determination of volatile components in foods. Cereals Oils 2020, 12, 292. (In Chinese) [Google Scholar] [CrossRef] [Green Version]
- Williams, C.; Buica, A. Comparison of an Offline SPE–GC–MS and Online HS–SPME–GC–MS Method for the Analysis of Volatile Terpenoids in Wine. Molecules 2020, 25, 657. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Domínguez, R.; Purriños, L.; Pérez-Santaescolástica, C.; Pateiro, M.; Barba, F.J.; Tomasevic, I.; Campagnol, P.C.B.; Lorenzo, J.M. Characterization of Volatile Compounds of Dry-Cured Meat Products Using HS-SPME-GC/MS Technique. Food Anal. Methods 2019, 12, 1263–1284. [Google Scholar] [CrossRef]
- Lin, J.; Dai, Y.; Guo, Y.-N.; Xu, H.-R.; Wang, X.-C. Volatile profile analysis and quality prediction of Longjing tea (Camellia sinensis) by HS-SPME/GC-MS. J. Zhejiang Univ. Sci. B 2012, 13, 972–980. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Huang, Y.; Chen, Y.; Xiao, L.; Zhang, X.; Yang, C.; Li, Z.; Zhu, M.; Liu, Z.; Wang, Y. Discrimination and characterization of the volatile profiles of five Fu brick teas from different manufacturing regions by using HS–SPME/GC–MS and HS–GC–IMS. Curr. Res. Food Sci. 2022, 5, 1788–1807. [Google Scholar] [CrossRef]
- Yang, Y.Q.; Chen, J.Y.; Jiang, Y.W.; Qian, M.C.; Deng, Y.L.; Xie, J.; Li, J.; Wang, J.; Dong, C.; Yuan, H. Aroma dynamic characteristics during the drying process of green tea by gas phase electronic nose and gas chromatography-ion mobility spectrometry. LWT 2022, 154, 112691. [Google Scholar] [CrossRef]
- Zhang, K.Y.; Zhang, C.; Zhuang, H.N.; Liu, Y.; Feng, T.; Nie, B. Characterization of Volatile Component Changes in Peas under Different Treatments by GC-IMS and GC-MS. J. Food Qual. 2021, 2021, 1–13. [Google Scholar] [CrossRef]
- Ma, S.C.; Wang, M.Q.; Liu, C.M. Analysis of volatile composition and key aroma compounds of Liupao tea. Food Sci. 2020, 41, 191–197. (In Chinese) [Google Scholar] [CrossRef]
- Hernández-Mesa, M.; Ropartz, D.; García-Campaña, A.M.; Rogniaux, H.; Dervilly-Pinel, G.; Le Bizec, B. Ion Mobility Spectrometry in Food Analysis: Principles, Current Applications and Future Trends. Molecules 2019, 24, 2706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, X.Y.; Schwab, W.; Ho, C.-T.; Song, C.K.; Wan, X.C. Characterization of the aroma profiles of oolong tea made from three tea cultivars by both GC–MS and GC-IMS. Food Chem. 2022, 376, 131933. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Yang, R.; Zhang, H.; Wang, S.; Chen, D.; Lin, S. Development of a flavor fingerprint by HS-GC–IMS with PCA for volatile compounds of Tricholoma matsutake Singer. Food Chem. 2019, 290, 32–39. [Google Scholar] [CrossRef]
- Shi, Y.F.; Di, T.M.; Yang, S.L. Changes in aroma components in the processing of flowery black tea. Food Sci. 2018, 39, 167–175. (In Chinese) [Google Scholar] [CrossRef]
- Kang, S.; Yan, H.; Zhu, Y.; Liu, X.; Lv, H.-P.; Zhang, Y.; Dai, W.-D.; Guo, L.; Tan, J.-F.; Peng, Q.-H.; et al. Identification and quantification of key odorants in the world’s four most famous black teas. Food Res. Int. 2019, 121, 73–83. [Google Scholar] [CrossRef]
- Zhang, J.; Jia, H.Y.; Zhu, B.Y.; Li, J.Y.; Yang, T.Y.; Zhang, Z.-Z.; Deng, W.-W. Molecular and Biochemical Characterization of Jasmonic Acid Carboxyl Methyltransferase Involved in Aroma Compound Production of Methyl Jasmonate during Black Tea Processing. J. Agric. Food Chem. 2021, 69, 3154–3164. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.C.; Niu, Y.W.; Xiao, Z.B. Characterization of the key aroma compounds in Laoshan green teas by application of odour activity value (OAV), gas chromatography-mass spectrometry-olfactometry (GC-MS-O) and comprehensive two-dimensional gas chromatography mass spectrometry (GC × GC-qMS). Food Chem. 2020, 339, 128136. [Google Scholar] [CrossRef]
- De Girolamo, A.; Lattanzio, V.; Schena, R.; Visconti, A.; Pascale, M. Effect of alkaline cooking of maize on the content of fumonisins B1 and B2 and their hydrolysed forms. Food Chem. 2016, 192, 1083–1089. [Google Scholar] [CrossRef]
- Stuper-Szablewska, K.; Perkowski, J. Phenolic acids in cereal grain: Occurrence, biosynthesis, metabolism and role in living organisms. Crit. Rev. Food Sci. Nutr. 2017, 59, 664–675. [Google Scholar] [CrossRef] [PubMed]
- Ho, C.-T.; Zheng, X.; Li, S.M. Tea aroma formation. Food Sci. Hum. Wellness 2015, 4, 9–27. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.Q.; Mo, H.Z.; Yan, M.C.; Zhu, Y. Analysis of characteristic aroma of fungal fermented Fuzhuan brick-tea by gas chromatography/mass spectrophotometry. J. Sci. Food Agric. 2007, 87, 1502–1504. [Google Scholar] [CrossRef]
- Zhu, Y.; Lv, H.-P.; Dai, W.-D.; Guo, L.; Tan, J.-F.; Zhang, Y.; Yu, F.-L.; Shao, C.-Y.; Peng, Q.-H.; Lin, Z. Separation of aroma components in Xihu Longjing tea using simultaneous distillation extraction with comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry. Sep. Purif. Technol. 2016, 164, 146–154. [Google Scholar] [CrossRef]
- Xu, J.Y.; Chen, B.; Lu, L.R.; Yuan, L.R.; Li, Z.Q.; Wu, Z.H.; Chen, H.B. Quality and chemical composition changes of black tea and green tea processed from Fuliang Castanopsis sinensis summer tea. J. Food Saf. Qual. 2022, 13, 1604–1610. (In Chinese) [Google Scholar] [CrossRef]
- Flaig, M.; Qi, S.; Wei, G.; Yang, X.D.; Schieberle, P.G. Characterization of the Key Odorants in a High-Grade Chinese Green Tea Beverage (Camellia sinensis; Jingshan cha) by Means of the Sensomics Approach and Elucidation of Odorant Changes in Tea Leaves Caused by the Tea Manufacturing Process. J. Agric. Food Chem. 2020, 68, 5168–5179. [Google Scholar] [CrossRef] [PubMed]
- Jumtee, K.; Komura, H.; Bamba, T.; Fukusaki, E. Predication of Japanese green tea (Sen-cha) ranking by volatile profiling using gas chromatography mass spectrometry and multivariate analysis. J. Biosci. Bioeng. 2011, 112, 252–255. [Google Scholar] [CrossRef] [PubMed]
No. | Volatile Compounds | RI | Relative Content (%) | Odor Description # | ||
---|---|---|---|---|---|---|
FTL | BT | GT | ||||
Aldehydes | ||||||
1 | Decanal | 1270.5 | 0.99 | 0.75 | 1.19 | Orange, sweet |
2 | Nonanal-M | 1112.1 | 1.85 | 1.61 | 2.70 | Floral, green, lemon-like |
3 | Nonanal-D | 1109.4 | 0.55 | 0.48 | 0.75 | Floral, green, lemon-like |
4 | (E)-2-Octenal-M | 1057.3 | 0.30 | 0.76 | 0.81 | Green, nutty |
5 | (E)-2-Octenal-D | 1055.1 | 0.18 | 0.19 | 0.21 | Green, nutty |
6 | Benzeneacetaldehyde-M | 1041.2 | 1.86 | 2.07 | 1.01 | Floral, green, sweet |
7 | Benzeneacetaldehyde-D | 1041.2 | 0.16 | 0.32 | 0.14 | Floral, green, sweet |
8 | (E,E)-2,4-Heptadienal-M | 1013.6 | 0.89 | 1.51 | 1.77 | Nutty, green |
9 | (E,E)-2,4-Heptadienal-D | 1013.6 | 0.19 | 0.40 | 0.29 | Nutty, green |
10 | Octanal-M | 1007.7 | 0.50 | 0.77 | 0.85 | Fruity |
11 | Octanal-D | 1007.7 | 0.14 | 0.25 | 0.23 | Fruity |
12 | 2,4-Heptadienal | 1002.7 | 0.19 | 0.26 | 0.90 | Fatty, nutty, hay, green, oily |
13 | Benzaldehyde-M | 963.3 | 1.75 | 1.97 | 1.42 | Almond, burnt sugar |
14 | Benzaldehyde-D | 961.6 | 1.06 | 2.72 | 0.95 | Almond, burnt sugar |
15 | (E)-2-Heptenal-M | 955.3 | 0.58 | 0.45 | 1.28 | Grass, cream |
16 | (E)-2-Heptenal-D | 957 | 0.22 | 0.47 | 0.61 | Grass, cream |
17 | Heptanal-M | 902.9 | 0.74 | 0.73 | 1.32 | Green, oily, grassy |
18 | Heptanal-D | 903.6 | 0.17 | 0.29 | 0.63 | Green, oily, grassy |
19 | Furfural-M | 827.5 | 0.53 | 0.80 | 2.65 | Sweet, bready, caramel |
20 | Furfural-D | 826.8 | 0.30 | 2.02 | 5.18 | Sweet, bready, caramel |
21 | Hexanal | 792.5 | 1.10 | 2.55 | 2.58 | Green, fresh, fatty |
22 | (E)-2-Pentenal-M | 745.2 | 0.69 | 0.35 | 1.31 | — |
23 | (E)-2-Pentenal-D | 745.2 | 1.22 | 3.51 | 3.72 | — |
24 | 2-Pentenal | 729.5 | 3.15 | 1.83 | 0.85 | — |
25 | Pentanal | 691.4 | 2.11 | 0.74 | 2.57 | — |
26 | 2-Methyl-butanal | 647.7 | 3.56 | 1.18 | 2.26 | Bitter apricot kernels |
27 | 3-Methyl-butanal-D | 627.4 | 3.50 | 0.90 | 1.22 | Malty, alcohol |
28 | 3-Methyl-butanal-M | 626.8 | 0.48 | 1.72 | 2.17 | Malty, alcohol |
29 | Butanal | 572 | 1.18 | 0.67 | 0.56 | — |
30 | Methyl propanal | 514.5 | 4.23 | 4.66 | 1.86 | — |
31 | Propanal | 482.5 | 1.75 | 1.34 | 1.27 | — |
sum | 36.12 | 38.27 | 45.26 | |||
Alcohols | ||||||
1 | Linalool | 1105.1 | 0.69 | 1.67 | 0.92 | floral, fruit, green, orange-like |
2 | Linalool oxide | 1085.9 | 0.26 | 0.75 | 0.30 | Sweet, floral, creamy |
3 | 1,8-Cineole-M | 1027.8 | 0.25 | 1.22 | 0.39 | — |
4 | 1,8-Cineole-D | 1028.8 | 0.10 | 0.34 | 0.12 | — |
5 | 1-Octen-3-ol | 985.6 | 0.29 | 0.52 | 0.38 | Earthy, green, vegetative-like, fungal |
6 | 2-Furfurylthiol | 942 | 0.10 | 0.31 | 0.19 | — |
7 | (E)-2-Hexenol | 848.9 | 0.73 | 10.83 | 1.54 | Green, fruit, vegetable |
8 | 1-Pentanol | 760.7 | 2.40 | 1.52 | 1.09 | — |
9 | (Z)-2-Pentenol | 777.5 | 0.21 | 1.83 | 0.51 | — |
10 | 1-Butanol | 694.1 | 0.39 | 0.78 | 0.36 | — |
11 | Isobutanol-M | 600 | 0.28 | 0.25 | 0.17 | — |
12 | Isobutanol-D | 600.7 | 0.04 | 0.24 | 0.03 | — |
13 | Ethanol | 425.7 | 4.87 | 2.53 | 4.26 | — |
14 | 2-Ethylhexanol | 1031.4 | 0.66 | 0.35 | 0.43 | — |
15 | 2-Octanol | 989.4 | 0.50 | 0.17 | 0.79 | — |
16 | 1-Hexanol | 881.7 | 0.51 | 0.38 | 0.63 | — |
17 | Methanol | 399.1 | 5.06 | 2.62 | 3.73 | — |
18 | 2-Propanol | 523.7 | 0.70 | 0.52 | 2.26 | — |
sum | 18.04 | 26.83 | 18.10 | |||
Ketones | ||||||
1 | Sulcatone | 994.7 | 1.14 | 1.26 | 2.49 | Green, fruity |
2 | 2-Heptanone-M | 895.3 | 1.59 | 0.66 | 1.29 | Banana, cheese, fruit, medicinal |
3 | 2-Heptanone-D | 893.8 | 0.12 | 1.22 | 0.09 | Banana, cheese, fruit, medicinal |
4 | 2,3-Pentanedione | 671.8 | 0.70 | 0.45 | 1.61 | — |
5 | 2-Butanone | 560.2 | 4.96 | 4.24 | 1.44 | — |
6 | 2-Propanone | 480.6 | 14.83 | 10.52 | 12.21 | — |
7 | 2-Octanone | 1002.2 | 0.61 | 0.38 | 0.72 | — |
8 | 1-Octen-3-one | 981.7 | 0.23 | 0.15 | 0.44 | Earth, mushroom |
9 | Cyclohexanone | 901.5 | 0.58 | 0.31 | 0.98 | — |
10 | 2-Hexanone | 781.5 | 0.15 | 0.08 | 0.13 | — |
11 | Acetoin | 702.6 | 0.18 | 0.19 | 0.32 | — |
12 | 3-Pentanone | 683.9 | 0.14 | 0.22 | 0.31 | — |
sum | 25.23 | 19.68 | 22.03 | |||
Esters | ||||||
1 | Methyl Salicylate | 1234.1 | 0.54 | 1.27 | 0.79 | Minty, winter green-like |
2 | Propyl acetate | 736.5 | 0.36 | 0.83 | 0.09 | — |
3 | Ethyl Acetate | 579.1 | 1.04 | 0.36 | 2.46 | Fruit |
4 | Butyl propanoate | 909.4 | 0.44 | 0.08 | 0.57 | — |
5 | Propyl butanoate | 898.1 | 0.39 | 0.14 | 0.73 | Fruit |
6 | Butyl acetate | 802.7 | 0.17 | 0.07 | 0.39 | — |
sum | 3.20 | 3.93 | 5.37 | |||
Acids | ||||||
1 | 2-Methylbutanoic acid | 902.1 | 0.13 | 0.59 | 0.17 | — |
sum | 0.13 | 0.59 | 0.17 | |||
Heterocyclics | ||||||
1 | 2-Pentylfuran | 997.5 | 0.31 | 0.61 | 0.35 | Caramel, cooked, fruity, green |
2 | 2-Ethylpyrazine | 932.9 | 0.20 | 0.31 | 0.27 | Nutty, potato, toasted, cocoa |
3 | 2-Acetylfuran-M | 912.8 | 0.34 | 0.62 | 0.54 | Nutty, sweet, roasted, baked |
4 | 2-Acetylfuran-D | 912.4 | 0.15 | 0.36 | 0.17 | Nutty, sweet, roasted, baked |
5 | 2-Ethylfuran | 693.1 | 0.21 | 0.30 | 0.19 | Bean, fruity, earthy, green, vegetable |
sum | 1.21 | 2.20 | 1.52 | |||
Alkenes | ||||||
1 | β-Pinene | 928.7 | 0.08 | 0.20 | 0.09 | Turpentine, resin |
sum | 0.08 | 0.20 | 0.09 | |||
Others | ||||||
1 | Dimethyl sulfide | 488 | 4.67 | 0.67 | 2.38 | Delicate at low concentrations. |
sum | 4.67 | 0.67 | 2.38 |
No. | Volatile Compounds | Relative Content (%) | Odor Description # | ||
---|---|---|---|---|---|
FTL | BT | GT | |||
Aldehydes | |||||
1 | Hexanal | 4.87 | 1.91 | 0.97 | Grassy, green, fresh, fatty |
2 | Heptanal | 0.34 | 0.07 | 0.58 | Green, oily, grassy |
3 | Octanal | 0.68 | ND | ND | Fruity |
4 | (E,E)-2,4-Heptadienal | 1.52 | 1.65 | 13.46 | nutty, green |
5 | (E)-2-Octenal | 1.23 | ND | ND | — |
6 | Benzeneacetaldehyde | 2.28 | 0.83 | ND | Floral, green, sweet |
7 | Nonanal | 2 | 0.63 | 0.48 | Floral, green, lemon-like |
8 | 13-Tetradecenal | 0.76 | 0.38 | 0.41 | — |
9 | 2-ethyl-Benzaldehyde | ND | ND | 0.03 | — |
10 | Decanal | 0.8 | 0.5 | 0.31 | Orange, sweet |
11 | safranal | 0.07 | 0.38 | ND | Herbal, fruit |
12 | β-Cyclocitral | 0.96 | ND | ND | Herbal, clean, rose-like, fruity |
13 | β-Homocyclocitral | 0.3 | 0.03 | ND | Camphor, cool wood |
14 | Citral | ND | 0.13 | ND | |
15 | (E,E)-2,4-Decadienal | ND | ND | 0.22 | Cucumber, melon |
16 | 2-[4-methyl-6-(2,6,6-trimethylcyclohex-1-enyl)hexa-1,3,5-trienyl]cyclohex-1-en-1-carboxaldehyde | 0.01 | 0.18 | ND | — |
sum | 15.82 | 6.69 | 16.46 | ||
Alcohols | |||||
1 | 6-Methyl- bicyclo [4.2.0]octan-7-ol | 0.28 | 0.15 | ND | — |
2 | Linalool oxide I | ND | 1.11 | 1.48 | Sweet, floral, creamy |
3 | Benzyl alcohol | ND | ND | 0.55 | Sweet, floral, rose-like, caramel |
4 | 1-[(1-Ethynylcyclohexyl)oxy]-2-propanol | 0.03 | ND | ND | — |
5 | Linalool oxide II | ND | 1.99 | ND | Sweet, floral, creamy |
6 | Linalool | 2.2 | 7.07 | 4.86 | Floral, fruit, green, orange-like |
7 | 8-hydroxylinalool | ND | 0.04 | ND | — |
8 | trans-Carveol | ND | 0.11 | ND | — |
9 | Phenylethyl Alcohol | 2.02 | 2.14 | 0.18 | Floral, rose-like |
10 | α-Methyl-α-[4-methyl-3-pentenyl] oxiranemethanol | 0.14 | ND | ND | — |
11 | linalool oxideIII | ND | 0.25 | ND | Floral, honey-like |
12 | homocamphenilol | 0.06 | ND | ND | — |
13 | Homomyrtenol | ND | 0.41 | ND | — |
14 | α-terpineol | ND | ND | 0.12 | Pleasant, floral |
15 | (Z)- 3,7- dimethyl- isobutyrate -2-Octen-1-ol | ND | ND | 0.26 | — |
16 | 13-Tetradecenal | 2.14 | ND | ND | — |
17 | Geraniol | ND | 6.27 | 0.99 | Rose-like, sweet, honey-like |
18 | 2-methyl-4-(1,3,3- trimeth yl-7- oxa bicyclo [4.1.0] hept-2-yl)-3-Buten-2-ol | 0.51 | ND | ND | — |
19 | (6-Hydroxymethyl-2,3- dimethylphenyl)methanol | ND | 0.88 | 1.12 | — |
20 | humulol | ND | 0.5 | ND | — |
21 | 1-Heptatriacotanol | 0.62 | 0.62 | 0.61 | — |
22 | 2,2,6-Trimethyl-1-(3-methylbuta-1,3-dienyl)-7-oxabicyclo [4.1.0]heptan-3-ol | 0.07 | ND | ND | — |
23 | [1S-(1.alpha.,3.beta.,3a.beta.,4.alpha.,8a.beta.)]-1,4-decahydro-1,5,5,8atetramethyl -Methanoazulen-3-ol | 0.03 | ND | ND | — |
24 | 2,2-Dimethyl-6-methylene-1-[3,5-dihydroxy-1-pentenyl]cyclohexan-1-perhydrol | 0.08 | 0.17 | 0.05 | — |
25 | tert-Hexadecanethiol | 0.04 | 0.4 | 0.14 | — |
26 | Isocalamenediol | 0.44 | ND | ND | — |
27 | shyobunol | ND | 2.83 | 1.22 | — |
28 | Olivetol | 3.2 | ND | ND | — |
sum | 11.86 | 24.94 | 11.58 | ||
Ketones | |||||
1 | 2-Nonadecanone | ND | ND | 0.03 | — |
2 | sulcatone | ND | 0.81 | 1.75 | Green, fruity |
3 | 2,2,6-trimethyl-Cyclohexanone | 0.11 | ND | ND | — |
4 | Isophorone | 0.1 | ND | 0.08 | Cooling, woody, sweet, green, fruity |
5 | 3,5-Octadien-2-one | ND | ND | 2.91 | Rose-like, lavender-like |
6 | 3-Nonen-2-one | ND | 0.04 | ND | — |
7 | 4-(2,2,6-Trimethylbicyclo [4.1.0]hept-1-yl)-2-butanon | 0.12 | ND | ND | — |
8 | 5,9,9-trimethyl-Spiro [3.6] deca-5,7-dien-1-one | ND | ND | 0.06 | — |
9 | 2-Hydroxycyclopentadecanone | ND | ND | 0.06 | — |
10 | 4-(2,6,6-trimethyl-2-cyclohexen-1-yl)3-Buten-2-one | 0.49 | 0.69 | 4.8 | — |
11 | Geranyl acetone | 1.44 | 1.2 | 1.68 | Fresh, rose-like, floral, green, fruity |
12 | β-Ionone | 2.79 | 4.44 | 5.76 | Floral, woody, sweet, fruity, berry |
13 | 4-(4-hydroxy-2,2,6-trimethyl-7-oxabicyclo [4.1.0]hept-1-yl)-3-Buten-2-one | 2.45 | 0.9 | 1.24 | — |
14 | 1′-carboethoxy-1′-cyano-1,2-dihydro-3′H-Cycloprop(1,2)-5-cholest-1-en-3-one | 1.4 | 0.04 | 0.89 | — |
sum | 8.9 | 8.12 | 19.26 | ||
Esters | |||||
1 | Linalyl acetate | ND | 0.25 | 0.07 | Fruity, floral |
2 | (Z)-verbenyl acetate | ND | 0.33 | ND | — |
3 | 2-Methyl-3-methylene-1-cyclopentanecarboxylic acid methyl ester | 0.66 | ND | ND | — |
4 | E-2-Hexenyl benzoate | ND | ND | 0.04 | — |
5 | Acetic acid,3-(2,2- dimethyl-6-methylene- cyclohexylidene)-1-methyl-butyl ester | ND | ND | 0.12 | — |
6 | Terpinyl formate | 0.27 | ND | ND | — |
7 | Methyl salicylate | ND | 9.75 | 6.45 | Minty, wintergreen, grass odor |
8 | Formic acid, 3,7,11-trimethyl-1,6,10-dodecatrien-3-ylester | ND | 0.27 | ND | — |
9 | Terpinyl Acetate | ND | 0.58 | ND | — |
10 | Undec-10-ynoic acid, tridec-2-yn-1-ylester | 0.26 | ND | ND | — |
11 | 2,5-Octadecadiynoicacid, methyl ester | ND | ND | 0.21 | — |
12 | Fumaric acid, 2-pentyl tridec-2-yn-1-yl ester | ND | 0.09 | ND | — |
13 | Undec-10-ynoic acid, dodecyl ester | ND | ND | 0.02 | — |
14 | Z-(13,14-Epoxy)tetradec-11-en-1-ol acetate | 1.22 | ND | ND | — |
15 | 10-Methyl-8-tetradecen-1-olacetate | 0.05 | 0.34 | ND | — |
16 | Dasycarpidan-1-methanol, acetate | 0.13 | 0.04 | 0.06 | — |
17 | 7-Methyl-Z-tetradecen-1-olacetate | 0.38 | 0.58 | 0.28 | — |
18 | Dihydroactinidiolide | 2.46 | 0.94 | 0.57 | Sweet, faint floral, herbal |
19 | Ethyl iso-allocholate | 2.15 | 1.1 | 0.38 | — |
sum | 7.58 | 14.27 | 8.2 | ||
Alkenes | |||||
1 | Styrene | 0.19 | ND | 0.45 | Floral |
2 | 3-Isopropyl-1-cyclohexene | ND | ND | 0.21 | — |
3 | D-Limonene | 13.91 | 8.06 | 2.57 | Citrus, lemon, orange-like, green |
4 | Carene | ND | 0.04 | ND | Woody |
5 | 3-[(2-methylpropan-2-yl)oxy]bicyclo [3.2.1]oct-3-ene | ND | ND | 0.33 | — |
6 | Dipentene dioxide | ND | 0.13 | ND | — |
7 | Guaiene | 0.79 | 0.19 | ND | — |
sum | 14.89 | 8.42 | 3.56 | ||
Acids | |||||
1 | Oleic Acid | 0.92 | 0.58 | 0.31 | — |
2 | 3-Hydroxydodecanoic acid | 0.02 | ND | 0.09 | — |
3 | cis-7-Hexadecenoic acid | 0.13 | ND | ND | — |
4 | cis-4-(Hydroxymethyl) cyclohexanecarboxylic Acid | 0.32 | ND | ND | — |
5 | trans-13-Octadecenoicacid | 0.22 | ND | 0.04 | — |
6 | Ricinoleic acid | ND | 0.06 | ND | — |
7 | Linoleic acid | ND | ND | 0.09 | Oily |
8 | cis-5,8,11,14,17-Eicosapentaenoic acid | ND | ND | 0.02 | — |
9 | 2-(3-acetoxy-4,4,14-trimethy landrost-8-en-17-yl)- Propanoic acid | 0.13 | 0.11 | 0.29 | — |
sum | 1.74 | 0.75 | 0.84 | ||
Alkanes | |||||
1 | octyl-Oxirane | ND | 0.24 | ND | — |
2 | 2-ethyl-1,1-dimethyl-Cyclopentane | ND | 0.01 | ND | — |
3 | 1,2-15,16-Diepoxyhexadecane | ND | 0.09 | ND | — |
4 | 4-(Hexadecyloxy)-2-pentadecyl-1,3-dioxane | ND | ND | 0.01 | — |
5 | 2,6,10-trimethyl-Tetradecane | ND | ND | 0.02 | — |
sum | 0 | 0.34 | 0.03 | ||
Heterocyclics | |||||
1 | 2-amino-5-[(2-carboxy)vinyl]-Imidazole | 2.89 | 0.33 | 0.04 | — |
2 | 2-pentyl-Furan | 0.87 | 0.4 | 0.34 | Bean, fruity, earthy, green, vegetable |
sum | 3.76 | 0.73 | 0.38 | ||
Others | |||||
1 | p-Cymene | 1.87 | ND | ND | Aromatic |
2 | Geranyl vinyl ether | ND | 0.6 | ND | — |
3 | Caffeine | 4.24 | 2.18 | 0.33 | Caffeine |
4 | 1,2-Dimyristoyl-sn-glycero-3-phosphocholine | 0.09 | ND | 0.05 | — |
sum | 6.2 | 2.78 | 0.38 |
No. | Volatile Compounds | Odor Description # | Thresold ψ (μg/L) | ROAV | ||
---|---|---|---|---|---|---|
FTL | BT | GT | ||||
1 | Hexanal | Grassy, green, fresh, fatty | 4.5 | 10.82 | 1.33 | 0.98 |
2 | Heptanal | Green, oily, grassy | 2.8 | 1.21 | 0.08 | 0.94 |
3 | Octanal | Fruity | 0.7 | 9.71 | <0.01 | <0.01 |
4 | (E,E)-2,4-Heptadienal | Fatty, green | 10,000 | <0.01 | <0.01 | <0.01 |
5 | Benzeneacetaldehyde | Floral, green, sweet | 4 | 5.70 | 0.65 | <0.01 |
6 | Nonanal | Floral, green, lemon-like | 1.1 | 18.18 | 1.79 | 1.98 |
7 | Decanal | Orange, sweet | 0.1 | 80.00 | 15.63 | 14.09 |
8 | Safranal | Herbal, fruit | 3 | 0.23 | 0.40 | <0.01 |
9 | β-Cyclocitral | Herbal, clean, rose-like, fruity | 3 | 3.20 | <0.01 | <0.01 |
10 | β-Homocyclocitral | Camphor, cool wood | 0.2 | 15.00 | 0.47 | <0.01 |
11 | (E,E)-2,4-Decadienal | Cucumber, melon | 0.07 | <0.01 | <0.01 | 14.29 |
12 | Linalool oxide I | Sweet, floral, creamy | 190 | <0.01 | 0.02 | 0.04 |
13 | Benzyl alcohol | Sweet, floral, rose-like, caramel | 20,000 | <0.01 | <0.01 | <0.01 |
14 | Linalool oxide II | Sweet, floral, creamy | 190 | <0.01 | 0.03 | <0.01 |
15 | Linalool | floral, fruit, green, orange-like | 0.22 | 100 | 100 | 100 |
16 | Phenylethyl Alcohol | Floral, rose-like | 390 | 0.05 | 0.02 | <0.01 |
17 | linalool oxide III | Floral, honey-like | 3000 | <0.01 | <0.01 | <0.01 |
18 | α-terpineol | Pleasant, floral | 330 | <0.01 | <0.01 | <0.01 |
19 | Geraniol | Rose-like, sweet, honey-like | 7.5 | <0.01 | 2.61 | 0.60 |
20 | Sulcatone | Green, fruity | 50 | <0.01 | 0.05 | 0.16 |
21 | Isophorone | Cooling, woody, sweet, green, fruity | 11 | 0.09 | <0.01 | 0.03 |
22 | Geranyl acetone | Fresh, rose-like, floral, green, fruity | 60 | 0.24 | 0.06 | 0.13 |
23 | β-Ionone | Floral, woody, sweet, fruity, berry | 8.4 | 3.32 | 1.65 | 3.12 |
24 | Methyl salicylate | Minty, wintergreen-like, grass | 40 | <0.01 | 0.76 | 0.73 |
25 | Dihydroactinidiolide | Sweet, faint floral, herbal | 3.8 | 6.47 | 0.77 | 0.68 |
26 | D-Limonene | Citrus, lemon, orange-like, green | 200 | 0.70 | 0.13 | 0.06 |
27 | 2-pentyl-Furan | Bean, fruity, earthy, green, vegetable | 6 | 1.45 | 0.21 | 0.26 |
28 | p-Cymene | Aromatic | 11.4 | 1.64 | <0.01 | <0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, J.; Zhang, Y.; Yan, F.; Tang, Y.; Yu, B.; Chen, B.; Lu, L.; Yuan, L.; Wu, Z.; Chen, H. Monitoring Changes in the Volatile Compounds of Tea Made from Summer Tea Leaves by GC-IMS and HS-SPME-GC-MS. Foods 2023, 12, 146. https://doi.org/10.3390/foods12010146
Xu J, Zhang Y, Yan F, Tang Y, Yu B, Chen B, Lu L, Yuan L, Wu Z, Chen H. Monitoring Changes in the Volatile Compounds of Tea Made from Summer Tea Leaves by GC-IMS and HS-SPME-GC-MS. Foods. 2023; 12(1):146. https://doi.org/10.3390/foods12010146
Chicago/Turabian StyleXu, Jiyuan, Ying Zhang, Fei Yan, Yu Tang, Bo Yu, Bin Chen, Lirong Lu, Liren Yuan, Zhihua Wu, and Hongbing Chen. 2023. "Monitoring Changes in the Volatile Compounds of Tea Made from Summer Tea Leaves by GC-IMS and HS-SPME-GC-MS" Foods 12, no. 1: 146. https://doi.org/10.3390/foods12010146
APA StyleXu, J., Zhang, Y., Yan, F., Tang, Y., Yu, B., Chen, B., Lu, L., Yuan, L., Wu, Z., & Chen, H. (2023). Monitoring Changes in the Volatile Compounds of Tea Made from Summer Tea Leaves by GC-IMS and HS-SPME-GC-MS. Foods, 12(1), 146. https://doi.org/10.3390/foods12010146