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Abstract: Weizmannia coagulans is an important potential probiotic with dual characteristics of Bacillus
and Lactobacillus. This study describes a novel Weizmannia coagulans PL-W with excellent antibacterial
activity isolated from Mongolian traditional cheese, in which safety and probiotic potential were
evaluated by complete genome sequencing. The crude bacteriocins of W. coagulans PL-W showed
antibacterial activity against various foodborne pathogens, including Listeria monocytogenes CMCC
54,004, Bacillus cereus ATCC 14,579, and Staphylococcus aureus ATCC 25,923. Moreover, the crude
bacteriocins have outstanding stability against pH, temperature, surfactants, and are sensitive to
protease. The complete genome sequencing revealed W. coagulans PL-W consists of 3,666,052-base
pair (bp) circular chromosomes with a GC content of 46.24% and 3485 protein-coding genes. It
contains 84 tRNA, 10 23S rRNA, 10 16S rRNA, and 10 5S rRNA. In addition, no risk-related genes
such as acquired antibiotic resistance genes, virulence, and pathogenic factors were identified,
demonstrating that W. coagulans PL-W is safe to use. Furthermore, the presence of gene clusters
involved in bacteriocin synthesis, adhesion-related genes, and genes contributing to acid and bile
tolerance indicate that W. coagulans PL-W is a potential candidate probiotic. Thus, antimicrobial
activity and genome characterization of W. coagulans PL-W demonstrate that it has extensive potential
applications as a food protective culture.

Keywords: Weizmannia coagulans; bacteriocin; complete genome sequencing

1. Introduction

Foodborne diseases are a significant health problem for all of humanity [1]. Various
antibiotics have been used for a long time to inhibit the growth of pathogenic bacteria
and prevent their threat to human health. However, the overuse of antibiotics has led
to increased multidrug resistance in bacteria, which is a global public health crisis that
threatens our ability to treat bacterial infections [2,3]. On the other hand, several studies
have shown that the human commensal microbiota can be affected by the continuous use
of antibiotics [4,5]. Therefore, it is urgent to search for new antimicrobial substances, such
as bacteriocin, to prevent the adverse effects of traditional antimicrobial substances. In this
regard, several studies have shown that bacteriocins from probiotics which are generally
recognized as safe (GRAS), could be used as a substitute for traditional antibiotics in the
future [6,7].

Bacteriocins are antimicrobial peptides synthesized from ribosomes produced by bac-
teria, which inhibit the growth of related (narrow spectrum) or nonrelated (broad spectrum)
microorganisms [8]. At present, the bacteriocins from microbials approved for application
in food additives are mainly from Nisin and Pediocin PA-1 produced by lactic acid bacteria
(LAB) [9,10]. Bacteriocins predominantly exert their antibacterial activity by influenc-
ing gene and protein replication, pore formation, and membrane permeabilization [11,12],
which could prevent target bacteria from evolving into corresponding drug-resistant strains,
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making them a potential alternative to antibiotics. It is widely known that the genus Bacillus
is a rich source of bacteriocins or bacteriocin-like inhibitory substances (BLIS) [13–15]. Com-
pared with most LAB, bacteriocins produced by Bacillus have broader inhibition spectra
and may include Gram-positive bacteria, Gram-negative bacteria, or fungi, some of which
are pathogenic for humans [16]. Consequently, bacteriocins from Bacillus are increasingly
becoming more critical and have attracted more and more interest from researchers.

W. coagulans is a high-temperature-resistant spore-forming bacterium with probi-
otic activity. It has received extensive attention since it contains the properties both of
Bacillus and Lactobacillus [17]. In 2012, the Food and Drug Administration approved
W. coagulans as safe to use in food [18]. Several studies have found that some W. coagulans
possess good antibacterial activity by producing bacteriocin [19]. For instance, lactosporin
produced by W. coagulans ATCC 7050 has been reported to inhibit pathogens [20]. The
bacteriocin produced by W. coagulans can inhibit the growth of spoilage bacteria and im-
prove the preservation of large yellow croaker [21]. W. coagulans BDU3 produces a new
1.4 kDa bacteriocin with antimicrobial activity against foodborne pathogens [22]. Therefore,
W. coagulans are expected to become a new star bacterium for food preservatives. There are
three conventional strategies for using bacteriocins in the food industry: pure bacteriocin,
bacteriocin-containing fermentates, and bacteriocin-producing live cells. It is noteworthy
that the strains used to produce bacteriocin must be safe. Thus, assessing the safety and
probiotic properties of the strains is an essential step for use in food products [23,24]. For
instance, Sreenadh et al. evaluated the probiotics, safety, and technology of W. coagulans
S-31,876 through a number of in vitro experiments to explore its potential applications [25].
High-throughput sequencing enables the evaluation of the properties of strains at the
genomic level, including their genetic, safety, and metabolic profiles. Previously, Aulitto
et al. used comparative genomics to focus on the biotransformation and defense ability
of W. coagulans against the external environment [26]. In this research, the W. coagulans
PL-W with antibacterial activity was identified from Mongolian traditional cheese, and its
complete genome was confirmed. Assessment of the genome indicates that W. coagulans
PL-W may be a safe strain with probiotic properties to use and promote future research
and development of the organism in food preservation. In addition, the crude bacteriocin
characteristics produced by W. coagulans PL-W were evaluated to provide the theoretical
basis for its potential application as a food preservative.

2. Materials and Methods
2.1. Samples and Bacterial Culture Conditions

W. coagulans PL-W were cultured in Man Rogosa and Sharpe (MRS) medium at 45 ◦C.
The indicator strain, L. monocytogenes CMCC 54,004, was cultured in TSYEB medium at
37 ◦C. The medium used for the culture of other bacteria is shown in Table 1. All bacteria
used in this research were stored at −80 ◦C in a suitable culture medium containing
25% (v/v) glycerol.

Table 1. Antibacterial spectrum of the crude bacteriocin of W. coagulans PL-W.

Indicator Strain Source Media Activity (mm) a MIC (µg/mL) MBC (µg/mL)

Gram-positive bacteria
Listeria monocytogenes CMCC 54,004 Lab TSYEB +++ 55.32 221.28
Staphylococcus aureus ATCC 25,923 Lab TSB + 221.28 442.56

Bacillus cereus ATCC 14,579 Lab LB + 221.28 442.56
Bacillus subtilis Lab LB ++ 110.64 442.56

Bacillus licheniformis Lab LB +++ 55.32 442.56
Bacillus amyloliquefaciens Lab LB + 221.28 885.13
Lactobacillus plantarum Lab MRS +++ 55.32 221.28

lactococcus lactis MG1363 Lab MRS -
Enterococcus faecalis Lab MRS -

Lactobacillus bulgaricus Lab MRS -
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Table 1. Cont.

Indicator Strain Source Media Activity (mm) a MIC (µg/mL) MBC (µg/mL)

Lactococcus lactis NZ9000 Lab MRS -
Gram-negative bacteria

Escherichia coli BL21 Lab LB -
Escherichia coli BW25113 Lab LB -
Pseudomonas aeruginosa Lab LB + 442.56 885.13

a Diameter of inhibition zone: +++, ≥15 mm; ++, ≥12 mm; +, >8 mm; -, no inhibition zone. The diameter of the
hole was 8 mm. The diameter of the circular hole was 8 mm.

2.2. Isolation of Antimicrobial Substance-Producing W. coagulans and Crude Antimicrobial
Substance Preparation

The method of isolation of W. coagulans was based on the previous method with some
modifications [27]. Firstly, Mongolian traditional cheese was homogenized in sterilized
water and then heated to 80 ◦C for 10 min. Subsequently, samples were diluted in a gradient
and then spread individually on MRS agar with 2 g/L CaCO3 and incubated at 45 ◦C for
48 h. Bacterial colonies that showed clear circles on the plates containing CaCO3 were
individually picked and then inoculated on MRS broth medium and incubated at 45 ◦C
under the shaking condition (200 rpm) for 48 h.

The cell-free supernatant (CFS) was obtained by centrifugation at 10,000× g for 10 min,
and then ammonium sulfate was slowly added to the CFS to 80% saturation by stirring and
at 4 ◦C overnight. To collect the crude antimicrobial substance, the mixture was centrifuged
at 10,000× g for 20 min at 4 ◦C, and then the precipitate was resuspended in 1 mL of PBS
(pH 6.8). The activity of crude antimicrobial substance against L. monocytogenes CMCC
54,004 was determined by the agar well diffusion method. Strains with strong antimicrobial
activity against the L. monocytogenes CMCC 54,004 were selected and identified by Gram
staining, lactate production capacity, catalase and oxidase activities, ability to grow at
different temperatures (45–60 ◦C), NaCl concentrations (1–5%), and various sugars. The 16S
rDNA sequencing was performed for genotype identification as described previously [28].
Subsequently, the MEGA 7.0 software was used to analyze the phylogenetics of strains.

2.3. Characteristics of Antimicrobial Substance Production in W. coagulans PL-W
2.3.1. Kinetics of Growth and Crude Antimicrobial Substance Production in
W. coagulans PL-W

W. coagulans PL-W was grown in 30 mL of MRS medium at 45 ◦C for 48 h and then
inoculated into MRS medium at a 2% inoculum (v/v). The cell density at 600 nm was
determined every 4 h while CFS was collected to obtain the crude antimicrobial substance
and assess antibacterial activity by the method described in Section 2.2 [28].

2.3.2. Physicochemical Properties of Crude Antimicrobial Substance

The stability of the crude antimicrobial substance was examined by detecting the
changes in antibacterial activity against L. monocytogenes CMCC 54,004 under different
conditions [29]. The enzyme stability of the crude antimicrobial substance was evaluated by
incubation with lipase, α-amylase, proteinase K, neutral protease, flavor enzyme, trypsin,
and pepsin for 2 h under the optimal reaction conditions for each enzyme, while the final
concentration of each enzyme was 1 mg/mL. The pH of the crude antimicrobial substance
was adjusted from 2 to 10 with 2 M HCL and 2 M NaOH to detect the change in its
antibacterial activity. The thermal stability of the crude antimicrobial substance was tested
by incubation at 4–121 ◦C for 10 and 30 min, respectively. To test the crude antimicrobial
substance stability with the surfactant, the crude antimicrobial substance was incubated
with various chemical reagents 1% (v/v), including Tween 80, EDTA, urea, and SDS at 37 ◦C
for 2 h. The antimicrobial activity of the untreated antimicrobial substance was measured
and used as the positive control.
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2.3.3. Antimicrobial Spectrum Assay of Crude Bacteriocins

To investigate the antimicrobial spectrum of W. coagulans PL-W, the antimicrobial
activity of the crude bacteriocins of W. coagulans PL-W against a range of indicator strains,
including food spoilage bacteria and food-borne pathogens (Table 1), was determined
by using the pour plate method described by An et al. [30]. The minimal inhibitory
concentration (MIC) and minimal bactericidal concentration (MBC) of the crude bacteriocin
were calculated by observing the growth of L. monocytogenes CMCC 54004 mixed with
various concentrations of the crude bacteriocins [31].

2.3.4. Purification of Bacteriocin

To identify the bacteriocin, firstly, ultrafiltration tubes of 10 KD and 3 KD were used to
isolate the crude bacteriocin. The fractions containing proteins larger than 10 KD, between
3–10 KD, and smaller than 3 KD were tested for antibacterial activity. Then, the active
fractions were loaded onto a C18 reverse-phase column (5 µm, 4.6 × 250 mm, Agilent, Santa
Clara, CA, USA), connected to a reverse-phase high-performance liquid chromatography
(RP-HPLC) system, and eluted at 0.5 mL/min flow rate by a linear gradient elution with
95% water–acetonitrile (5–95%) containing 0.1% trifluoroacetic acid (TFA) for 30 min. The
different peaks were collected at an absorbance of 280 nm, and then concentrated using
1 KD ultrafiltration tubes for antibacterial activity evaluation. Using Tricine-SDS-PAGE
(16.5% separated and 4% concentrated gel), the range of molecular mass of the collected
active fractions was analyzed.

2.4. Genome Sequencing, Assembly, Annotation, and Classification

W. coagulans PL-W grown to mid-logarithmic phase were collected and genomic DNA
were extracted using the Bacterial Genomic DNA Isolation kit (TianGen, Beijing, China)
according to the kit instructions. The PromethION platform was used to sequence the
W. coagulans PL-W genome. Subsequently, the sequences were mix assembled with Uni-
cycler and corrected with Pilon (parameter: OFF). After removing the redundant part,
the Circlator (parameter: fixStart) was used to move the origin of the sequence to the
replication start site of the genome to obtain the final genome sequence. The encoding
gene was predicted with prodigal, tRNA, rRNA, and other ncRNAs were predicted using
trnascan-SE. Interproscan was used for annotation of genome-encoded proteins. BlastP
was used to align the encoded proteins to KEGG, RefSeq, and COG databases, and the best
results with alignment coverage greater than 30% were retained as annotation results. The
circos was used to draw the nuclear genome circle map.

Using W. coagulans PL-W as a reference strain, digital DNA-DNA hybridization was
performed using an online tool (http://ggdc.dsmz.de/, (accessed on 5 September 2022)).
The W. coagulans PL-W genome in the form of FASTA was submitted to the Type (Strain)
Genome Server (TYGS) and the genome was compared with the TYGS database.

2.5. Prediction of the Safety of W. coagulans PL-W

The Comprehensive Antibiotic Research Database (CARD) and Resistance Gene
Identification Tool (RGI) were used to analyze the presence of drug-resistance genes in
W. coagulans PL-W. The VFDB webserver was used to predict putative virulence factors
and the pathogen finder webserver was used to predict bacterial pathogenicity.

2.6. Prediction of the Probiotic Characteristics of W. coagulans PL-W

The Hidden Markov model (HMM) was used to detect genes related to acid and bile
tolerance in the genome of W. coagulans PL-W and various proteins related to adhesion and
aggregation were searched in the genome annotation data. AntiSMASH5 and BAGEL4
were used to predict non-ribosomal synthetic secondary metabolites (NRPS) and bacteriocin
synthesis gene clusters in the W. coagulans PL-W genome, respectively.

http://ggdc.dsmz.de/
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2.7. Statistical Analysis

Three parallel groups were set up for each group of experiments. GraphPad Prism
software was used for statistical analysis of the experimental data by a one-way ANOVA,
and values of p < 0.05 were considered statistically significant.

3. Results and Discussion
3.1. Screening and Identification of Antimicrobial Substance-Producing Strains

Bacteriocins are a potential alternative to antibiotics since they are safe and it is
not easy to produce antibiotic resistance to indicator strains [32]. Bacteriocins produced
by Bacillus have a broad inhibitory spectrum, which makes them of excellent research
significance [16]. The present study isolated 243 potential lactate-producing strains from
Mongolian traditional cheese. Among these strains, strain PL-W possessed the highest
antibacterial activity to indicator strains (L. monocytogenes CMCC 54,004) and was selected
as the target strain. It was characterized as Gram-positive, spore-forming, rod-shaped,
lactate produced, and positive for catalase, indole, and the Voges–Proskauer test, and grew
in medium containing 5% sodium chloride and fermented sucrose, glucose, lactose, and
arabinose. The phylogenetic analysis according to the strain 16S rRNA sequence showed
that the selected strain belonged to the same evolutionary branch as W. coagulans and
shared 100% support degree with W. coagulans 683, W. coagulans DSM1 ATCC 7050, and
W. coagulans NBRC 12,583 (Supplementary Materials, Figure S1). Thus, we classified the
strain PL-W as W. coagulans PL-W.

3.2. Crude Antimicrobial Substance Production Properties of W. coagulans PL-W
3.2.1. Kinetics of Growth and Crude Antimicrobial Substance Production in
W. coagulans PL-W

Kinetics of crude antimicrobial substance production of W. coagulans PL-W cultured
in MRS broth at 45 ◦C with shaking are presented in Figure 1. The inhibition zone size
of crude antimicrobial substance against L. monocytogenes 54,004 was used to detect its
production. The result showed that W. coagulans PL-W entered the stable phase after 24 h of
culture. Meanwhile, the inhibition zone against L. monocytogenes 54,004 was detected and
reached the largest at 32 h, indicating the production of the crude antimicrobial substance
may reach the maximum mass. The antibacterial activity of the crude antimicrobial starts
to decrease slightly after 32 h, probably due to degradation by other substances secreted
by W. coagulans PL-W. Thus, the crude antimicrobial substance obtained from W. coagulans
PL-W was cultured at 32 h for further characterization.
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Figure 1. Growth and dynamics of antimicrobial substance production by W. coagulans PL-W.

3.2.2. Characterization of Crude Antimicrobial Substance

Bacteriocins are antimicrobial peptides synthesized by ribosomes, produced by LAB,
which have drawn wide attention owing to their characterization as food antiseptics. For
example, Nisin, produced by Lactococcus lactis, has been approved by the Food and Drug
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Administration (FDA) and used for food preservation since 1950 [33]. Pediocin, bavaricin,
leucocin, and sakacin are other bacteriocins produced by LAB that have been approved
for use in food in some countries [34,35]. Although some Bacillus species are involved in
various food fermentation processes, none of the Bacillus bacteriocins have been approved
as food preservatives [36,37]. W. coagulans has been reported as safe by the FDA and the
European Union Food Safety Authority (EFSA), which was classified as Bacillus coagulans
due to its Bacillus characteristics. Therefore, there are further opportunities for W. coagulans
bacteriocins to prove useful for food preservation. In this study, the antimicrobial substance
of W. coagulans PL-W was treated with different enzymes to determine its nature. The
antimicrobial activity against L. monocytogenes CMCC 54,004 indicated that the antimicrobial
substance remained stable after lipase and α-amylase treatment. On the contrary, the
antimicrobial substance was sensitive to proteinase K, indicating that the antimicrobial
substance is a bacteriocin (Figure 2A). Furthermore, we examined the stability of the crude
bacteriocin of W. coagulans PL-W under different conditions, including pH, temperature,
and surfactants, to predict its application in the food industry. In the test of pH stability, the
antibacterial activity of crude bacteriocins remained above 90% at pH 2–8, which indicates
that the crude bacteriocins still have specific activity under acidic, neutral, and weakly
alkaline conditions (Figure 2B). Therefore, bacteriocins produced by W. coagulans PL-W have
the potential to be applied to acidic, neutral, and weakly alkaline foods. The antibacterial
activities of the bacteriocins were nearly not altered under 4 ◦C to 40 ◦C, indicating that
bacteriocins may have storage stability. Although the activity decreased after treatment at
60–100 ◦C, the crude bacteriocins show more than 70% activity making them valuable for
heat-processed foods (Figure 2C). The stability of bacteriocins against surfactants facilitates
their use in emulsifying food. Our study showed that the crude bacteriocins had little
influence on antibacterial activity after treatment with different surfactants, suggesting that
bacteriocins could be used in emulsified food (Figure 2D).
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3.2.3. Antibacterial Spectrum of Crude Bacteriocins

The antibacterial spectrum of crude bacteriocins was determined by assaying for the
antimicrobial activity against several indicator strains. The crude bacteriocins displayed
a wide range of the antibacterial spectrum, including Gram-positive and Gram-negative
bacteria (Table 1). Significantly, some of them are common spoilage bacteria in the food
industry, such as L. monocytogenes CMCC 54,004, S. aureus ATCC 25,923, and B. cereus ATCC
14,579. The result of this study suggests that W. coagulans PL-W and its bacteriocin products
have great utilization potential in food preservation.

3.2.4. Purification of Bacteriocin

The crude antimicrobial substances were separated into different fractions using 10 KD
and 3 KD ultrafiltration tubes. The result showed that only fractions with molecular mass
between 3–10 kDa exhibited antibacterial activity (Figure 3A). Therefore, it was presumed
that the molecular mass of the bacteriocin was among 3–10 kDa. Further purification of the
active fraction using a C18 column showed that only the third peak was able to inhibit the
growth of the indicator strain (Figure 3B). Tricine-SDS-PAGE analysis of the molecular mass
of peak 3 displayed a single band around 7 kDa (Figure 3C). Consequently, we conclude
that W. coagulans PL-W expressed a bacteriocin with a molecular mass near 7 kDa.
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3.3. General Genome Features of W. coagulans PL-W

W. coagulans are widely used as probiotics in the food industry, medicine, and animal
breeding [17]. Genetic analyses assist humans in finding potential probiotic strains with
genetically encoded properties such as bile acid resistance, epithelial adhesion, and bacteri-
ocins, but also determine whether a strain is safe to use from a genetic perspective [26,38].
There is currently insufficient information on the probiotic effects of W. coagulans on the
genetic basis. Therefore, the present study aims to elucidate the safety and probiotic
properties of W. coagulans PL-W and explore its potential application in food preservation
through genomic analysis. Whole genome sequencing was performed using the Prome-
thION platform. A total of 3,554,753,206 raw reads were used for genome assembly with
the unicycler assembler, version 0.4.8 (Ryan R. Wick, Victoria, Australia). The complete
genome of W. coagulans PL-W consists of 2 contigs of 3,666,052 bp with a GC content of
46.24%. None of the plasmid sequences were validated with the Plasmid Finder 2 tool.
The protein-coding genes, ribosomal RNA, and transfer RNA of the genome are shown in
Table 2. The functional classification of protein was analyzed in Table 3 through the COG
database. KEGG and GO databases were also used functionally to annotate protein-coding
genes (Supplementary Materials, Figures S2 and S3). The complete genome information of
W. coagulans PL-W is shown in Figure 4.
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Table 2. General genome attributes of W. coagulans PL-W.

Attributes W. coagulans PL-W

Genome size (bp) 3,666,052
No. of contigs 2
GC content % 46.24

Coding DNA sequence (CDS) 3485
rRNAs 30
tRNAs 84

Table 3. COG categories of coding proteins in W. coagulans PL-W.

COG Class Name Count Proportion (%)

C Energy production and conversion 143 4.81

D
Cell cycle control, cell
division, chromosome

partitioning
180 6.05

E Amino acid transport
and metabolism 265 8.90

F Nucleotide transport
and metabolism 96 3.23

G Carbohydrate transport
and metabolism 254 8.53

H Coenzyme transport
and metabolism 156 5.24

I Lipid transport and metabolism 169 5.68

J Translation, ribosomal structure,
and biogenesis 212 7.12

K Transcription 221 7.43

L Replication, recombination,
and repair 127 4.27

M Cell wall/membrane/
envelope biogenesis 127 4.27

N Cell motility 49 1.65

O
Post-translational

modification, protein
turnover, chaperones

119 4.00

P Inorganic ion transport
and metabolism 133 4.47

Q
Secondary metabolite

biosynthesis, transport
and catabolism

41 1.38

R General function prediction only 184 6.18
S Function unknown 122 4.10
T Signal transduction mechanisms 165 5.54

U
Intracellular trafficking,

secretion, and
vesicular transport

29 0.97

V Defense mechanisms 94 3.16
W Extracellular structures 9 0.30

X Mobilome: prophages
and transposons 75 2.52

Z Cytoskeleton 6 0.20
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Figure 4. Circular genome map of W. coagulans PL-W. From outside to center, ring 1: encoding
gene (positive CDS); ring 2: encoding gene (reverse CDS); ring 3: tRNA and rRNA; ring 4: CRISPR,
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3.4. Taxonomic Classification and Phylogeny

Phylogenetic analysis at the genome level has contributed to evaluating the diversity
of W. coagulans species and the taxonomic status of the species. Type (Strain) Genome
Server (TYGS) is a high-throughput platform that is the most advanced genome-based clas-
sification platform [39]. The results of TYGS analysis demonstrated that W. coagulans PL-W
is similar to W. coagulans ATCC7050 and W. coagulans DSM1 (Figure 5). Digital DNA–DNA
hybridization (DDH) of the W. coagulans PL-W genome was performed using the publicly
available genome sequences of three W. coagulans (DSM1, 2–6, ATCC7050, and XZL9) using
the Genome–Genome Distance Calculator (GGDC) 3.0 server [40]. The results indicated
that W. coagulans PL-W shares 94.21% and 85.32% similarity with W. coagulans XZL9 and
W. coagulans 2–6, proving that W. coagulans PL-W is a new strain of Weizmannia. Using
JSpeciesWS to calculate average nucleotide identity (ANI) using the method described
previously revealed a 98.23% similarity of W. coagulans PL-W with W. coagulans XZL9 [41].
Thus, W. coagulans PL-W was identified as a member of the W. coagulans species based on
>70% similarity in DDH and ~95% or higher ANI with a similar reference strain.
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3.5. Safety Assessment of W. coagulans PL-W

Safety assessment is an essential process for selecting probiotics. According to the
recommendations of Qualified Safety Presumption (QPS) approved by the European Food
Safety Authority (EFSA), the presence and potential mobility of antibiotic resistance genes
should be considered when selecting new probiotics since the increasing resistance of
bacteria to antibiotics poses a great threat to human health [42]. The CARD database
contains bacterial drug resistance genes from different environmental sources (such as
the gut, domestic wastewater, rivers, etc.) and their annotated information such as their
resistance spectrum, mechanism of action, ontology, COG, and CDD [43]. Analysis of
the W. coagulans PL-W genome from the CARD database showed that W. coagulans PL-W
does not contain any antibiotic resistance genes or acquired antimicrobial genes detected.
Similarly, phenotypic studies of W. coagulans PL-W sensitivity to the antibiotics were all
below the cut-off values mentioned in the EFSA prescribed standards (Table 4).

Table 4. W. coagulans PL-W sensitivity to antibiotics.

Antibiotics MIC (µg/mL) MIC Cut-off Values
(µg/mL) Interpretation

Clindamycin 0.125 4 S
Gentamicin 0.25 4 S

Streptomycin 0.25 8 S
Vancomycin 0.5 4 S

Erythromycin 2 4 S
Kanamycin 0.25 8 S
Tetracycline 0.25 8 S

Chloramphenicol 4 8 S
S—susceptible; R—resistant.

The Virulence Factor Database (VFDB) collects information on the virulence factors
of bacterial pathogens [44]. The existence of any virulence genes was not detected on
the W. coagulans PL-W genome using the VFDB service. At the same time, we found that
W. coagulans PL-W did not exhibit hemolytic zones on the Columbia Agar plates with sheep
blood (Supplementary Materials, Figure S4). Based on the above analysis, we promoted
that W. coagulans PL-W was presumed to be a safe strain.

3.6. Assessment of Probiotic Properties

The ability to endure harsh conditions in the gastrointestinal tract is one of the criteria
for selecting probiotics [45]. A large number of genes involved in acid and bile salt
tolerance have been identified in the W. coagulans PL-W genome. ATP synthase (F1–F0-
ATPase), a group of proteins mainly involved in acid resistance, are known to effectively
pump protons out of the cell by hydrolyzing ATP, maintaining a low proton concentration
inside the cell, thereby improving acid tolerance and thus maintaining pH homeostasis.
There are eight coding F0F1 ATP synthase genes (atpC, atpD, atpG, atpA, atpH, atpF,
atpE, and atpB) that were identified in the W. coagulans PL-W genome. In addition, two
(Na+/H+) transport protein genes, one (H+/Cl−) antitransporter gene, ClcA, and one
(Ca2+/H+) antitransporter gene, chaA, were detected in the W. coagulans PL-W genome,
which has been shown to play critical roles in pH and homeostasis of cells [46,47]. Bile
salt hydrolases belong to the family of glycine hydrolase, which act by binding bile salts
to counteract the harmful effects of bile. A gene-encoding cholylglycine hydrolase was
identified in the W. coagulans PL-W genome. Two sodium bile acid symporter family genes
were also identified, and the presence of these genes was beneficial for the bile tolerance of
W. coagulans PL-W [48]. The survival rate of W. coagulans PL-W at 1% bile salt concentration
and pH 2.0 further validated the genomic data.

Adhesion to the intestinal epithelium has been considered an important probiotic
property since adhesion can promote intestinal colonization while competitively exclud-
ing harmful pathogens [49,50]. We searched the genes of adhesion, colonization, mucin
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binding, flagellar hook, and fibrinogen/fibronectin binding from annotated data. There
were 11 genes found to encode adhesion-related proteins in W. coagulans PL-W, including
hook-associated protein FlgK and FlgL, flagellar filament capping protein FliD, flagellar
hook–basal body complex protein FliE, flagellar hook–length control protein FliK, flagellar
hook assembly protein FlgD, flagellar basal body rod protein FlgF, fibronectin/fibrinogen-
binding protein (FbpA), DUF817 domains (fibronectin/fibrinogen binding protein), and
segregation and condensation protein (scpA and scpB) (fibronectin-binding protein). Flag-
ella can act directly as adhesins and play a key role in colonization by facilitating bacte-
rial motility [51]. Thus, several proteins related to flagellar formation were detected in
W. coagulans PL-W, indicating that W. coagulans PL-W may have good motility. Fibronectin
is an important multidomain glycoprotein with various adhesion properties and serves as
an essential link between cells and their extracellular matrix [52]. Additionally, some similar
types of adhesion proteins have been identified in genome-wide analyses of W. coagulans
S-Lac and W. coagulans GBI-30, helping the W. coagulans to colonize in host intestines and
act as probiotic [50].

3.7. Antimicrobial Compound Gene Prediction and Validation

The characteristics of synthesizing antimicrobial compounds play an important role
in the competition of survival exclusion when probiotics are colonized in the gut [11].
Genome analysis is expected to pave the way to finding new antimicrobial compounds
and understanding the mechanisms of antimicrobial compound production in bacteria [53].
Therefore, BAGEL 4.0 and AntiSMASH 5.0 were used to predict antimicrobial compounds
in W. coagulans PL-W. Polyketides (PKs)-T3PK3 biosynthesis, betalactone, and two RiPP-
like compounds were identified by antiSMASH. The two RiPP-like compounds were both
identified as Circularin A and Amylocyclicin by BAGEL 4.0 (Figure 6). Circularin A and
Amylocyclicin are typically produced as a propeptide after the leader peptide is cleaved,
and then ligation between the N- and C-termini results in cyclic antimicrobial peptides. Cir-
cularin A produced by Clostridium beijerinckii ATCC 25,752 has been reported to have broad-
spectrum antibacterial activity [54], and Amylocyclicin produced by Bacillus amyloliticus
FZB42 has a wide range of antibacterial activity against Gram-positive bacteria [55]. It
is worth noting that the putative Circularin A and Amylocyclicin synthetic gene clusters
of W. coagulans PL-W were not found to be similar to any known cluster by antiSMASH
servicer. The ABC transporter may be responsible for the transport of mature peptides to
protect itself from bacteriocin attack [56], which was both found on the putative Circularin
A and Amylocyclicin synthesis gene cluster, suggesting that these two bacteriocins may
be secreted in the form of ABC transport. A gene annotated with CirC protein that had a
modification function related to bacteriocin cyclization was detected in the Circularin A
synthesis gene cluster [57]. Meanwhile, a histidine kinase gene was detected on the putative
Amylocyclicin synthesis gene cluster, which predicted that Amylocyclicin synthesis might
be regulated by quorum sensing [58]. A transcriptional regulatory protein and competence
regulatory protein may be involved in the transcription and cyclization of Amylocyclicin.
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Tricine-SDS-PAGE analysis of the bacteriocins indicated that its molecular mass was
near 7 kDa (Figure 3C); combining the genomic information, we concluded the bacte-
riocin extracted from W. coagulans PL-W was Circular A and the entire amino acid se-
quence was MGLFHVASKFHVSAGIASGVVTAVLHAGTIASIIGAVTVVMSGGVDAILD-
MGWTAFIAEVKHLAKEYGKKRAIAW. Although the genome was confirmed for the
presence of the gene of Amylocyclicin, purification of crude bacteriocin did not find it.
Thus, we speculate that Amylocyclicin may be expressed only under certain specific growth
conditions, or Amylocyclicin did not show inhibitory activity against the L. monocytogenes
CMCC 54,004 that we used in the purification process. In this regard, it may be possible
to use heterologous expression methods in the future to detect the antimicrobial ability of
Amylocyclicin or attempt to use other bacteria rather than L. monocytogenes as the indicator
strain when purifying the bacteriocins. In general, the expression of Circularin A may
provide a competitive advantage for W. coagulans PL-W.

4. Conclusions

The current study identifies a bacteriocins-producing W. coagulans PL-W from Mon-
golian traditional cheese. The crude bacteriocin extracted from W. coagulans PL-W by
80% ammonium sulfate not only exhibited a broad antimicrobial spectrum including a
Gram-positive bacterium and a Gram-negative bacterium, some of which are common
foodborne pathogens, but has good stability to surfactant, heat, and pH. Genome analysis
indicated that W. coagulans PL-W is a safe strain to use. In addition, the strain harbors
genes encoding two bacteriocins which might ensure W. coagulans PL-W has excellent an-
tibacterial ability. Research of the crude bacteriocin characteristics and genomic sequencing
suggested that W. coagulans PL-W is a safe candidate for controlling foodborne pathogens
and is promising for use in the food industry. Moreover, the whole genomic results will
contribute to further in vitro and in vivo investigations of W. coagulans PL-W to prospect
its application as a probiotic.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/foods12010216/s1, Figure S1: Phylogenetic analysis of 16S rRNA
sequence of W. coagulans PL-W; Figure S2: KEGG category distribution of functional annotation
results; Figure S3: WEGO category distribution of functional annotation results. Figure S4: Evaluation
of hemolytic activity of W. coagulans PL-W in Columbia blood agar plates.
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