Enrichment of Wholemeal Rye Bread with Plant Sterols: Rheological Analysis, Optimization of the Production, Nutritional Profile and Starch Digestibility
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Dough Rheological Analysis
2.3. Breadmaking Procedure
2.4. Proximate Chemical Composition
2.4.1. Moisture
2.4.2. Ash
2.4.3. Soluble and Insoluble Dietary Fiber
2.4.4. Lipid
2.4.5. Protein
2.4.6. Carbohydrate
2.4.7. Total Starch
2.5. Simulated Gastrointestinal Digestion
2.5.1. Determination of Enzymatic Activities and Bile Salt Content
2.5.2. Digestion Procedure
2.6. Kinetics of Starch Hydrolysis
2.7. Statistical Analysis
3. Results and Discussion
3.1. Farinographic Properties
3.2. Optimization of the Breadmaking Procedure
3.3. Proximate Chemical Composition
3.3.1. Protein
3.3.2. Lipid
3.3.3. Carbohydrate
3.3.4. Dietary Fiber
3.4. Starch Hydrolysis Kinetics
3.4.1. Oral Phase
3.4.2. Gastric Phase
3.4.3. Intestinal Phase
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Noncommunicable Diseases, Key Facts. Available online: https://www.who.int/es/news-room/fact-sheets/detail/noncommunicable-diseases (accessed on 12 September 2022).
- Aune, D.; Keum, N.; Giovannucci, E.; Fadnes, L.T.; Boffetta, P.; Greenwood, D.C.; Tonstad, S.; Vatten, L.J.; Riboli, E.; Norat, T. Whole grain consumption and risk of cardiovascular disease, cancer, and all cause and cause specific mortality: Systematic review and dose-response meta-analysis of prospective studies. Br. Med. J. 2016, 353, i2716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Betoret, E.; Rosell, C.M. Enrichment of bread with fruits and vegetables: Trends and strategies to increase functionality. Cereal Chem. 2019, 97, 9–19. [Google Scholar] [CrossRef] [Green Version]
- Andersson, R.; Fransson, G.; Tietjen, M.; Aman, P. Content and molecular-weight distribution of dietary fiber components in whole-grain rye flour and bread. J. Agric. Food Chem. 2009, 57, 2004–2008. [Google Scholar] [CrossRef] [PubMed]
- Koistinen, V.M.; Mattila, O.; Katina, K.; Poutanen, K.; Aura, A.M.; Hanhineva, K. Metabolic profiling of sourdough fermented wheat and rye bread. Sci. Rep. 2018, 8, 5684. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Commission. Commission Decision (2006/58/EC) of 24 January 2006 authorising the placing on the market of rye bread with added phytosterols/phytostanols as novel foods or novel food ingredients pursuant to Regulation (EC) No 258/97 of the European Parliament and of the Council. Off. J. Eur. Commun. 2006, L31, 18–20. [Google Scholar]
- European Commission. Commission Decision (2006/59/EC) of 24 January 2006 authorising the placing on the market of rye bread with added phytosterols/phytostanols as novel foods or novel food ingredients under Regulation (EC) No 258/97 of the European Parliament and of the Council. Off. J. Eur. Commun. 2006, L31, 21–23. [Google Scholar]
- Poli, A.; Marangoni, F.; Corsini, A.; Manzato, E.; Marrocco, W.; Martini, D.; Medea, G.; Visioli, F. Phytosterols, cholesterol control, and cardiovascular disease. Nutrients 2021, 13, 2810. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Commission Regulation (EU) No 432/2012 of 16 May 2012 establishing a list of permitted health claims made on foods, other than those referring to the reduction of disease risk and to children’s development and health. Off. J. Eur. Commun. 2012, L136, 1–40. [Google Scholar]
- European Commission. Commission Regulation (EU) No 686/2014 of 20 June 2014 amending Regulations (EC) No 983/2009 and (EU) No 384/2010 as regards the conditions of use of certain health claims related to the lowering effect of plant sterols and plant stanols on blood LDL-cholesterol. Off. J. Eur. Commun. 2014, L182, 27–30. [Google Scholar]
- Söderholm, P.P.; Alfthan, G.; Koskela, A.H.; Adlercreutz, H.; Tikkanen, M.J. The effect of high-fiber rye bread enriched with nonesterified plant sterols on major serum lipids and apolipoproteins in normocholesterolemic individuals. Nutr. Metab. Cardiovasc. Dis. 2012, 22, 575–582. [Google Scholar] [CrossRef]
- Hadnađev, T.D.; Pojić, M.; Hadnađev, M.; Torbica, A. The Role of Empirical Rheology in Flour Quality Control. In Wide Spectra of Quality Control; Akyar, I., Ed.; IntechOpen: London, UK, 2011; pp. 335–359. [Google Scholar]
- Englyst, H.N.; Kingman, S.M.; Cummings, J.H. Classification and measurement of nutritionally important starch fractions. Eur. J. Clin. Nutr. 1992, 46, 33–50. [Google Scholar]
- Goñi, I.; Garcia-Alonso, A.; Saura-Calixto, F. A starch hydrolysis procedure to estimate glycemic index. Nutr. Res. 1997, 17, 427–437. [Google Scholar] [CrossRef]
- Guraya, H.S.; James, C.; Champagne, E.T. Effect of cooling, and freezing on the digestibility of debranched rice starch and physical properties of the resulting material. Starch 2001, 53, 64–74. [Google Scholar] [CrossRef]
- Brodkorb, A.; Egger, L.; Alminger, M.; Alvito, P.; Assuncao, R.; Ballance, S.; Bohn, T.; Bourlieu-Lacanal, C.; Boutrou, R.; Carriere, F.; et al. INFOGEST static in vitro simulation of gastrointestinal food digestion. Nat. Protoc. 2019, 14, 991–1014. [Google Scholar] [CrossRef]
- Bustos, M.C.; Vignola, M.B.; Perez, G.; León, A.E. In vitro digestion kinetics and bioaccessibility of starch in cereal food products. J. Cereal Sci. 2017, 77, 243–250. [Google Scholar] [CrossRef]
- Gao, J.; Tan, E.Y.N.; Low, S.H.L.; Wang, Y.; Ying, J.; Dong, Z.; Zhou, W. From bolus to digesta: How structural disintegration affects starch hydrolysis during oral-gastro-intestinal digestion of bread. J. Food Eng. 2021, 289, 110161. [Google Scholar] [CrossRef]
- Ribes, S.; Genot, M.; Aubry, L.; Talens, P.; Vénien, A.; Santé-Lhoutellier, V.; Peyron, M.A. Oral impairments decrease the nutrient bioaccessibility of bread in the elderly. Food Hydrocoll. 2023, 135, 108202. [Google Scholar] [CrossRef]
- Faubel, N.; Makran, M.; Cilla, A.; Alegría, A.; Barberá, R.; Garcia-Llatas, G. Bioaccessibility of Plant Sterols in Wholemeal Rye Bread Using the INFOGEST Protocol: Influence of Oral Phase and Enzymes of Lipid Metabolism. J. Agric. Food Chem. 2022, 70, 13223–13232. [Google Scholar] [CrossRef]
- Makran, M.; Faubel, N.; López-García, G.; Cilla, A.; Barberá, R.; Alegría, A.; Garcia-Llatas, G. Sterol bioaccessibility in a plant sterol-enriched beverage using the INFOGEST digestion method: Influence of gastric lipase, bile salts and cholesterol esterase. Food Chem. 2022, 382, 132305. [Google Scholar] [CrossRef]
- ICC Standard No. 115/1; Method for Using the Brabender Farinograph. International Association for Cereal Science and Technology: Vienna, Austria, 2003.
- Sanz-Penella, J.M.; Tamayo-Ramos, J.A.; Sanz, Y.; Haros, M. Phytate reduction in bran-enriched bread by phytase-producing bifidobacteria. J. Agric. Food Chem. 2009, 57, 10239–10244. [Google Scholar] [CrossRef]
- AACC. AACC Method 44-15A: Moisture—Air-Oven Methods. In AACC Approved Methods of Analysis, 10th ed.; American Association of Cereal Chemists International: St. Paul, MN, USA, 2000. [Google Scholar]
- AACC. AACC Method 08-03: Ash—Rapid (2-Hour, 600°) Method. In AACC Approved Methods of Analysis, 10th ed.; American Association of Cereal Chemists International: St. Paul, MN, USA, 2000. [Google Scholar]
- AOAC. AOAC Official Method 991.43: Total, Soluble and Insoluble Dietary Fiber in Foods. Gravimetric. In Official Methods of Analysis of AOAC International; AOAC International: Washington, DC, USA, 1996. [Google Scholar]
- AACC. AACC Method 30-10: Crude Fat in Flour, Bread, and Baked Cereal Products Not Containing Fruit. In AACC Approved Methods of Analysis, 10th ed.; American Association of Cereal Chemists International: St. Paul, MN, USA, 2000. [Google Scholar]
- ISO/TS 16634-1; ISO/TS 16634-2; Food Products—Determination of the Total Nitrogen Content by Combustion According to the Dumas Principle and Calculation of the Crude Protein Content—Part 1 and 2: Cereals, Pulses and Milled Cereal Products. International Organization for Standardization: Geneva, Switzerland, 2016.
- AOAC. AOAC Official Method 996.11: Starch (Total) in Cereal Products. Amyloglucosidase–α-Amylase Method. In Official Methods of Analysis of AOAC International; AOAC International: Washington, DC, USA, 1996. [Google Scholar]
- Sahu, G.K.; Upadhyay, S.; Panna, S.M. Salivary alpha amylase activity in human beings of different age groups subjected to psychological stress. Indian J. Clin. Biochem. 2014, 29, 485–490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azizi, R.; Capuano, E.; Nasirpour, A.; Pellegrini, N.; Golmakani, M.T.; Hosseini, S.M.H.; Farahnaky, A. Varietal differences in the effect of rice ageing on starch digestion. Food Hydrocoll. 2019, 95, 358–366. [Google Scholar] [CrossRef]
- Torbica, A.; Blažek, K.M.; Belović, M.; Hajnal, E.J. Quality Prediction of Bread Made from Composite Flours Using Different Parameters of Empirical Rheology. J. Cereal Sci. 2019, 89, 102812. [Google Scholar] [CrossRef]
- Stępniewska, S.; Hassoon, W.H.; Szafrańska, A.; Cacak-Pietrzak, G.; Dziki, D. Procedures for Breadmaking Quality Assessment of Rye Wholemeal Flour. Foods 2019, 8, 331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Czubaszek, A.; Wojciechowicz-Budzisz, A.; Spychaj, R.; Kawa-Rygielska, J. Baking properties of flour and nutritional value of rye bread with brewer’s spent grain. LWT 2021, 150, 111955. [Google Scholar] [CrossRef]
- Saeed, F.; Pasha, I.; Anjum, F.M.; Sultan, M.T. Arabinoxylans and arabinogalactans: A comprehensive treatise. Crit. Rev. Food Sci. Nutr. 2011, 51, 467–476. [Google Scholar] [CrossRef]
- Laurikainen, T.; Härkönen, H.; Autio, K.; Poutanen, K. Effects of enzymes in fibre-enriched baking. J. Sci. Food Agric. 1998, 76, 239–249. [Google Scholar] [CrossRef]
- Koppel, R.; Ingver, A. Stability and predictability of baking quality of winter wheat. Agron. Res. 2010, 8, 637–644. [Google Scholar]
- Rosell, C.M. The science of doughs and bread quality. In Flour and Breads and Their Fortification in Health and Disease Prevention, 1st ed.; Preedy, V.R., Watson, R.R., Patel, V.B., Eds.; Academic Press: Cambridge, MA, USA, 2011; pp. 3–14. [Google Scholar]
- Kołodziejczyk, P.; Michniewicz, J.; Buchowski, M.S.; Paschke, H. Effects of fibre-rich rye milling fraction on the functional properties and nutritional quality of wholemeal rye bread. J. Food Sci. Technol. 2020, 57, 222–232. [Google Scholar] [CrossRef] [Green Version]
- Carocho, M.; Morales, P.; Ciudad-Mulero, M.; Fernández-Ruiz, V.; Ferreira, E.; Heleno, S.; Rodrigues, P.; Barros, L.; Ferreira, I.C. Comparison of different bread types: Chemical and physical parameters. Food Chem. 2020, 310, 125954. [Google Scholar] [CrossRef]
- Zielinski, H.; Ciska, E.; Kozlowska, H. The cereal grains: Focus on vitamin E. Czech Food Sci. 2001, 19, 182–188. [Google Scholar] [CrossRef] [Green Version]
- Alijošius, S.; Švirmickas, G.J.; Bliznikas, S.; Gružauskas, R.; Šašytė, V.; Racevičiūtė-Stupelienė, A.; Kliševičiūtė, V.; Daukšien, A. Grain chemical composition of different varieties of winter cereals. Zemdirb. Agric. 2016, 103, 273–280. [Google Scholar] [CrossRef] [Green Version]
- Beck, M.; Jekle, M.; Selmair, P.L.; Koehler, P.; Becker, T. Rheological properties and baking performance of rye dough as affected by transglutaminase. J. Cereal Sci. 2011, 54, 29–36. [Google Scholar] [CrossRef]
- Deleu, L.J.; Lemmens, E.; Redant, L.; Delcour, J.A. The major constituents of rye (Secale cereale L.) flour and their role in the production of rye bread, a food product to which a multitude of health aspects are ascribed. Cereal Chem. 2020, 97, 739–754. [Google Scholar] [CrossRef]
- Pareyt, B.; Finnie, S.M.; Putseys, J.A.; Delcour, J.A. Lipids in bread making: Sources, interactions, and impact on bread quality. J. Cereal Sci. 2011, 54, 266–279. [Google Scholar] [CrossRef]
- Kan, A. Characterization of the fatty acid and mineral compositions of selected cereal cultivars from Turkey. Rec. Nat. Prod. 2015, 9, 124–134. [Google Scholar]
- European Commission. Commission Regulation (EC) No 1924/2006 of the European Parliament and of the Council of 20 December 2006 on nutrition and health claims made on foods. Off. J. Eur. Commun. 2006, L404, 9–25. [Google Scholar]
- Nyström, L.; Paasonen, A.; Lampi, A.M.; Piironen, V. Total plant sterols, steryl ferulates and steryl glycosides in milling fractions of wheat and rye. J. Cereal Sci. 2007, 45, 106–115. [Google Scholar] [CrossRef]
- Piironen, V.; Toivo, J.; Lampi, A.M. Plant sterols in cereals and cereal products. Cereal Chem. 2002, 79, 148–154. [Google Scholar] [CrossRef]
- Verwimp, T.; Vandeputte, G.E.; Marrant, K.; Delcour, J.A. Isolation and characterisation of rye starch. J. Cereal Sci. 2004, 39, 85–90. [Google Scholar] [CrossRef]
- Zhang, G.; Hamaker, B.R. Slowly digestible starch: Concept, mechanism, and proposed extended glycemic index. Crit. Rev. Food Sci. Nutr. 2009, 49, 852–867. [Google Scholar] [CrossRef] [PubMed]
- Cyran, M.; Cygankiewicz, A. Variability in the content of water-extractable and water-unextractable non-starch polysaccharides in rye flour and their relationship to baking quality parameters. Cereal Res. Commun. 2004, 32, 143–150. [Google Scholar] [CrossRef]
- Nyström, L.; Lampi, A.-M.; Andersson, A.A.M.; Kamal-Eldin, A.; Gebruers, K.; Courtin, C.M.; Delcour, J.A.; Li, L.; Ward, J.L.; Fraś, A.; et al. Phytochemicals and Dietary Fiber Components in Rye Varieties in the HEALTHGRAIN Diversity Screen. J. Agric. Food Chem. 2008, 56, 9758–9766. [Google Scholar] [CrossRef] [PubMed]
- El-Mahis, A.; Baky, M.H.; Farag, M.A. How does rye compare to other cereals? A comprehensive review of its potential nutritional value and better opportunities for its processing as a food-based cereal. Food Rev. Int. 2022, 1–24. [Google Scholar] [CrossRef]
- Noori, N.; Hamedi, H.; Kargozari, M.; Shotorbani, P.M. Investigation of potential prebiotic activity of rye sprout extract. Food Biosci. 2017, 19, 121–127. [Google Scholar] [CrossRef]
- Lehmann, U.; Robin, F. Slowly digestible starch–its structure and health implications: A review. Trends Food Sci. Technol. 2007, 18, 346–355. [Google Scholar] [CrossRef]
- Birt, D.F.; Boylston, T.; Hendrich, S.; Jane, J.-L.; Hollis, J.; Li, L.; McClelland, J.; Moore, S.; Phillips, G.J.; Schalinske, M.R.K.; et al. Resistant Starch: Promise for Improving Human Health. Adv. Nutr. 2013, 4, 587–601. [Google Scholar] [CrossRef] [Green Version]
- Butterworth, P.J.; Warren, F.J.; Ellis, P.R. Human α-amylase and starch digestion: An interesting marriage. Starch Stärke 2011, 63, 395–405. [Google Scholar] [CrossRef]
- Freitas, D.; Le Feunteun, S.; Panouille, M.; Souchon, I. The important role of salivary alpha-amylase in the gastric digestion of wheat bread starch. Food Funct. 2018, 9, 200–208. [Google Scholar] [CrossRef]
- Nater, U.M.; La Marca, R.; Florin, L.; Moses, A.; Langhans, W.; Koller, M.M.; Ehlert, U. Stress-induced changes in human salivary alpha-amylase activity-associations with adrenergic activity. Psychoneuroendocrinology 2006, 31, 49–58. [Google Scholar] [CrossRef]
- Woolnough, J.W.; Bird, A.R.; Monro, J.A.; Brennan, C.S. The effect of a brief salivary alpha-amylase exposure during chewing on subsequent in vitro starch digestion curve profiles. Int. J. Mol. Sci. 2010, 11, 2780–2790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pentikäinen, S.; Sozer, N.; Närväinen, J.; Ylätalo, S.; Teppola, P.; Jurvelin, J.; Holopainen-Mantila, U.; Törrönen, R.; Aura, A.-M.; Poutanen, K. Effects of wheat and rye bread structure on mastication process and bolus properties. Food Res. Int. 2014, 66, 356–364. [Google Scholar] [CrossRef]
- Juntunen, K.S.; Laaksonen, D.E.; Autio, K.; Niskanen, L.K.; Holst, J.J.; Savolainen, K.E.; Liukkonen, K.-H.; Poutanen, K.S.; Mykkänen, H.M. Structural differences between rye and wheat breads but not total fiber content may explain the lower postprandial insulin response to rye bread. Am. J. Clin. Nutr. 2003, 78, 957–964. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Östman, J.R.; Müllner, E.; Eriksson, J.; Kristinsson, H.; Gustafsson, J.; Witthöft, C.; Bergsten, P.; Moazzami, A.A. Glucose appearance rate rather than the blood glucose concentrations explains differences in postprandial insulin responses between wholemeal rye and refined wheat breads-results from a cross-over meal study. Mol. Nutr. Food Res. 2019, 63, e1800959. [Google Scholar] [CrossRef]
- Zhang, H.; Li, Z.; Zhang, L.; Lai, P.F.; Tian, Y.; Cui, S.W.; Ai, L. Effects of soluble dietary fibers on the viscosity property and digestion kinetics of corn starch digesta. Food Chem. 2021, 338, 127825. [Google Scholar] [CrossRef]
Flour | WRB | PS-WRB | |
---|---|---|---|
Moisture | 11.5 ± 0.3 | 26.14 ± 0.02 | 32.7 ± 1.0 * |
Protein | 7.7 ± 0.5 | 7.9 ± 0.1 | 7.8 ± 0.1 |
Ash | 1.54 ± 0.01 | 1.99 ± 0.03 | 2.0 ± 0.1 |
Lipid | 1.6 ± 0.1 | 1.57 ± 0.03 | 4.7 ± 0.2 * |
Carbohydrate | 73.0 ± 0.5 | 69.7 ± 1.8 | 65.2 ± 0.6 |
Total starch | 59.1 ± 2.4 | – | 54.7 ± 2.7 |
Insoluble fiber | 11.5 ± 0.2 | 14.5 ± 1.8 | 15.2 ± 1.8 |
Soluble fiber | 4.7 ± 0.5 | 5.4 ± 0.2 | 5.1 ± 0.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Makran, M.; Cilla, A.; Haros, C.M.; Garcia-Llatas, G. Enrichment of Wholemeal Rye Bread with Plant Sterols: Rheological Analysis, Optimization of the Production, Nutritional Profile and Starch Digestibility. Foods 2023, 12, 93. https://doi.org/10.3390/foods12010093
Makran M, Cilla A, Haros CM, Garcia-Llatas G. Enrichment of Wholemeal Rye Bread with Plant Sterols: Rheological Analysis, Optimization of the Production, Nutritional Profile and Starch Digestibility. Foods. 2023; 12(1):93. https://doi.org/10.3390/foods12010093
Chicago/Turabian StyleMakran, Mussa, Antonio Cilla, Claudia Monika Haros, and Guadalupe Garcia-Llatas. 2023. "Enrichment of Wholemeal Rye Bread with Plant Sterols: Rheological Analysis, Optimization of the Production, Nutritional Profile and Starch Digestibility" Foods 12, no. 1: 93. https://doi.org/10.3390/foods12010093
APA StyleMakran, M., Cilla, A., Haros, C. M., & Garcia-Llatas, G. (2023). Enrichment of Wholemeal Rye Bread with Plant Sterols: Rheological Analysis, Optimization of the Production, Nutritional Profile and Starch Digestibility. Foods, 12(1), 93. https://doi.org/10.3390/foods12010093