Characterization, Thermal Stability and Antimicrobial Evaluation of the Inclusion Complex of Litsea cubeba Essential Oil in Large-Ring Cyclodextrins (CD9–CD22)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. LCEO/LRCD Inclusion Complex Preparation
2.3. Structure and Physicochemical Properties of LCEO/LRCD
2.3.1. Determination of the FTIR of LCEO/LRCD
2.3.2. Thermodynamic Determination of LCEO/LRCD
2.3.3. Observation of the LCEO/LRCD Microstructure
2.3.4. Analysis of the Volatile Profile
2.4. Inhibitory Activity of LCEO and Its Microcapsules toward the Test Strains
2.4.1. Determination of the Diameter of the LCEO Direct Contact Inhibition Strain
- (1)
- LCEO direct contact inhibition strain test
- (2)
- LCEO fumigation inhibition strain experiment
2.4.2. The Inhibitory Activity of Essential Oils and Microcapsules towards Microbes Is Affected by Temperature
2.4.3. Determination of the Activity of LCEO and Microcapsule in the Direct Contact Inhibition of the Strains
2.5. Research on the Kinetics of LCEO and Microcapsule Release
2.6. Evaluation of LCEO Antimicrobial Activity and Microcapsule Sustained Release
2.6.1. Release Study
2.6.2. Antimicrobial Activity
2.7. Statistics and Data Analysis
3. Results and Discussion
3.1. Analysis of LCEO Microcapsules
3.1.1. Analysis of Fourier Infrared Spectra
3.1.2. Observation of Appearance and Structure
3.1.3. Thermogravimetric Analysis
3.1.4. Analysis of Volatile Compounds
3.2. Analysis of the Inhibitory Effects of LCEO and Its Microcapsules on the Strains
3.2.1. Analysis of the Diameter of the Inhibitory Region of LCEO and the Effect on the Strain
3.2.2. The Inhibition Effect of Essential Oils and Microcapsules on the Test Strain Is Affected by Temperature
3.2.3. Analysis of the Activity Inhibition of LCEO and Its Microcapsules in Direct Contact with Strains
3.3. Essential Oils’ Microencapsulation Release Performance
3.3.1. Determination of the Essential Oil Microcapsule Volatile Curve
3.3.2. Release Kinetics of Essential Oils Microcapsules
3.4. Sustained Release Impact on the Antimicrobial Activity of LCEO and Its Microcapsules
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Li, W.R.; Shi, Q.S.; Liang, Q.; Xie, X.B.; Huang, X.M.; Chen, Y. Ben Antibacterial Activity and Kinetics of Litsea cubeba Oil on Escherichia coli. PLoS ONE 2014, 9, 110983–110989. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yin, C.; Cheng, X.; Li, G.; Zhu, X. β-Cyclodextrin Inclusion Complex Containing Litsea cubeba Essential Oil: Preparation, Optimization, Physicochemical, and Antifungal Characterization. Coatings 2020, 10, 850. [Google Scholar] [CrossRef]
- Guo, S.-S.; You, C.-X.; Liang, J.-Y.; Zhang, W.-J.; Geng, Z.-F.; Wang, C.-F.; Du, S.-S.; Lei, N. Chemical Composition and Bioactivities of the Essential Oil from Etlingera yunnanensis against Two Stored Product Insects. Molecules 2015, 20, 15735–15747. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.H.; Li, X.Z.; Zhang, S. Preparation Methods and Release Kinetics of: Litsea cubeba Essential Oil Microcapsules. RSC Adv. 2018, 8, 29980–29987. [Google Scholar] [CrossRef]
- Hc, A.; Cz, A.; Cl, B.; Lin, L.A. Preparation and Antibacterial Activity of Litsea cubeba Essential Oil/Dandelion Polysaccharide Nanofiber. Ind. Crop. Prod. 2019, 140, 111739–111743. [Google Scholar]
- Tiwari, B.K.; Valdramidis, V.P.; Donnell, C.P.O.; Muthukumarappan, K.; Bourke, P.; Cullen, P.J. Application of Natural Antimicrobials for Food Preservation. J. Agric. Food Chem. 2009, 57, 5987–5994. [Google Scholar] [CrossRef]
- Wang, Y.; Jiang, Z.T.; Li, R. Antioxidant Activity, Free Radical Scavenging Potential and Chemical Composition of Litsea cubeba Essential Oil. J. Essent. Oil-Bear. Plants JEOP 2012, 15, 134–143. [Google Scholar] [CrossRef]
- Hu, L.; Du, M.; Zhang, J.; Wang, Y. Chemistry of the Main Component of Essential Oil of Litsea cubeba and Its Derivatives. Open J. For. 2014, 4, 457–466. [Google Scholar] [CrossRef]
- Bhandari, B.R.; D’Arcy, B.R.; Bich, L.L.T. Lemon Oil to β-Cyclodextrin Ratio Effect on the Inclusion Efficiency of β-Cyclodextrin and the Retention of Oil Volatiles in the Complex. J. Agric. Food Chem. 1998, 46, 1494–1499. [Google Scholar] [CrossRef]
- Li, H.; Ma, Y.; Li, Z.; Ji, J.; Zhu, Y.; Wang, H. High Temperature Resistant Polysulfone/Silica Double-Wall Microcapsules and Their Application in Self-Lubricating Polypropylene. RSC Adv. 2017, 7, 50328–50335. [Google Scholar] [CrossRef]
- Shetta, A.; Kegere, J.; Mamdouh, W. Comparative Study of Encapsulated Peppermint and Green Tea Essential Oils in Chitosan Nanoparticles: Encapsulation, Thermal Stability, In-Vitro Release, Antioxidant and Antibacterial Activities. Int. J. Biol. Macromol. 2019, 126, 731–742. [Google Scholar] [CrossRef] [PubMed]
- Cao, C.; Xu, L.; Xie, P.; Hu, J.; Qi, J.; Zhou, Y.; Cao, L. The Characterization and Evaluation of the Synthesis of Large-Ring Cyclodextrins (CD9-CD22) and α-Tocopherol with Enhanced Thermal Stability. RSC Adv. 2020, 10, 6584–6591. [Google Scholar] [CrossRef] [PubMed]
- Zheng, M.; Endo, T.; Zimmermann, W. Synthesis of Large-Ring Cyclodextrins by Cyclodextrin Glucanotransferases from Bacterial Isolates. J. Incl. Phenom. Macrocycl. Chem. 2002, 44, 387–390. [Google Scholar] [CrossRef]
- Kuttiyawong, K.; Saehu, S.; Ito, K.; Pongsawasdi, P. Synthesis of Large-Ring Cyclodextrin from Tapioca Starch by Amylomaltase and Complex Formation with Vitamin E Acetate for Solubility Enhancement. Process Biochem. 2015, 50, 2168–2176. [Google Scholar] [CrossRef]
- Koontz, J.L.; Marcy, J.E.; O’keefe, S.F.; Duncan, S.E. Cyclodextrin Inclusion Complex Formation and Solid-State Characterization of the Natural Antioxidants α-Tocopherol and Quercetin. J. Agric. Food Chem. 2009, 57, 1162–1171. [Google Scholar] [CrossRef]
- Yang, L.; Zhou, Y.; Zheng, X.; Wang, H.; Wang, N. Determination of Optimum Experimental Conditions for Preparation and Functional Properties of Hydroxypropylated, Phosphorylated and Hydroxypropyl-Phosphorylated Glutinous Rice Starch. Int. J. Biol. Macromol. 2017, 105, 317–327. [Google Scholar] [CrossRef]
- Deng, C.Y.; Cao, C.; Zhou, Y.; Hu, J.; Gong, Y.; Zheng, M.; Zhou, Y. Formation and stabilization mechanism of β-cyclodextrin inclusion complex with C10 aroma molecules. Food Hydrocoll. 2021, 9, 107013–107026. [Google Scholar] [CrossRef]
- Cao, C.; Wei, D.; Xu, L.; Hu, J.; Qi, J.; Zhou, Y. Characterization of Tea Tree Essential Oil and Large-Ring Cyclodextrins (CD9–CD22) Inclusion Complex and Evaluation of Its Thermal Stability and Volatility. J. Sci. Food Agric. 2021, 101, 2877–2883. [Google Scholar] [CrossRef]
- Mehran, M.; Masoum, S.; Memarzadeh, M. Microencapsulation of Mentha Spicata Essential Oil by Spray Drying: Optimization, Characterization, Release Kinetics of Essential Oil from Microcapsules in Food Models. Ind. Crop. Prod. 2020, 154, 112694. [Google Scholar] [CrossRef]
- Ziaee, E.; Razmjooei, M.; Shad, E.; Eskandari, M.H. Antibacterial Mechanisms of Zataria multiflora Boiss. Essential Oil against Lactobacillus curvatus. LWT 2018, 87, 406–412. [Google Scholar] [CrossRef]
- Cortés-Camargo, S.; Acuña-Avila, P.E.; Rodríguez-Huezo, M.E.; Román-Guerrero, A.; Varela-Guerrero, V.; Pérez-Alonso, C. Effect of chia mucilage addition on oxidation and release kinetics of lemon essential oil microencapsulated using mesquite gum–Chia mucilage mixtures. Food Res. Int. 2019, 116, 1010–1019. [Google Scholar] [CrossRef] [PubMed]
- Dima, C.; Ptracu, L.; Cantaragiu, A.; Alexe, P.; Dima, T. The Kinetics of the Swelling Process and the Release Mechanisms of Coriandrum sativum L. Essential Oil from Chitosan/Alginate/Inulin Microcapsules. Food Chem. 2015, 195, 39–48. [Google Scholar] [CrossRef] [PubMed]
- Bezerra, F.M.; Lis, M.; Carmona, Ó.G.; Carmona, C.G.; Moraes, F.F. Assessment of the Delivery of Citronella Oil from Microcapsules Supported on Wool Fabrics. Powder Technol. 2018, 343, 775–782. [Google Scholar] [CrossRef]
- Janatova, A.; Bernardos, A.; Smid, J.; Frankova, A.; Lhotka, M.; Kourimská, L.; Pulkrabek, J.; Kloucek, P. Long-Term Antifungal Activity of Volatile Essential Oil Components Released from Mesoporous Silica Materials. Ind. Crop. Prod. 2015, 67, 216–220. [Google Scholar] [CrossRef]
- Hill, L.E.; Gomes, C.; Taylor, T.M. Characterization of Beta-Cyclodextrin Inclusion Complexes Containing Essential Oils (Trans-Cinnamaldehyde, Eugenol, Cinnamon Bark, and Clove Bud Extracts) for Antimicrobial Delivery Applications. LWT-Food Sci. Technol. 2013, 51, 86–93. [Google Scholar] [CrossRef]
- Ueda, H. Physicochemical Properties and Complex Formation Abilities of Large-Ring Cyclodextrins. J. Incl. Phenom. Macrocycl. Chem. 2002, 44, 53–56. [Google Scholar] [CrossRef]
- Wang, L.; Li, S.; Tang, P.; Yan, J.; Xu, K.; Li, H. Characterization and Evaluation of Synthetic Riluzole with β-Cyclodextrin and 2,6-Di-O-Methyl-β-Cyclodextrin Inclusion Complexes. Carbohydr. Polym. 2015, 129, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Kringel, D.H.; Antunes, M.D.; Klein, B.; Crizel, R.L.; Wagner, R.; de Oliveira, R.P.; Dias, A.R.G.; da Rosa Zavareze, E. Production, Characterization, and Stability of Orange or Eucalyptus Essential Oil/β-Cyclodextrin Inclusion Complex. J. Food Sci. 2017, 82, 2598–2605. [Google Scholar] [CrossRef]
- Cui, H.; Siva, S.; Lin, L. Ultrasound Processed Cuminaldehyde/2-Hydroxypropyl-β-Cyclodextrin Inclusion Complex: Preparation, Characterization and Antibacterial Activity. Ultrason. Sonochem. 2019, 56, 84–93. [Google Scholar] [CrossRef]
- Su, Z.; Qin, Y.; Zhang, K.; Bi, Y.; Kong, F. Inclusion Complex of Exocarpium Citri Grandis Essential Oil with β-Cyclodextrin: Characterization, Stability, and Antioxidant Activity. J. Food Sci. 2019, 84, 1592–1599. [Google Scholar] [CrossRef]
- Yue, Q.; Shao, X.; Wei, Y.; Jiang, S.; Xu, F.; Wang, H.; Gao, H. Optimized Preparation of Tea Tree Oil Complexation and Their Antifungal Activity against Botrytis cinerea. Postharvest Biol. Technol. 2020, 162, 111114–111125. [Google Scholar] [CrossRef]
- Turek, C.; Stintzing, F.C. Stability of Essential Oils: A Review. Compr. Rev. Food Sci. Food Saf. 2013, 12, 40–53. [Google Scholar] [CrossRef]
- Maderuelo, C.; Zarzuelo, A.; Lanao, J.M. Critical Factors in the Release of Drugs from Sustained Release Hydrophilic Matrices. J. Control. Release Off. J. Control. Release Soc. 2011, 154, 2–19. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, S.F.; Zandi, M.; Rezaei, M.; Farahmandghavi, F. Two-Step Method for Encapsulation of Oregano Essential Oil in Chitosan Nanoparticles: Preparation, Characterization and in Vitro Release Study. Carbohydr. Polym. 2013, 95, 50–56. [Google Scholar] [CrossRef]
- Siepmann, J.; Peppas, N.A. Modeling of Drug Release from Delivery Systems Based on Hydroxypropyl Methylcellulose (HPMC). Adv. Drug Deliv. Rev. 2012, 64, 163–174. [Google Scholar] [CrossRef]
- Dash, S.; Murthy, P.N.; Nath, L.; Chowdhury, P. Kinetic Modeling on Drug Release from Controlled Drug Delivery Systems. Acta Pol. Pharm. 2015, 67, 217–223. [Google Scholar] [CrossRef]
LCEO | |||
---|---|---|---|
Volatiles in LCEO (%) | Volatiles in Microcapsules | ||
Volatiles | Area % | Volatiles | Area % |
α-Citral | 20.17 ± 0.25 | Limonene | 21.56 ± 0.15 |
β-Citral isomer | 17.08 ± 0.21 | α-Citral | 20.09 ± 0.18 |
Limonene | 15.94 ± 0.23 | β-Citral isomer | 16.91 ± 0.21 |
β-pinene | 5.83 ± 0.12 | β-Pinene | 6.15 ± 0.15 |
β-Phellandrene | 4.34 ± 0.09 | β-Phellandrene | 4.51 ± 0.11 |
(1R)-(+)-α-Pinene | 3.28 ± 0.02 | (1R)-(+)-α-Pinene | 3.82 ± 0.16 |
Eucalyptol | 3.12 ± 0.05 | Eucalyptol | 2.75 ± 0.11 |
Carvone | 2.94 ± 0.03 | Linalool | 2.63 ± 0.05 |
Carveol | 2.83 ± 0.02 | Sabinene | 2.41 ± 0.04 |
1,8-Cineol | 2.75 ± 0.05 | Methyl heptenone | 1.95 ± 0.25 |
Dihydrocarvone | 2.54 ± 0.03 | Citronellal | 1.62 ± 0.05 |
E-β-Caryophyllene | 2.45 ± 0.05 | Carvone | 1.23 ± 0.03 |
δ-3-Carene | 2.22 ± 0.04 | Carveol | 1.01 ± 0.02 |
α-Cadinadien | 1.83 ± 0.06 | 1,8-Cineol | 0.94 ± 0.05 |
Linalool | 1.35 ± 0.05 | Dihydrocarvone | 0.68 ± 0.03 |
Sabinene | 1.34 ± 0.05 | E-β-Caryophyllene | 0.54 ± 0.04 |
Methyl heptenone | 1.12 ± 0.02 | Delta-3-Carene | 0.49 ± 0.03 |
Citronellal | 1.05 ± 0.01 | α-Cadinadien | 0.32 ± 0.02 |
4-Methyl-1,4-heptadiene | 1.02 ± 0.02 | Borneol | 0.25 ± 0.05 |
Citronellal isomer | 0.97 ± 0.02 | Copaene | 0.19 ± 0.05 |
1,5,9,11-Tridecatetraene,12-methyl- | 0.82 ± 0.05 | Menthone | 0.17 ± 0.01 |
Terpineol | 0.79 ± 0.05 | Bicycloelemene | 0.13 ± 0.02 |
Borneol | 0.72 ± 0.03 | ||
Copaene | 0.65 ± 0.04 | ||
Menthone | 0.59 ± 0.06 | ||
Bicycloelemene | 0.53 ± 0.05 | ||
Pelargonaldehyde | 0.49 ± 0.05 | ||
Azulene | 0.34 ± 0.07 | ||
β-Myrcene | 0.32 ± 0.05 |
Test Strain | Diameter of Inhibition Zone in Direct Contact (mm) | Diameter of Inhibition Zone in Fumigation (mm) |
---|---|---|
E. coli | 15.88 ± 0.05 b | 16.08 ± 0.28 a |
B. subtilis | 15.51 ± 0.13 b | 18.33 ± 0.22 b |
Kluyveromyces marxianus | 14.46 ± 0.14 a | 16.27 ± 0.15 a |
A. niger | 20.53 ± 0.09 d | 23.28 ± 0.24 d |
Rhizopusoryzae | 19.82 ± 0.16 c | 22.19 ± 0.09 c |
Antimicrobial Agent | T (°C) | Diameter of the Inhibition Zone (mm) | ||||
---|---|---|---|---|---|---|
E. coli | B. subtilis | Kluyveromyces marxianus | A. niger | Rhizopus oryzae | ||
LCEO | 4 | 15.01 ± 0.17 c | 13.13 ± 0.09 b | 13.81 ± 0.19 e | 22.13 ± 0.29 f | 20.06 ± 0.19 c |
50 | 15.47 ± 0.13 cd | 13.89 ± 0.17 cd | 14.29 ± 0.08 f | 22.43 ± 0.18 f | 20.51 ± 0.23 cd | |
100 | 15.08 ± 0.09 c | 13.25 ± 0.12 b | 14.16 ± 0.18 f | 22.28 ± 0.07 f | 20.23 ± 0.13 c | |
LCEO/LRCD | 4 | 15.46 ± 0.13 cd | 13.62 ± 0.23 c | 15.12 ± 0.14 g | 22.21 ± 0.09 f | 20.89 ± 0.24 d |
50 | 16.47 ± 0.21 e | 14.89 ± 0.18 f | 15.88 ± 0.14 h | 23.29 ± 0.18 g | 21.26 ± 0.17 e | |
100 | 16.24 ± 0.12 de | 14.56 ± 0.19 e | 15.63 ± 0.09 h | 22.45 ± 0.17 f | 20.81 ± 0.16 cd |
Test Strain | LCEO | LCEO/LRCD | ||
---|---|---|---|---|
MIC mg/mL | MBC mg/mL | MIC mg/mL | MBC mg/mL | |
E. coli | 3.0 ± 0.17 d | 6.0 ± 0.06 d | 6.0 ± 0.11 c | 12.0 ± 0.13 d |
B. subtilis | 2.8 ± 0.07 c | 5.6 ± 0.12 c | 8.4 ± 0.12 e | 11.2 ± 0.09 d |
Kluyveromyces marxianus | 3.5 ± 0.11 e | 7.0 ± 0.13 e | 7.0 ± 0.09 d | 7.0 ± 0.17 b |
A. niger | 1.8 ± 0.03 a | 3.6 ± 0.04 a | 3.6 ± 0.02 a | 3.6 ± 0.07 a |
Rhizopus oryzae | 2.3 ± 0.06 b | 4.6 ± 0.08 b | 4.6 ± 0.05 b | 9.2 ± 0.12 c |
Release Kinetic Equation | 65 °C | 37 °C |
---|---|---|
Zero-order dynamic equation: Q = kt | Q = 0.50t + 25.16 R2 = 0.75 | Q = 0.49t + 12.43 R2 = 0.91 |
First-order dynamic equation: Q = 1 − etp(−kt) | Q = 58.01 (1 − etp−2.48t) R2 = 0.87 | Q = 43.26 (1 − etp−0.83t) R2 = 0.80 |
Higuchi equation: Q = kt0.5 | Q = 6.84t0.5 + 6.64 R2 = 0.94 | Q = 6.25t0.5 − 2.51 R2 = 0.99 |
Peppas equation: Q = ktn | Q = 14.81t0.35 − 1.70 R2 = 0.96 | Q = 5.33t0.53 − 1.27 R2 = 0.99 |
Diameter of Antimicrobial Circle (mm) | ||||
---|---|---|---|---|
Sample | Day | E. coli | A. niger | Rhizopus oryzae |
LCEO | 3 | 9.25 ± 0.48 a | 8.64 ± 0.69 a | 12.87 ± 0.75 a |
7 | 22.93 ± 1.12 d | 24.38 ± 2.18 d | 44.82 ± 0.54 e | |
14 | 31.93 ± 1.43 e | 65.16 ± 1.31 i | >90 | |
LCEO/LRCD Inclusion complex | 3 | 10.11 ± 0.48 b | 13.57 ± 0.23 ab | 19.12 ± 0.34 b |
7 | 22.65 ± 0.54 d | 28.87 ± 1.12 e | 41.34 ± 0.42 d | |
14 | 31.74 ± 0.62 e | 52.76 ± 1.18 e | 82.76 ± 1.08 g | |
control group | 3 | 12.32 ± 1.02 b | 18.33 ± 0.67 c | 58.64 ± 0.65 f |
7 | 25.32 ± 0.76 d | 47.76 ± 0.54 g | >90 | |
14 | 35.32 ± 0.23 f | 82.16 ± 0.15 j | >90 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, C.; Xie, P.; Zhou, Y.; Guo, J. Characterization, Thermal Stability and Antimicrobial Evaluation of the Inclusion Complex of Litsea cubeba Essential Oil in Large-Ring Cyclodextrins (CD9–CD22). Foods 2023, 12, 2035. https://doi.org/10.3390/foods12102035
Cao C, Xie P, Zhou Y, Guo J. Characterization, Thermal Stability and Antimicrobial Evaluation of the Inclusion Complex of Litsea cubeba Essential Oil in Large-Ring Cyclodextrins (CD9–CD22). Foods. 2023; 12(10):2035. https://doi.org/10.3390/foods12102035
Chicago/Turabian StyleCao, Chuan, Peng Xie, Yibin Zhou, and Jing Guo. 2023. "Characterization, Thermal Stability and Antimicrobial Evaluation of the Inclusion Complex of Litsea cubeba Essential Oil in Large-Ring Cyclodextrins (CD9–CD22)" Foods 12, no. 10: 2035. https://doi.org/10.3390/foods12102035
APA StyleCao, C., Xie, P., Zhou, Y., & Guo, J. (2023). Characterization, Thermal Stability and Antimicrobial Evaluation of the Inclusion Complex of Litsea cubeba Essential Oil in Large-Ring Cyclodextrins (CD9–CD22). Foods, 12(10), 2035. https://doi.org/10.3390/foods12102035