The Estimation of Chemical Properties of Pepper Treated with Natural Fertilizers Based on Image Texture Parameters
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Preparations
2.3. Image Acquisition and Processing
- − Fifty slices of a control sample of Sprinter F1 pepper,
- − Fifty slices of Sprinter F1 pepper treated with NaturalCrop® SL,
- − Fifty slices of Sprinter F1 pepper treated with Bio-algeen S90,
- − Fifty slices of Sprinter F1 pepper treated with nettle fertilizer,
- − Fifty slices of a control sample of Devito F1 pepper,
- − Fifty slices of Devito F1 pepper treated with NaturalCrop® SL,
- − Fifty slices of Devito F1 pepper treated with Bio-algeen S90,
- − Fifty slices of Devito F1 pepper treated with nettle fertilizer.
2.4. Chemical Properties
2.4.1. HPLC Analysis of Sugars
2.4.2. Carotenoid Extraction
2.4.3. HPLC Analysis of Carotenoids
2.5. Statistical Analysis
3. Results and Discussion
3.1. Relationship between Chemical Properties and Image Texture Parameters of Red Pepper Sprinter F1
3.2. Relationship between Chemical Properties and Image Texture Parameters of Yellow Pepper Devito F1
3.3. Relationship between Combined Chemical Properties and Image Texture Parameters of Red Pepper Sprinter F1 and Yellow Pepper Devito F1
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Baker, B.P.; Green, T.A.; Loker, A.J. Biological Control and Integrated Pest Management in Organic and Conventional Systems. Biol. Control 2020, 140, 104095. [Google Scholar] [CrossRef]
- Hamid, B.; Zaman, M.; Farooq, S.; Fatima, S.; Sayyed, R.Z.; Baba, Z.A.; Sheikh, T.A.; Reddy, M.S.; Enshasy, H.E.; Gafur, A.; et al. Bacterial Plant Biostimulants: A Sustainable Way towards Improving Growth, Productivity, and Health of Crops. Sustainability 2021, 13, 2856. [Google Scholar] [CrossRef]
- Bosland, P.W.; Votava, E.J. Peppers: Vegetable and Spice Capsicums, 2nd ed.; CABI: London, UK, 2010. [Google Scholar]
- Sreeramulu, D.; Raghunath, M. Antioxidant activity and phenolic content of roots, tubers and vegetables commonly consumed in India. Food Res. Int. 2010, 43, 1017–1020. [Google Scholar] [CrossRef]
- Chen, L.; Kang, Y.H. Anti-inflammatory and antioxidant activities of red pepper (Capsicum annum L.) stalk extracts: Comparison of pericarp and placenta extract. J. Funct. Food 2013, 5, 1724–1731. [Google Scholar] [CrossRef]
- Wahyuni, Y.; Ballester, A.R.; Sudarmonowati, E.; Bino, R.J.; Bovy, A.G. Secondary metabolites of Capsicum species and their importance in the human diet. J. Nat. Prod. 2013, 76, 783–793. [Google Scholar] [CrossRef]
- Asnin, L.; Park, S.W. Isolation and Analysis of Bioactive Compounds in Capsicum Peppers. Crit. Rev. Food Sci. Nutr. 2015, 55, 254–289. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Wen, K.S.; Ruan, X.; Zhao, Y.X.; Wei, F.; Wang, Q. Response of plant secondary metabolites to environmental factors. Molecules 2018, 23, 762. [Google Scholar] [CrossRef]
- Zou, L.; Tan, W.K.; Du, Y.; Lee, H.W.; Liang, X.; Lei, J.; Striegel, L.; Weber, N.; Rychlik, M.; Ong, C.N. Nutritional metabolites in Brassica rapa subsp. chinensis var. parachinensis (choy sum) at three different growth stages: Microgreen, seedling and adult plant. Food Chem. 2021, 357, 129535. [Google Scholar] [CrossRef]
- Igielska-Kalwat, J.; Gościańska, J.; Nowak, I. Carotenoids as natural antioxidants. Postepy Hig. I Med. Dosw. (Online) 2015, 69, 418–428. [Google Scholar]
- Szafirowska, A.; Elkner, K. The comparison of yielding and nutritive value of organic and conventional pepper fruits. Veget. Crops Reser. Bull. 2009, 71, 111–121. [Google Scholar] [CrossRef]
- Ozgur, M.; Akpinar-Bayizit, A.; Ozcan, T.; Yilmaz-Ersan, I. Functional compounds and antioxidant properties of dried green and red peppers. Afr. J. Agric. Res. 2011, 6, 5638–5644. [Google Scholar] [CrossRef]
- Russo, V.M. Pepper, Botany, Production and Uses; CABI: London, UK, 2012. [Google Scholar]
- Jamiołkowska, A. Preparaty Biotechniczne i Biologiczne w Ochronie Papryki Słodkiej (Capsicum annuum L.) Przed Grzybami Chorobotwórczymi i Indukowaniu Reakcji Obronnych Roślin; Ser. Rozpr. Nauk., 376; Wydawnictwo Uniwersytetu Przyrodniczego w Lublinie: Lublin, Poland, 2013; p. 117. [Google Scholar]
- Flores, P.; Navarro, J.M.; Garrido, C.; Rubio, J.S.; Martinez, V. Influence of Ca2+, K+ and NO3− fertilisation on nutritional quality of pepper. J. Sci. Food Agric. 2004, 84, 569–574. [Google Scholar] [CrossRef]
- Michałojć, Z.; Dzida, K. Yielding and biological value of sweet pepper fruits depending on foliar feeding using calcium. Acta Sci. Pol. Hortorum Cultus 2012, 11, 255–264. [Google Scholar]
- Zamljen, T.; Jakopic, J.; Hudina, M.; Veberic, R.; Slatnar, A. Influence of intra and inter species variation in chilies (Capsicum spp.) on metabolite composition of three fruit segments. Sci. Rep. 2021, 11, 4932. [Google Scholar] [CrossRef]
- Eggink, P.M.; Maliepaard, C.; Tikunov, Y.; Haanstra, J.P.W.; Pohu-Flament, L.M.M.; De Wit-Maljaars, S.C.; Willeboordse-Vos, F.; Bos, S.; Waard, C.B.-D.; Leeuwen, P.J.D.G.-V. Prediction of sweet pepper (Capsicum annuum) flavor over different harvests. Euphytica 2012, 187, 117–131. [Google Scholar] [CrossRef]
- Jamiołkowska, A.; Buczkowska, H.; Thanoon, A. Effect of biological preparations on the health state of pepper fruits and content of saccharides. Acta Sci. Pol. Hortorum Cultus 2016, 15, 95–107. [Google Scholar]
- Ribes-Moya, A.M.; Adalid, A.M.; Raigón, M.D.; Hellín, P.; Fita, A.; Rodríguez-Burruezo, A. Variation in flavonoids in a collection of peppers (Capsicum spp.) under organic and conventional cultivation: Effect of the genotype, ripening stage, and growing system. J. Sci. Food Agric. 2019, 100, 2208–2223. [Google Scholar] [CrossRef]
- Russo, V.M.; Howard, L.R. Carotenoids in pungent and non-pungent peppers at various developmental stages grown in the field and glasshouse. J. Sci. Food Agric. 2002, 82, 615–624. [Google Scholar] [CrossRef]
- Tripodi, P.; Cardi, T.; Bianchi, G.; Migliori, C.A.; Schiavi, M.; Rotino, G.L.; Lo Scalzo, R. Genetic and environmental factors underlying variation in yield performance and bioactive compound content of hot pepper varieties (Capsicum annuum L.) cultivated in two contrasting Italian locations. Eur. Food Res. Technol. 2018, 244, 1555–1567. [Google Scholar] [CrossRef]
- Bhandari, S.R.; Jung, B.D.; Baek, H.Y.; Lee, Y.S. Ripening-dependent changes in phytonutrients and antioxidant activity of red pepper (Capsicum annuum L.) fruits cultivated under open-field conditions. Hort. Sci. 2013, 48, 1275–1282. [Google Scholar] [CrossRef]
- Guzman, I.; Hamby, S.; Romero, J.; Basland, P.; O’Connell, M. Variability of carotenoid biosynthesis in orange colored Capsicum spp. Plant Sci. 2010, 179, 49–59. [Google Scholar] [CrossRef] [PubMed]
- Yuan, H.; Zhang, J.; Nageswaran, D.; Li, L. Carotenoid metabolism and regulation in horticultural crops. Hortic. Res. 2015, 2, 15036. [Google Scholar] [CrossRef]
- Gomez-Garcia, M.; Ochoa-Alejo, N. Biochemistry and Molecular biology of Carotenoid biosynthesis In Chili pepper (Capsicum ssp.). Int. J. Mol. Sci. 2013, 14, 19025–19053. [Google Scholar] [CrossRef] [PubMed]
- Chávez-Mendoza, C.; Sanchez, E.; Muñoz-Marquez, E.; Sida-Arreola, J.P.; Flores-Cordova, M.A. Bioactive compounds and antioxidant activity in different grafted varieties of bell pepper. Antioxidants 2015, 4, 427–446. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Zhang, X.; Liu, Y.; Xie, Z.; Zhang, R.; Zhao, K.; Lv, J.; Wen, J.; Deng, M. Characterization of 75 Cultivars of Four Capsicum Species in Terms of Fruit Morphology, Capsaicinoids, Fatty Acids, and Pigments. Appl. Sci. 2022, 12, 6292. [Google Scholar] [CrossRef]
- Ropelewska, E. The Application of Machine Learning for Cultivar Discrimination of Sweet Cherry Endocarp. Agriculture 2021, 11, 6. [Google Scholar] [CrossRef]
- Bhargava, A.; Bansal, A. Fruits and vegetables quality evaluation using computer vision: A review. J. King Saud Univ.-Comput. Inf. Sci. 2021, 33, 243–257. [Google Scholar] [CrossRef]
- Strzelecki, M.; Szczypinski, P.; Materka, A.; Klepaczko, A. A software tool for automatic classification and segmentation of 2D/3D medical images. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2013, 702, 137–140. [Google Scholar] [CrossRef]
- Szczypiński, P.M.; Strzelecki, M.; Materka, A.; Klepaczko, A. MaZda-A software package for image texture analysis. Comput. Methods Programs Biomed. 2009, 94, 66–76. [Google Scholar] [CrossRef]
- Szczypiński, P.M.; Strzelecki, M.; Materka, A. Mazda-A software for texture analysis. In Proceedings of the 2007 International Symposium on Information Technology Convergence (ISITC 2007), Jeonju, Republic of Korea, 23–24 November 2007; IEEE: Piscataway, NJ, USA, 2007; pp. 245–249. [Google Scholar]
- Ibraheem, N.A.; Hasan, M.M.; Khan, R.Z.; Mishra, P.K. Understanding Color Models: A Review. ARPN J. Sci. Technol. 2012, 2, 265–275. [Google Scholar]
- Stępowska, A.; Grudzień, K.; Adamicki, E.; Dobrzański, A.; Robak, J.; Szwejda, J. Ekologiczne Metody Uprawy Papryki w Gruncie i Pod Osłonami; Kaniszewski, S., Ed.; KCRE-RCDRRiOW: Radom, Poland, 2004; p. 44. [Google Scholar]
- Bohoyo-Gil, D.; Dominguez-Valhondo, D.; García-Parra, J.J.; González-Gómez, D. UHPLC as a suitable methodology for the analysis of carotenoids in food matrix. Eur. Food Res. Technol. 2012, 235, 1055–1061. [Google Scholar] [CrossRef]
- Ropelewska, E.; Szwejda-Grzybowska, J. Relationship of Textures from Tomato Fruit Images Acquired Using a Digital Camera and Lycopene Content Determined by High-Performance Liquid Chromatography. Agriculture 2022, 12, 1495. [Google Scholar] [CrossRef]
- Pace, B.; Cefola, M.; Renna, F.; Attolico, G. Relationship between visual appearance and browning as evaluated by image analysis and chemical traits in fresh-cut nectarines. Postharvest Biol. Technol. 2011, 61, 178–183. [Google Scholar] [CrossRef]
- Rady, A.; Guyer, D.; Lu, R. Evaluation of Sugar Content of Potatoes using Hyperspectral Imaging. Food Bioprocess Technol. 2015, 8, 995–1010. [Google Scholar] [CrossRef]
- Tang, C.; He, H.; Li, E.; Li, H. Multispectral imaging for predicting sugar content of ‘Fuji’ apples. Opt. Laser Technol. 2018, 106, 280–285. [Google Scholar]
- Kalopesa, E.; Karyotis, K.; Tziolas, N.; Tsakiridis, N.; Samarinas, N.; Zalidis, G. Estimation of Sugar Content in Wine Grapes via In Situ VNIR–SWIR Point Spectroscopy Using Explainable Artificial Intelligence Techniques. Sensors 2023, 23, 1065. [Google Scholar] [CrossRef]
- Qing, Z.; Ji, B.; Zude, M. Predicting soluble solid content and firmness in apple fruit by means of laser light backscattering image analysis. J. Food Eng. 2007, 82, 58–67. [Google Scholar] [CrossRef]
α-Carotene (mg 100 g−1 f.m.) | β-Carotene (mg 100 g−1 f.m.) | Total Carotenoids (mg 100 g−1 f.m.) | Total Sugars (%) | ||||
---|---|---|---|---|---|---|---|
Texture Parameter | Correlation Coefficient | Texture Parameter | Correlation Coefficient | Texture Parameter | Correlation Coefficient | Texture Parameter | Correlation Coefficient |
BS5SN3Entropy | 0.9999 | BS5SN3Entropy | 0.9994 | aS5SH3DifEntrp | 0.9999 | RS5SH5SumOfSqs | 0.9998 |
ZS4RZFraction | 0.9996 | aS5SV5Entropy | 0.9991 | GS5SV5Contrast | 0.9998 | XS5SH3SumOfSqs | 0.9708 |
aS5SV5Entropy | 0.9989 | ZS4RZFraction | 0.9985 | XS5SZ3SumOfSqs | 0.9933 | GS4RVFraction | 0.9685 |
GS5SN1Entropy | 0.9964 | GS5SV5Entropy | 0.9984 | ZS5SH3DifEntrp | 0.9984 | ||
YS5SN5DifEntrp | 0.9847 | YS5SN5DifEntrp | 0.9763 | RS5SN3Entropy | 0.9984 | aS5SN1SumVarnc | −0.9998 |
RS5SN5DifEntrp | 0.9766 | RS5SN5DifEntrp | 0.9666 | BS5SH3Entropy | 0.9920 | ZHDomn01 | −0.9997 |
YS5SH5DifEntrp | 0.9825 | XS5SV5SumEntrp | −0.9993 | ||||
YS4RVLngREmph | −0.9999 | aS5SV1AngScMom | −0.9998 | bS5SN5Entropy | 0.9507 | YHDomn10 | −0.9993 |
aS5SV3AngScMom | −0.9996 | GS5SV1AngScMom | −0.9993 | LS5SN5DifEntrp | 0.9505 | RHMaxm01 | −0.9981 |
RS5SZ5SumAverg | −0.9975 | YS4RVLngREmph | −0.9987 | LHDomn10 | −0.9979 | ||
GS5SV1AngScMom | −0.9972 | RS5SZ5SumAverg | −0.9971 | LS5SZ5SumVarnc | −0.9999 | GS5SZ5SumVarnc | −0.9790 |
BS5SV5AngScMom | −0.9968 | BS5SV5AngScMom | −0.9939 | GS5SV3InvDfMom | −0.9999 | ||
ZS5SV5InvDfMom | −0.9920 | ZS5SV5InvDfMom | −0.9859 | RS5SZ3InvDfMom | −0.9999 | ||
XS5SN5InvDfMom | −0.9631 | bHPerc10 | −0.9998 | ||||
aS5SN1InvDfMom | −0.9996 | ||||||
BS4RZLngREmph | −0.9986 | ||||||
YS5SH3InvDfMom | −0.9909 | ||||||
ZS5SH5Correlat | −0.9847 | ||||||
XS5SZ5InvDfMom | −0.9724 |
Total Carotenoids (mg 100 g−1 f.m.) | Total Sugars (%) | ||
---|---|---|---|
Texture Parameter | Correlation Coefficient | Texture Parameter | Correlation Coefficient |
XS5SV1DifEntrp | 0.9899 | YS5SH1Entropy | 0.9999 |
aSGNonZeros | 0.9840 | bS5SH3SumEntrp | 0.9997 |
bATeta4 | 0.9783 | GSGMean | 0.9997 |
YATeta2 | 0.9716 | LS5SZ5Contrast | 0.9995 |
BS5SV1DifVarnc | 0.9708 | XS5SN3Contrast | 0.9990 |
LS5SV3DifEntrp | 0.9595 | BS5SH1DifVarnc | 0.9915 |
aS5SZ5Correlat | 0.9752 | ||
bHPerc50 | −0.9993 | ||
RSGKurtosis | −0.9948 | GS5SH1InvDfMom | −0.9971 |
XS5SV1InvDfMom | −0.9909 | XS5SZ5InvDfMom | −0.9894 |
GS4RHLngREmph | −0.9765 | BS5SZ5SumVarnc | −0.9875 |
BS5SH5SumVarnc | −0.9696 | aS5SN5DifVarnc | −0.9870 |
LATeta2 | −0.9681 | LS5SH1InvDfMom | −0.9808 |
YS5SV1AngScMom | −0.9553 |
Total Carotenoids (mg 100 g−1 f.m.) | Total Sugars (%) | ||
---|---|---|---|
Texture Parameter | Correlation Coefficient | Texture Parameter | Correlation Coefficient |
YS5SH5Contrast | 0.9956 | YS5SH5Entropy | 0.9768 |
GS5SV5Contrast | 0.9941 | XS5SZ5Entropy | 0.9562 |
LS5SN5Contrast | 0.9883 | LS5SH3Entropy | 0.9461 |
aS5SH5Contrast | 0.9832 | GS5SN5Entropy | 0.9443 |
XS5SZ5DifEntrp | 0.9773 | bS5SZ5SumEntrp | 0.9375 |
bS5SV5SumEntrp | 0.9415 | aSGNonZeros | 0.9309 |
ZSGVariance | 0.8966 | ||
BS5SZ3Contrast | 0.8953 | GHPerc99 | −0.9583 |
YS5SH1AngScMom | −0.9537 | ||
YS5SH5Correlat | −0.9935 | LS5SN5InvDfMom | −0.9536 |
GS5SH5Correlat | −0.9921 | XS5SH3AngScMom | −0.9494 |
LS5SH5Correlat | −0.9901 | aHMaxm01 | −0.9210 |
aS5SH1AngScMom | −0.9882 | bHPerc99 | −0.8803 |
XS4RNLngREmph | −0.9756 | BS5SZ3Correlat | −0.8565 |
bHDomn01 | −0.9663 | ||
BS5SH3Correlat | −0.9202 | ||
ZS5SH3Correlat | −0.9109 |
Regression Equation | Coefficient of Determination (R2) |
---|---|
Sprinter F1 | |
α-carotene (mg 100 g−1 f.m.) = −21.28 + 8.4805 × BS5SN3Entropy | 0.9998 |
α-carotene (mg 100 g−1 f.m.) = 1.1611 − 0.1012 × YS4RVLngREmph | 0.9999 |
ß-carotene (mg 100 g−1 f.m.) = −23.35 + 9.4824 × BS5SN3Entropy | 0.9988 |
ß-carotene (mg 100 g−1 f.m.) = 2.3051 − 114.3 × aS5SV1AngScMom | 0.9996 |
Total carotenoids (mg 100 g−1 f.m.) = −34.78 + 43.407 × aS5SH3DifEntrp | 0.9998 |
Total carotenoids (mg 100 g−1 f.m.) = 67.258 − 0.8091 × LS5SZ5SumVarnc | 0.9998 |
Total sugars (%) = −4.350 + 0.49032 × RS5SH5SumOfSqs | 0.9996 |
Total sugars (%) = 34.265 − 0.3261 × aS5SN1SumVarnc | 0.9996 |
Devito F1 | |
Total carotenoids (mg 100 g−1 f.m.) = −5.122 + 18.372 × XS5SV1DifEntrp | 0.9798 |
Total carotenoids (mg 100 g−1 f.m.) = 68.248 − 0.3583 × bHPerc50 | 0.9986 |
Total sugars (%) = −26.24 + 14.916 × YS5SH1Entropy | 0.9998 |
Total sugars (%) = 20.481 − 27.04 × GS5SH1InvDfMom | 0.9942 |
Sprinter F1 and Devito F1 | |
Total carotenoids (mg 100 g−1 f.m.) = 0.24275 + 0.39985 × YS5SH5Contrast | 0.9912 |
Total carotenoids (mg 100 g−1 f.m.) = 19.407 − 19.10 × YS5SH5Correlat | 0.9870 |
Total sugars (%) = −22.91 + 11.908 × YS5SH5Entropy | 0.9536 |
Total sugars (%) = 8.5299 − 0.0187 × GHPerc99 | 0.9166 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ropelewska, E.; Szwejda-Grzybowska, J. The Estimation of Chemical Properties of Pepper Treated with Natural Fertilizers Based on Image Texture Parameters. Foods 2023, 12, 2123. https://doi.org/10.3390/foods12112123
Ropelewska E, Szwejda-Grzybowska J. The Estimation of Chemical Properties of Pepper Treated with Natural Fertilizers Based on Image Texture Parameters. Foods. 2023; 12(11):2123. https://doi.org/10.3390/foods12112123
Chicago/Turabian StyleRopelewska, Ewa, and Justyna Szwejda-Grzybowska. 2023. "The Estimation of Chemical Properties of Pepper Treated with Natural Fertilizers Based on Image Texture Parameters" Foods 12, no. 11: 2123. https://doi.org/10.3390/foods12112123
APA StyleRopelewska, E., & Szwejda-Grzybowska, J. (2023). The Estimation of Chemical Properties of Pepper Treated with Natural Fertilizers Based on Image Texture Parameters. Foods, 12(11), 2123. https://doi.org/10.3390/foods12112123