The Interaction Relationship of Aroma Components Releasing with Saliva and Chewing Degree during Grilled Eels Consumption
Abstract
:1. Introduction
2. Materials and Methods
2.1. Grilled Eel
2.2. Saliva Collection
2.3. Oral Mastication Simulation
2.4. Volatile Compounds Identification
2.5. Volatile Compounds Quantitation
2.6. Statistical Analysis
3. Results and Discussion
3.1. Interaction between Saliva and Volatiles Release during Mastication
3.2. Dynamic Changes of Volatile Components during Mastication under Different Salivary Systems
3.3. The Characteristic Aroma Profile of Grilled Eel Meat during Chewing Simulation
3.4. Interaction between the Release of Characteristic Aroma Compounds and Key Factors of Simulated Mastication
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Goldberg, E.M.; Wang, K.; Goldberg, J.; Aliani, M. Factors affecting the ortho- and retronasal perception of flavors: A review. Crit. Rev. Food Sci. Nutr. 2018, 58, 913–923. [Google Scholar] [CrossRef]
- Pérez-Jiménez, M.; Pozo-Bayón, M.Á. Development of an in-mouth headspace sorptive extraction method (HSSE) for oral aroma monitoring and application to wines of different chemical composition. Food Res. Int. 2019, 121, 97–107. [Google Scholar] [CrossRef]
- Hayashi, K.; Nakada, Y.; Sémon, E.; Salles, C. Retronasal aroma of beef pate analyzed by a chewing simulator. Molecules 2022, 27, 3259. [Google Scholar] [CrossRef]
- Taylor, A.J.; Roberts, D.D. Flavor Perception; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Wang, X.; Chen, J. Food oral processing: Recent developments and challenges. Curr. Opin. Colloid Interface Sci. 2017, 28, 22–30. [Google Scholar] [CrossRef]
- Ployon, S.; Morzel, M.; Canon, F. The role of saliva in aroma release and perception. Food Chem. 2017, 226, 212–220. [Google Scholar] [CrossRef]
- Canon, F.; Neiers, F.; Guichard, E. Saliva and flavor perception: Perspectives. J. Agric. Food Chem. 2018, 66, 7873–7879. [Google Scholar] [CrossRef]
- Aguayo-Mendoza, M.G.; Chatonidi, G.; Piqueras-Fiszman, B.; Stieger, M. Linking oral processing behavior to bolus properties and dynamic sensory perception of processed cheeses with bell pepper pieces. Food Qual. Prefer. 2021, 88, 104084. [Google Scholar] [CrossRef]
- Panouillé, M.; Saint-Eve, A.; Déléris, I.; Le Bleis, F.; Souchon, I. Oral processing and bolus properties drive the dynamics of salty and texture perceptions of bread. Food Res. Int. 2014, 62, 238–246. [Google Scholar] [CrossRef]
- Perez-Jiménez, M.; Chaya, C.; Pozo-Bayón, M.Á. Individual differences and effect of phenolic compounds in the immediate and prolonged in-mouth aroma release and retronasal aroma intensity during wine tasting. Food Chem. 2019, 285, 147–155. [Google Scholar] [CrossRef] [PubMed]
- Guichard, E.; Repoux, M.; Qannari, E.; Labouré, H.; Feron, G. Model cheese aroma perception is explained not only by in vivo aroma release but also by salivary composition and oral processing parameters. Food Funct. 2017, 8, 615–628. [Google Scholar] [CrossRef] [PubMed]
- Jourdren, S.; Saint-Eve, A.; Pollet, B.; Panouillé, M.; Lejeune, P.; Guichard, E.; Déléris, I.; Souchon, I. Gaining deeper insight into aroma perception: An integrative study of the oral processing of breads with different structures. Food Res. Int. 2017, 92, 119–127. [Google Scholar] [CrossRef]
- Muñoz-González, C.; Feron, G.; Guichard, E.; Rodriguez-Bencomo, J.J.; Martin-Alvarez, P.J.; Moreno-Arribas, M.V.; Pozo-Bayon, M.A. Understanding the role of saliva in aroma release from wine by using static and dynamic headspace conditions. J. Agric. Food Chem. 2014, 62, 8274–8288. [Google Scholar] [CrossRef]
- Huang, X.-H.; Luo, Y.; Zhu, X.-H.; Ayed, C.; Fu, B.-S.; Dong, X.-P.; Fisk, I.; Qin, L. Dynamic release and perception of key odorants in grilled eel during chewing. Food Chem. 2022, 378, 132073. [Google Scholar] [CrossRef] [PubMed]
- Salles, C.; Tarrega, A.; Mielle, P.; Maratray, J.; Gorria, P.; Liaboeuf, J.; Liodenot, J.J. Development of a chewing simulator for food breakdown and the analysis of in vitro flavor compound release in a mouth environment. J. Food Eng. 2007, 82, 189–198. [Google Scholar] [CrossRef]
- Xu, W.L.; Bronlund, J.E.; Potgieter, J.; Foster, K.D.; Röhrle, O.; Pullan, A.J.; Kieser, J.A. Review of the human masticatory system and masticatory robotics. Mech. Mach. Theory 2008, 43, 1353–1375. [Google Scholar] [CrossRef]
- Meullenet, J.F.; Gandhapuneni, R.K. Development of the BITE Master II and its application to the study of cheese hardness. Physiol. Behav. 2006, 89, 39–43. [Google Scholar] [CrossRef] [PubMed]
- Panda, S.; Chen, J.; Benjamin, O. Development of model mouth for food oral processing studies: Present challenges and scopes. Innov. Food Sci. Emerg. Technol. 2020, 66, 102524. [Google Scholar] [CrossRef]
- Shibata, A.; Takahashi, R.; Nagahata, Y.; Kimura, K.; Shimizu, R.; Hotta, M.; Inoue, M.; Higashimori, M. Food texture estimation using robotic mastication simulator equipped with teeth and tongue. Sens. Mater. 2019, 31, 2367–2380. [Google Scholar] [CrossRef]
- Benjamin, O.; Silcock, P.; Beauchamp, J.; Buettner, A.; Everett, D. Tongue pressure and oral conditions affect volatile release from liquid systems in a model mouth. J. Agric. Food Chem. 2012, 60, 9918–9927. [Google Scholar] [CrossRef]
- Kant, A.; Linforth, R. Challenges of linking in vitro analysis to flavor perception. In Functional Foods and Beverages; John Wiley & Sons: Hoboken, NJ, USA, 2018; pp. 263–303. [Google Scholar] [CrossRef]
- Salles, C.; Chagnon, M.-C.; Feron, G.; Guichard, E.; Laboure, H.; Morzel, M.; Semon, E.; Tarrega, A.; Yven, C. In-Mouth mechanisms leading to flavor release and perception. Crit. Rev. Food Sci. Nutr. 2010, 51, 67–90. [Google Scholar] [CrossRef]
- Huang, X.-H.; Fu, B.-S.; Qi, L.-B.; Huo, L.-D.; Zhang, Y.-Y.; Du, M.; Dong, X.-P.; Zhu, B.-W.; Qin, L. Formation and conversion of characteristic volatile compounds in grilled eel (Astroconger myriaster) during different processing steps. Food Funct. 2019, 10, 6473–6483. [Google Scholar] [CrossRef]
- Bader, M.; Dunkel, A.; Wenning, M.; Kohler, B.; Medard, G.; del Castillo, E.; Gholami, A.; Kuster, B.; Scherer, S.; Hofmann, T. Dynamic proteome alteration and functional modulation of human saliva induced by dietary chemosensory stimuli. J. Agric. Food Chem. 2018, 66, 5621–5634. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.-H.; Zhang, Y.-Y.; Zhu, M.; Zhou, D.-Y.; Du, M.; Zhu, B.-W.; Dong, X.-P.; Fisk, I.; Qin, L. The effects of different extraction methods on the aroma fingerprint, recombination and visualization of clam soup. Food Funct. 2021, 12, 1626–1638. [Google Scholar] [CrossRef]
- Huang, X.-H.; Qi, L.-B.; Fu, B.-S.; Chen, Z.-H.; Zhang, Y.-Y.; Du, M.; Dong, X.-P.; Zhu, B.-W.; Qin, L. Flavor formation in different production steps during the processing of cold-smoked Spanish mackerel. Food Chem. 2019, 286, 241–249. [Google Scholar] [CrossRef]
- Tian, X.; Li, Z.; Li, K.; Wu, Z.; Ren, R.; Wang, H.; Zeng, C. Flavor release from traditional dry-cured pork during oral processing. Food Sci. Hum. Wellness 2023, 12, 102–110. [Google Scholar] [CrossRef]
- Ilić, J.; Djekic, I.; Tomasevic, I.; Oosterlinck, F.; van den Berg, M.A. Materials properties, oral processing, and sensory analysis of eating meat and meat analogs. Annu. Rev. Food Sci. Technol. 2022, 13, 193–215. [Google Scholar] [CrossRef] [PubMed]
- Potineni, R.V.; Peterson, D.G. Influence of flavor solvent on flavor release and perception in sugar-free chewing gum. J. Agric. Food Chem. 2008, 56, 3254–3259. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-González, C.; Feron, G.; Canon, F. Main effects of human saliva on flavour perception and the potential contribution to food consumption. Proc. Nutr. Soc. 2018, 77, 423–431. [Google Scholar] [CrossRef]
- Verhagen, J.V.; Engelen, L. The neurocognitive bases of human multimodal food perception: Sensory integration. Neurosci. Biobehav. Rev. 2006, 30, 613–650. [Google Scholar] [CrossRef]
- Small, D.M.; Prescott, J. Odor/taste integration and the perception of flavor. Exp. Brain Res. 2005, 166, 345–357. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, X.; Zhao, H.; Guo, R.; Du, F.; Dong, X.; Qin, L. The Interaction Relationship of Aroma Components Releasing with Saliva and Chewing Degree during Grilled Eels Consumption. Foods 2023, 12, 2127. https://doi.org/10.3390/foods12112127
Huang X, Zhao H, Guo R, Du F, Dong X, Qin L. The Interaction Relationship of Aroma Components Releasing with Saliva and Chewing Degree during Grilled Eels Consumption. Foods. 2023; 12(11):2127. https://doi.org/10.3390/foods12112127
Chicago/Turabian StyleHuang, Xuhui, Huilin Zhao, Renrong Guo, Fei Du, Xiuping Dong, and Lei Qin. 2023. "The Interaction Relationship of Aroma Components Releasing with Saliva and Chewing Degree during Grilled Eels Consumption" Foods 12, no. 11: 2127. https://doi.org/10.3390/foods12112127
APA StyleHuang, X., Zhao, H., Guo, R., Du, F., Dong, X., & Qin, L. (2023). The Interaction Relationship of Aroma Components Releasing with Saliva and Chewing Degree during Grilled Eels Consumption. Foods, 12(11), 2127. https://doi.org/10.3390/foods12112127