Phytosome Supplements for Delivering Gymnema inodorum Phytonutrients to Prevent Inflammation in Macrophages and Insulin Resistance in Adipocytes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of G. inodorum Extract (GIE)
2.3. Preparation of Phytosome Nanoparticles
2.4. Physicochemical Characterizations of Phytosomal Nanoparticles
2.4.1. Morphological Characterizations
2.4.2. Analysis of Particle Size, Polydispersity Index (PDI) and Zeta Potential of Phytosomal Nanoparticles
2.4.3. Encapsulation and Loading Efficiency of Nano-Phytosomes
2.4.4. Total Phenolic Contents
2.4.5. Total Flavonoid Contents
2.4.6. High Performance Liquid Chromatography (HPLC)
2.5. Biological Activities
2.5.1. Sample Preparation
2.5.2. Cell Culture
2.5.3. Cytotoxicity Test
2.5.4. Anti-Inflammatory Activity
2.5.5. Anti-Insulin Resistance Assay
2.6. Statistical Analysis
3. Results
3.1. Phytochemicals of G. inodorum Extract (GIE)
3.2. Characterizations of Phytosomes
3.3. Cytotoxicity of Samples in the RAW 264.7 Macrophage Cell Line and 3T3-L1 Adipocyte Cell Line
3.4. Anti-Inflammatory Activity of Samples
3.5. Anti-Insulin-Resistance Activity of Samples
3.5.1. Glucose Uptake
3.5.2. Lipolysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zheng, Y.; Ley, S.H.; Hu, F.B. Global Aetiology and Epidemiology of Type 2 Diabetes Mellitus and Its Complications. Nat. Rev. Endocrinol. 2018, 14, 88–98. [Google Scholar] [CrossRef]
- Romieu, I.; Dossus, L.; Barquera, S.; Blottière, H.M.; Franks, P.W.; Gunter, M.; Hwalla, N.; Hursting, S.D.; Leitzmann, M.; Margetts, B.; et al. Energy Balance and Obesity: What are The Main Drivers? CCC 2017, 28, 247–258. [Google Scholar] [CrossRef] [Green Version]
- De Souza, C.T.; Araujo, E.P.; Bordin, S.; Ashimine, R.; Zollner, R.L.; Boschero, A.C.; Saad, M.J.; Velloso, L.A. Consumption of A Fat-Rich Diet Activates A Proinflammatory Response and Induces Insulin Resistance In The Hypothalamus. Endocrinology 2005, 146, 4192–4199. [Google Scholar] [CrossRef] [Green Version]
- Huang, L.Y.; Chiu, C.J.; Hsing, C.H.; Hsu, Y.H. Interferon Family Cytokines in Obesity and Insulin Sensitivity. Cells 2022, 11, 4041. [Google Scholar] [CrossRef]
- Cerf, M.E. Beta Cell Dysfunction and Insulin Resistance. Front. Endocrinol. 2023, 4, 37. [Google Scholar] [CrossRef] [Green Version]
- Pandey, K.B.; Rizvi, S.I. Plant Polyphenols as Dietary Antioxidants in Human Health and Disease. Oxidative Med. Cell. Longev. 2009, 2, 270–278. [Google Scholar] [CrossRef] [Green Version]
- Salas-Salvadó, J.; Becerra-Tomás, N.; Papandreou, C.; Bulló, M. Dietary Patterns Emphasizing the Consumption of Plant Foods in the Management of Type 2 Diabetes: A Narrative Review. Adv. Nutr. 2009, 10, S320–S331. [Google Scholar] [CrossRef] [Green Version]
- Cook, L.T.; O’Reilly, G.A.; Goran, M.I.; Weigensberg, M.J.; Spruijt-Metz, D.; Davis, J.N. Vegetable Consumption is Linked to Decreased Visceral and Liver Fat and Improved Insulin Resistance in Overweight Latino Youth. J. Acad. Nutr. Diet. 2014, 114, 1776–1783. [Google Scholar] [CrossRef] [Green Version]
- Imai, S.; Kajiyama, S.; Kitta, K.; Miyawaki, T.; Matsumoto, S.; Ozasa, N.; Kajiyama, S.; Hashimoto, Y.; Fukui, M. Eating Vegetables First Regardless of Eating Speed Has a Significant Reducing Effect on Postprandial Blood Glucose and Insulin in Young Healthy Women: Randomized Controlled Cross-Over Study. Nutrients 2023, 15, 1174. [Google Scholar] [CrossRef]
- Panyadee, P.; Balslev, H.; Wangpakapattanawong, P.; Inta, A. Medicinal Plants in Homegardens of Four Ethnic Groups in Thailand. J. Ethnopharmacol. 2019, 239, 111927. [Google Scholar] [CrossRef]
- Dunkhunthod, B.; Talabnin, C.; Murphy, M.; Thumanu, K.; Sittisart, P.; Eumkeb, G. Gymnema inodorum (Lour.) Decne. Extract Alleviates Oxidative Stress and Inflammatory Mediators Produced by RAW264.7 Macrophages. Oxidative Med. Cell. Longev. 2021, 2021, 8658314. [Google Scholar] [CrossRef]
- Shimizu, K.; Ozeki, M.; Iino, A.; Nakajyo, S.; Urakawa, N.; Atsuchi, M. Structure-Activity Relationships of Triterpenoid Derivatives Extracted from Gymnema inodorum Leaves on Glucose Absorption. Jpn. J. Pharmacol. 2001, 86, 223–229. [Google Scholar] [CrossRef] [Green Version]
- Tiamyom, K.; Sirichaiwetchakoon, K.; Hengpratom, T.; Kupittayanant, S.; Srisawat, R.; Thaeomor, A.; Eumkeb, G. The Effects of Cordyceps sinensis (Berk.) Sacc. and Gymnema inodorum (Lour.) Decne. Extracts on Adipogenesis and Lipase Activity In Vitro. Evid. Based Complement. Altern. Med. 2019, 2019, 5370473. [Google Scholar] [CrossRef] [Green Version]
- Trang, D.T.; Yen, D.T.H.; Cuong, N.T.; Anh, L.T.; Hoai, N.T.; Tai, B.H.; Doan, V.V.; Yen, P.H.; Quang, T.H.; Nhiem, N.X.; et al. Pregnane Glycosides from Gymnema inodorum and Their α-Glucosidase Inhibitory Activity. Nat. Prod. Rep. 2021, 35, 2157–2163. [Google Scholar] [CrossRef]
- An, J.P.; Park, E.J.; Ryu, B.; Lee, B.W.; Cho, H.M.; Doan, T.P.; Pham, H.T.T.; Oh, W.K. Oleanane Triterpenoids from The Leaves of Gymnema inodorum and Their Insulin Mimetic Activities. J. Nat. Prod. 2020, 83, 1265–1274. [Google Scholar] [CrossRef]
- Shimizu, K.; Ozeki, M.; Tanaka, K.; Itoh, K.; Nakajyo, S.; Urakawa, N.; Atsuchi, M. Suppression of Glucose Absorption by Extracts from The Leaves of Gymnema inodorum. J. Vet. Med. Sci. 1997, 59, 753–757. [Google Scholar] [CrossRef] [Green Version]
- Bespinyowong, R.; Pongthananikorn, S.; Chiabchalard, A. Efficacy and Safety of Gymnema inodorum Tea Consumption in Type 2 Diabetic Patients. Chula. Med. J. 2013, 57, 587–599. [Google Scholar]
- Srinuanchai, W.; Nooin, R.; Pitchakarn, P.; Karinchai, J.; Suttisansanee, U.; Chansriniyom, C.; Jarussophon, S.; Temviriyanukul, P.; Nuchuchua, O. Inhibitory Effects of Gymnema inodorum (Lour.) Decne Leaf Extracts and Its Triterpene Saponin on Carbohydrate Digestion and Intestinal Glucose Absorption. J. Ethnopharmacol. 2021, 266, 113398. [Google Scholar] [CrossRef]
- Jeytawan, N.; Yadoung, S.; Jeeno, P.; Yana, P.; Sutan, K.; Naksen, W.; Wongkaew, M.; Sommano, S.; Hongsibsong, S. Antioxidant and Phytochemical Potential and Phytochemicals in Gymnema inodorum (Lour.) Decne in Northern Thailand. Plants 2022, 11, 3498. [Google Scholar] [CrossRef]
- Martel, F.; Monteiro, R.; Calhau, C. Effect of Polyphenols on The Intestinal and Placental Transport of Some Bioactive Compounds. Nutr. Res. Rev. 2010, 23, 47–64. [Google Scholar] [CrossRef] [Green Version]
- McClements, D.J. Nanoemulsions Versus Microemulsions: Terminology, Differences, and Similarities. Soft Matter 2012, 8, 1719–1729. [Google Scholar] [CrossRef]
- Li, B.; Wang, F.; Gui, L.; He, Q.; Yao, Y.; Chen, H. The Potential of Biomimetic Nanoparticles for Tumor-Targeted Drug Delivery. Nanomedicine 2018, 13, 2099–2118. [Google Scholar] [CrossRef] [PubMed]
- Siles-Sánchez, M.d.l.N.; Jaime, L.; Villalva, M.; Santoyo, S. Encapsulation of Marjoram Phenolic Compounds Using Chitosan to Improve Its Colon Delivery. Foods 2022, 11, 3657. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Wang, L.; Zheng, M.; Lu, H.; Liu, Y.; Wang, Y.; Lu, S. Microencapsulation with Different Starch-Based Polymers for Improving Oxidative Stability of Cold-Pressed Hickory (Carya cathayensis Sarg.) Oil. Foods 2023, 12, 953. [Google Scholar] [CrossRef]
- Kumari, A.; Yadav, S.K.; Yadav, S.C. Biodegradable Polymeric Nanoparticlesbased Drug Delivery Systems. Colloids Surf. B Biointerfaces 2010, 75, 1–18. [Google Scholar] [CrossRef]
- McClements, D.J. Encapsulation, Protection, and Delivery of Bioactive Proteins and Peptides Using Nanoparticle and Microparticle Systems: A Review. Adv. Colloid Interface Sci. 2018, 253, 1–22. [Google Scholar] [CrossRef]
- Schuster, B.S.; Suk, J.S.; Woodworth, G.F.; Hanes, J. Nanoparticle Diffusion in Respiratory Mucus from Humans Without Lung Disease. Biomaterials 2013, 34, 3439–3446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Primard, C.; Rochereau, N.; Luciani, E.; Genin, C.; Delair, T.; Paul, S.; Verrier, B. Traffic of Poly(Lactic Acid) Nanoparticulate Vaccine Vehicle from Intestinal Mucus to Sub-Epithelial Immune Competent Cells. Biomaterials 2010, 31, 6060–6068. [Google Scholar] [CrossRef]
- Suryawanshi, J.S. Phytosome: An Emerging Trend in Herbal Drug Treatment. JMGG 2011, 3, 109–114. [Google Scholar]
- Ghanbarzadeh, B.; Babazadeh, A.; Hamishehkar, H. Nano-Phytosome as A Potential Food-Grade Delivery System. Food Biosci. 2016, 15, 126–135. [Google Scholar] [CrossRef]
- Barani, M.; Sangiovanni, E.; Angarano, M.; Rajizadeh, M.A.; Mehrabani, M.; Piazza, S.; Gangadharappa, H.V.; Pardakhty, A.; Mehrbani, M.; Dell’Agli, M.; et al. Phytosomes as Innovative Delivery Systems for Phytochemicals: A Comprehensive Review of Literature. Int. J. Nanomed. 2021, 16, 6983–7022. [Google Scholar] [CrossRef] [PubMed]
- Park, J.H.; Jang, J.S.; Kim, K.C.; Hong, J.T. Anti-Inflammatory Effect of Centella Asiatica Phytosome in A Mouse Model of Phthalic Anhydride-Induced Atopic Dermatitis. Phytomedicine 2018, 43, 110–119. [Google Scholar] [CrossRef]
- Hüsch, J.; Bohnet, J.; Fricker, G.; Skarke, C.; Artaria, C.; Appendino, G.; Schubert-Zsilavecz, M.; Abdel-Tawab, M. Enhanced Absorption of Boswellic Acids by A Lecithin Delivery form (Phytosome®) of Boswellia Extract. Fitoterapia 2013, 84, 89–98. [Google Scholar] [CrossRef] [Green Version]
- Riva, A.; Ronchi, M.; Petrangolini, G.; Bosisio, S.; Allegrini, P. Improved Oral Absorption of Quercetin from Quercetin Phytosome®, A New Delivery System Based on Food Grade Lecithin. Eur. J. Drug Metab. Pharmacokinet. 2019, 44, 169–177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pathan, R.A.; Bhandari, U. Gymnemic Acid-Phospholipid Complex: Preparation and Characterization. J. Dispers. Sci. Technol. 2011, 32, 1165–1172. [Google Scholar] [CrossRef]
- Kidd, P.M. Bioavailability and Activity of Phytosome Complexes from Botanical Polyphenols: The Silymarin, Curcumin, Green Tea, and Grape Seed Extracts. Altern. Med. Rev. 2009, 14, 226–246. [Google Scholar]
- Abdelkader, H.; Longman, M.R.; Alany, R.G.; Pierscionek, B. Phytosome-Hyaluronic Acid Systems for Ocular Delivery of L-Carnosine. Int. J. Nanomed. 2016, 11, 2815–2827. [Google Scholar] [CrossRef] [Green Version]
- El-Menshawe, S.F.; Ali, A.A.; Rabeh, M.A.; Khalil, N.M. Nanosized Soy Phytosome-Based Thermogel as Topical Anti-Obesity Formulation: An Approach for Acceptable Level of Evidence of An Effective Novel Herbal Weight Loss Product. Int. J. Nanomed. 2018, 13, 307–318. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.P.; Sun, J.; Chen, H.X.; Xiao, Y.Y.; Liu, D.; Chen, J.; Cai, H.; Cai, B.C. Comparative Pharmacokinetics and Bioavailability Studies of Quercetin, Kaempferol and Isorhamnetin After Oral Administration of Ginkgo biloba Extracts, Ginkgo biloba Extract Phospholipid Complexes and Ginkgo biloba Extract Solid Dispersions in Rats. Fitoterapia 2010, 81, 1045–1052. [Google Scholar] [CrossRef]
- Sahin, O.I.; Dundar, A.N.; Ozdemir, S.; Uzuner, K.; Parlak, M.E.; Dagdelen, A.F.; Saricaoglu, F.T. Nanophytosomes as A Protection System to Improve the Gastrointestinal Stability and Bioavailability of Phycocyanin. Food Biosci. 2022, 50, 102052. [Google Scholar] [CrossRef]
- Jackson, S.E.; Beeken, R.J.; Wardle, J. Obesity, Perceived Weight Discrimination, and Psychological Well-Being in Older Adults in England. Obesity 2015, 23, 1105–1111. [Google Scholar] [CrossRef] [Green Version]
- Chang, L.; Chiang, S.H.; Saltiel, A.R. Insulin Signaling and The Regulation of Glucose Transport. Mol. Med. 2004, 10, 65–71. [Google Scholar] [CrossRef]
- Qiu, J.; Wang, Y.M.; Shi, C.M.; Yue, H.N.; Qin, Z.Y.; Zhu, G.Z.; Cao, X.G.; Ji, C.B.; Cui, Y.; Guo, X.R. NYGGF4 (PID1) Effects on Insulin Resistance are Reversed by Metformin in 3T3-L1 Adipocytes. J. Bioenerg. Biomembr. 2012, 44, 665–671. [Google Scholar] [CrossRef] [PubMed]
- Qin, Z.Y.; Zhang, M.; Dai, Y.M.; Wang, Y.M.; Zhu, G.Z.; Zhao, Y.P.; Ji, C.B.; Qiu, J.; Cao, X.G.; Guo, X.R. Metformin prevents LYRM1-induced insulin resistance in 3T3-L1 adipocytes via a mitochondrial-dependent mechanism. Exp. Biol. Med. 2014, 239, 567–1574. [Google Scholar] [CrossRef]
- Zhang, W.Y.; Lee, J.J.; Kim, Y.; Kim, I.S.; Han, J.H.; Lee, S.G.; Ahn, M.J.; Jung, S.H.; Myung, C.S. Effect of eriodictyol on glucose uptake and insulin resistance in vitro. J. Agric. Food Chem. 2012, 60, 7652–7658. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, A.M.S.; Heimfarth, L.; Pereira, E.W.M.; Oliveira, F.S.; Menezes, I.R.A.; Coutinho, H.D.M.; Picot, L.; Antoniolli, A.R.; Quintans, J.S.S.; Quintans-Júnior, L.J. Phytol, A Chlorophyll Component, Produces Antihyperalgesic, Anti-inflammatory, and Antiarthritic Effects: Possible NFκB Pathway Involvement and Reduced Levels of the Proinflammatory Cytokines TNF-α and IL-6. J. Nat. Prod. 2020, 83, 1107–1117. [Google Scholar] [CrossRef] [PubMed]
- Morgan, L.V.; Petry, F.; Scatolin, M.; De Oliveira, P.V.; Alves, B.O.; Zilli, G.A.L.; Volfe, C.R.B.; Oltramari, A.R.; De Oliveira, D.; Scapinello, J.; et al. Investigation of The Anti-Inflammatory Effects of Stigmasterol in Mice: Insight into Its Mechanism of Action. Behav. Pharmacol. 2021, 32, 640–651. [Google Scholar] [CrossRef] [PubMed]
- Reiter, E.; Jiang, Q.; Christen, S. Anti-Inflammatory Properties of Alpha- And Gamma-Tocopherol. Mol. Asp. Med. 2007, 28, 668–691. [Google Scholar] [CrossRef] [Green Version]
- Chairuk, P.; Tubtimsri, S.; Jansakul, C.; Sriamornsak, P.; Weerapol, Y. Enhancing Oral Absorption of Poorly Water-Soluble Herb (Kaempferia parviflora) Extract Using Self-Nanoemulsifying Formulation. Pharm. Dev. Technol. 2020, 25, 340–350. [Google Scholar] [CrossRef]
- Boonyarattanasoonthorn, T.; Kijtawornrat, A.; Songvut, P.; Nuengchamnong, N.; Buranasudja, V.; Khemawoot, P. Increase Water Solubility of Centella asiatica Extract by Indigenous Bioenhancers Could Improve Oral Bioavailability and Disposition Kinetics of Triterpenoid Glycosides in Beagle dogs. Sci. Rep. 2022, 12, 2909. [Google Scholar] [CrossRef]
- Hou, Z.; Li, Y.; Huang, Y.; Zhou, C.; Lin, J.; Wang, Y.; Cui, F.; Zhou, S.; Jia, M.; Ye, S.; et al. Phytosomes Loaded with Mitomycin C-Soybean Phosphatidylcholine Complex Developed for Drug Delivery. Mol. Pharm. 2013, 10, 90–101. [Google Scholar] [CrossRef] [PubMed]
- Chiong, H.S.; Yong, Y.K.; Ahmad, Z.; Sulaiman, M.R.; Zakaria, Z.A.; Yuen, K.H.; Hakim, M.N. Cytoprotective and Enhanced Anti-Inflammatory Activities of Liposomal Piroxicam Formulation in Lipopolysaccharide-Stimulated RAW 264.7 Macrophages. Int. J. Nanomed. 2013, 8, 1245–1255. [Google Scholar] [CrossRef] [Green Version]
- Ali, A.M.; Gabbar, M.A.; Abdel-Twab, S.M.; Fahmy, E.M.; Ebaid, H.; Alhazza, I.M.; Ahmed, O.M. Antidiabetic Potency, Antioxidant Effects, and Mode of Actions of Citrus reticulata Fruit Peel Hydroethanolic Extract, Hesperidin, And Quercetin in Nicotinamide/Streptozotocin-Induced Wistar Diabetic Rats. Oxidative Med. Cell. Longev. 2020, 2020, 1730492. [Google Scholar] [CrossRef] [PubMed]
- Alonso-Castro, A.J.; Serrano-Vega, R.; Pérez Gutiérrez, S.; Isiordia-Espinoza, M.A.; Solorio-Alvarado, C.R. Myristic Acid Reduces Skin Inflammation and Nociception. J. Food Biochem. 2022, 46, E14013. [Google Scholar] [CrossRef]
- Amor, I.L.-B.; Boubaker, J.; Sgaier, M.B.; Skandrani, I.; Bhouri, W.; Neffati, A.; Kilani, S.; Bouhlel, I.; Ghedira, K.; Chekir-Ghedira, L. Phytochemistry and Biological Activities of Phlomis Species. J. Ethnopharmacol. 2009, 125, 183–202. [Google Scholar] [CrossRef]
- Arai, R.; Nukazawa, K.; Kazama, S.; Takemon, Y. Variation in Benthic Invertebrate Abundance Along Thermal Gradients Within Headwater Streams of a Temperate Basin in Japan. Hydrobiologia 2015, 762, 55–63. [Google Scholar] [CrossRef]
- Azemi, A.K.; Mokhtar, S.S.; Rasool, A.H.G. Clinacanthus nutans: Its Potential Against Diabetic Vascular Diseases. Braz. J. Pharm. Sci. 2021, 56. [Google Scholar] [CrossRef]
- Dey, P.; Mah, E.; Li, J.; Jalili, T.; Symons, J.D.; Bruno, R.S. Improved Hepatic γ-Tocopherol Status Limits Oxidative and Inflammatory Stress-Mediated Liver Injury in db/db Mice with Nonalcoholic Steatohepatitis. J. Funct. Foods 2018, 40, 670–678. [Google Scholar] [CrossRef]
- Djuricic, I.; Calder, P.C. Beneficial Outcomes of Omega-6 and Omega-3 Polyunsaturated Fatty Acids on Human Health: An Update for 2021. Nutrients 2021, 13, 2421. [Google Scholar] [CrossRef]
- Elmazar, M.M.; El-Abhar, H.S.; Schaalan, M.F.; Farag, N.A. Phytol/Phytanic Acid and Insulin Resistance: Potential Role of Phytanic Acid Proven by Docking Simulation and Modulation of Biochemical Alterations. PLoS ONE 2013, 8, E45638. [Google Scholar] [CrossRef] [Green Version]
- Ezirim, C.Y.; Abarikwu, S.O.; Uwakwe, A.A.; Mgbudom-Okah, C.J. Protective Effects of Anthocleista djalonensis A. Chev Root Extracts Against Induced Testicular Inflammation and Impaired Spermatogenesis in Adult Rats. Mol. Biol. Rep. 2019, 46, 5983–5994. [Google Scholar] [CrossRef] [PubMed]
- Fazelipour, S.; Hadipour Jahromy, M.; Tootian, Z.; Goodarzi, N. Antidiabetic Effects of the Ethanolic Extract of Allium saralicum RM Fritsch on Streptozotocin-Induced Diabetes in A Mice Model. Food Sci. Nutr. 2021, 9, 4815–4826. [Google Scholar] [CrossRef] [PubMed]
- Ferdous, A.; Janta, R.A.; Arpa, R.N.; Afroze, M.; Khan, M.; Moniruzzaman, M. The Leaves of Bougainvillea spectabilis Suppressed Inflammation and Nociception In Vivo Through the Modulation of Glutamatergic, Cgmp, And ATP-Sensitive K+ Channel Pathways. J. Ethnopharmacol. 2020, 261, 113148. [Google Scholar] [CrossRef]
- Ganbold, M.; Ferdousi, F.; Arimura, T.; Tominaga, K.; Isoda, H. New Amphiphilic Squalene Derivative Improves Metabolism of Adipocytes Differentiated from Diabetic Adipose-Derived Stem Cells and Prevents Excessive Lipogenesis. Front. Cell Dev. Biol. 2020, 8, 577259. [Google Scholar]
- George, L.O.; Radha, H.R.; Somasekariah, B.V. In Vitro Anti-Diabetic Activity and GC-MS Analysis of Bioactive Compounds Present in the Methanol Extract of Kalanchoe pinnata. NISCAIR-CSIR 2018, 1213–1221. [Google Scholar]
- Gonçalves, N.B.; Bannitz, R.F.; Silva, B.R.; Becari, D.D.; Poloni, C.; Gomes, P.M.; Foss, M.C.; Foss-Freitas, M.C. A-Linolenic Acid Prevents Hepatic Steatosis and Improves Glucose Tolerance in Mice Fed a High-Fat Diet. Clinics 2018, 73. [Google Scholar] [CrossRef]
- Ibrahim, N.; Naina Mohamed, I. Interdependence of Anti-Inflammatory and Antioxidant Properties of Squalene–Implication for Cardiovascular Health. Life 2021, 11, 103. [Google Scholar] [CrossRef]
- Islam, M.T.; Ayatollahi, S.A.; Zihad, S.N.K.; Sifat, N.; Khan, M.R.; Paul, A.; Salehi, B.; Islam, T.; Mubarak, M.S.; Martins, N. Phytol Anti-Inflammatory Activity: Pre-Clinical Assessment and Possible Mechanism of Action Elucidation. Cell. Mol. Biol. 2020, 66, 264–269. [Google Scholar] [CrossRef]
- Khalil, A.S.M.; Giribabu, N.; Yelumalai, S.; Shahzad, H.; Kilari, E.K.; Salleh, N. Myristic Acid Defends Against Testicular Oxidative Stress, Inflammation, Apoptosis: Restoration of Spermatogenesis, Steroidogenesis in Diabetic Rats. Life Sci. 2021, 278, 119605. [Google Scholar] [CrossRef]
- Kim, D.Y.; Kim, J.; Ham, H.J.; Choue, R. Effects Of D-A-Tocopherol Supplements on Lipid Metabolism in A High-Fat Diet-Fed Animal Model. Nutr. Res. Pract. 2013, 7, 481–487. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Wang, Q.; Yang, Y.; Wu, G.; Xue-Lei, X.; Aisa, H. Chemical Components and Antidiabetic Activity of Essential Oils Obtained by Hydrodistillation and Three Solvent Extraction Methods from Carthamus tinctorius L. Acta Chromatogr. 2012, 24, 653. [Google Scholar] [CrossRef] [Green Version]
- López-Gómez, C.; Santiago-Fernández, C.; García-Serrano, S.; García-Escobar, E.; Gutiérrez-Repiso, C.; Rodríguez-Díaz, C.; Ho-Plágaro, A.; Martín-Reyes, F.; Garrido-Sánchez, L.; Valdés, S. Oleic Acid Protects Against Insulin Resistance by Regulating the Genes Related to the PI3K Signaling Pathway. J. Clin. Med. 2020, 9, 2615. [Google Scholar] [CrossRef] [PubMed]
- Mahmood, R.; Kayani, W.K.; Ahmed, T.; Malik, F.; Hussain, S.; Ashfaq, M.; Ali, H.; Rubnawaz, S.; Green, B.D.; Calderwood, D. Assessment of Antidiabetic Potential and Phytochemical Profiling of Rhazya Stricta Root Extracts. BMC Complement. Med. Ther. 2020, 20, 1–17. [Google Scholar]
- Matsuda, H.; Suzuki, D.; Asakura, M.; Ooi, S.; Saitoh, R.; Otokozawa, R.; Shirai, T. Effects of Dietary Phytol on Glucose Uptake and Insulin Secretion In Vitro and In Vivo. Food Nutr. Current Res. 2018, 1, 29–37. [Google Scholar]
- Nasution, R.; Fitrah, C.N.; Helwati, H.; Murniana, A.B.; Cutchamzurni, C. Antidiabetes Activities Extract Hexane from the Peels of Artocarpus camansi Blanco Fruit. Asian J. Pharm. Clin. Res. 2018, 11, 12–17. [Google Scholar] [CrossRef] [Green Version]
- Okechukwu, P.N. Evaluation of Anti-Inflammatory, Analgesic, Antipyretic Effect of Eicosane, Pentadecane, Octacosane, and Heneicosane. Asian J. Pharm. Clin. Res. 2020, 29–35. [Google Scholar] [CrossRef]
- Okokon, J.E.; Etuk, I.C.; Thomas, P.S.; Drijfhout, F.P.; Claridge, T.D.W.; Li, W.-W. In Vivo Antihyperglycaemic and Antihyperlipidemic Activities and Chemical Constituents of Solanum anomalum. Biomed. Pharmacother. Biomedecine Pharmacother. 2022, 151, 113153. [Google Scholar] [CrossRef] [PubMed]
- Pang, K.-L.; Chin, K.-Y. The Role of Tocotrienol in Protecting Against Metabolic Diseases. Molecules 2019, 24, 923. [Google Scholar] [CrossRef] [Green Version]
- Pauls, S.D.; Rodway, L.A.; Winter, T.; Taylor, C.G.; Zahradka, P.; Aukema, H.M. Anti-Inflammatory Effects of α-Linolenic Acid in M1-Like Macrophages are Associated with Enhanced Production of Oxylipins From α-Linolenic and Linoleic Acid. J. Nutr. Biochem. 2018, 57, 121–129. [Google Scholar] [CrossRef]
- Ratheesh, M.; Sunil, S.; Sheethal, S.; Jose, S.P.; Sandya, S.; Ghosh, O.S.N.; Rajan, S.; Jagmag, T.; Tilwani, J. Anti-Inflammatory and Anti-COVID-19 Effect of a Novel Polyherbal Formulation (Imusil) Via Modulating Oxidative Stress, Inflammatory Mediators and Cytokine Storm. Inflammopharmacology 2022, 30, 173–184. [Google Scholar] [CrossRef]
- Roshankhah, S.; Abdolmaleki, A.; Salahshoor, M.R. Anti-Inflammatory, Anti-Apoptotic, and Antioxidant Actions of Middle Eastern Phoenix Dactylifera Extract on Mercury-Induced Hepatotoxicity In Vivo. Mol. Biol. Rep. 2020, 47, 6053–6065. [Google Scholar] [CrossRef]
- Saraswathi, V.; Kumar, N.; Ai, W.; Gopal, T.; Bhatt, S.; Harris, E.N.; Talmon, G.A.; Desouza, C.V. Myristic Acid Supplementation Aggravates High Fat Diet-Induced Adipose Inflammation and Systemic Insulin Resistance in Mice. Biomolecules 2022, 12, 739. [Google Scholar] [CrossRef] [PubMed]
- Sulaimon, L.A.; Anise, E.O.; Obuotor, E.M.; Samuel, T.A.; Moshood, A.I.; Olajide, M.; Fatoke, T. In Vitro Antidiabetic Potentials, Antioxidant Activities and Phytochemical Profile of African Black Pepper (Piper guineense). Clin. Phytoscience 2020, 6, 1–13. [Google Scholar] [CrossRef]
- Tham, Y.Y.; Choo, Q.C.; Muhammad, T.S.T.; Chew, C.H. Lauric Acid Alleviates Insulin Resistance by Improving Mitochondrial Biogenesis in THP-1 Macrophages. Mol. Biol. Rep. 2020, 47, 9595–9607. [Google Scholar] [CrossRef]
- Tian, X.; Seluanov, A.; Gorbunova, V. Molecular Mechanisms Determining Lifespan in Short-And Long-Lived Species. Trends Endocrinol. Metab. 2017, 28, 722–734. [Google Scholar] [CrossRef]
- Ujita, M.; Nagayama, H.; Kanie, S.; Koike, S.; Ikeyama, Y.; Ozaki, T.; Okumura, H. Carbohydrate Binding Specificity of Recombinant Human Macrophage Β-Glucan Receptor Dectin-1. Biosci. Biotechnol. Biochem. 2009, 73, 237–240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, D.Q.; Liu, X.L.; Rong, Q.F.; Han, L.; Zhao, N.Q. Alpha-Linolenic Acid Improves Insulin Sensitivity in Obese Patients. Zhonghua Yi Xue Za Zhi 2013, 93, 132–134. [Google Scholar]
- Wang, J.; Huang, M.; Yang, J.; Ma, X.; Zheng, S.; Deng, S.; Huang, Y.; Yang, X.; Zhao, P. Anti-Diabetic Activity of Stigmasterol from Soybean Oil by Targeting Tte GLUT4 Glucose Transporter. Food Nutr. Res. 2017, 61, 1364117. [Google Scholar] [CrossRef] [Green Version]
- Ward, M.G.; Li, G.; Barbosa-Lorenzi, V.C.; Hao, M. Stigmasterol Prevents Glucolipotoxicity Induced Defects in Glucose-Stimulated Insulin Secretion. Sci. Rep. 2017, 7, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xia, M.; Liu, L.; Qiu, R.; Li, M.; Huang, W.; Ren, G.; Zhang, J. Anti-Inflammatory and Anxiolytic Activities of Euphorbia hirta Extract in Neonatal Asthmatic Rats. AMB Express 2018, 8, 1–11. [Google Scholar] [CrossRef]
- Yeh, C.-F.; Chuang, T.-Y.; Hung, Y.-W.; Lan, M.-Y.; Tsai, C.-H.; Huang, H.-X.; Lin, Y.-Y. Soluble Epoxide Hydrolase Inhibition Enhances Anti-Inflammatory and Antioxidative Processes, Modulates Microglia Polarization, and Promotes Recovery After Ischemic Stroke. Neuropsychiatr. Dis. Treat 2019, 15, 2927. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoon, S.-Y.; Ahn, D.; Hwang, J.Y.; Kang, M.J.; Chung, S.J. Linoleic Acid Exerts Antidiabetic Effects by Inhibiting Protein Tyrosine Phosphatases Associated with Insulin Resistance. J. Funct. Foods 2021, 83, 104532. [Google Scholar] [CrossRef]
- Zafar, H.; Mirza, I.A.; Hussain, W.; Fayyaz, M. Comparative Efficacy of Tocotrienol and Tocopherol for Their Anti Diabetic Effects. Biomed. J. Sci. Tech. Res. 2021, 38, 30835–30840. [Google Scholar] [CrossRef]
- Zaky, A.S.; Kandeil, M.; Abdel-Gabbar, M.; Fahmy, E.M.; Almehmadi, M.M.; Ali, T.M.; Ahmed, O.M. The Antidiabetic Effects and Modes of Action of The Balanites aegyptiaca Fruit and Seed Aqueous Extracts in NA/STZ-Induced Diabetic Rats. Pharmaceutics 2022, 14, 263. [Google Scholar] [CrossRef]
- Zhong, R.-F.; Xu, G.-B.; Wang, Z.; Wang, A.-M.; Guan, H.-Y.; Li, J.; He, X.; Liu, J.-H.; Zhou, M.; Li, Y.-J. Identification of Anti-Inflammatory Constituents from Kalimeris Indica with UHPLC-ESI-Q-TOF-MS/MS and GC–MS. J. Ethnopharmacol. 2015, 165, 39–45. [Google Scholar] [CrossRef] [PubMed]
Samples | %EE | %LE | ||||
---|---|---|---|---|---|---|
TPC | TFC | GiA-1 | TPC | TFC | GiA-1 | |
GIE-phyto1 | 17.49 ± 5.28 | 17.58 ± 5.62 | 41.06 ± 6.26 | 4.93 ± 1.55 | 14.17 ± 4.62 | 2.02 ± 0.31 |
GIE-phyto2 | 23.63 ± 7.92 | 11.96 ± 3.37 | 41.25 ± 4.47 | 5.53 ± 2.03 | 8.09 ± 2.57 | 1.39 ± 0.15 |
Samples | RAW267.3 | 3T3-L1 | ||
---|---|---|---|---|
IC20 (µg/mL) | IC50 (µg/mL) | IC20 (µg/mL) | IC50 (µg/mL) | |
GiA-1 | 180.33 ± 15.11 | 379.20 ± 13.58 | 452.80 ± 59.59 | 688.80 ± 20.57 |
B-phyto | 304.00 ± 45.25 | >800.00 | non-cytotoxicity | |
GIE | 492.80 ± 68.31 | 591.57 ± 57.05 | 424.00 ± 69.04 | >800.00 |
GIE-phyto1 | 274.67 ± 75.21 | 635.20 ± 31.68 | 524.80 ± 90.51 | >800.00 |
GIE-phyto2 | 222.67 ± 30.09 | 342.67 ± 34.65 | 441.07 ± 85.96 | >800.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nuchuchua, O.; Inpan, R.; Srinuanchai, W.; Karinchai, J.; Pitchakarn, P.; Wongnoppavich, A.; Imsumran, A. Phytosome Supplements for Delivering Gymnema inodorum Phytonutrients to Prevent Inflammation in Macrophages and Insulin Resistance in Adipocytes. Foods 2023, 12, 2257. https://doi.org/10.3390/foods12112257
Nuchuchua O, Inpan R, Srinuanchai W, Karinchai J, Pitchakarn P, Wongnoppavich A, Imsumran A. Phytosome Supplements for Delivering Gymnema inodorum Phytonutrients to Prevent Inflammation in Macrophages and Insulin Resistance in Adipocytes. Foods. 2023; 12(11):2257. https://doi.org/10.3390/foods12112257
Chicago/Turabian StyleNuchuchua, Onanong, Ratchanon Inpan, Wanwisa Srinuanchai, Jirarat Karinchai, Pornsiri Pitchakarn, Ariyaphong Wongnoppavich, and Arisa Imsumran. 2023. "Phytosome Supplements for Delivering Gymnema inodorum Phytonutrients to Prevent Inflammation in Macrophages and Insulin Resistance in Adipocytes" Foods 12, no. 11: 2257. https://doi.org/10.3390/foods12112257
APA StyleNuchuchua, O., Inpan, R., Srinuanchai, W., Karinchai, J., Pitchakarn, P., Wongnoppavich, A., & Imsumran, A. (2023). Phytosome Supplements for Delivering Gymnema inodorum Phytonutrients to Prevent Inflammation in Macrophages and Insulin Resistance in Adipocytes. Foods, 12(11), 2257. https://doi.org/10.3390/foods12112257