Impact of Combined Thermal Pressure Treatments on Physical Properties and Stability of Whey Protein Gel Emulsions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Emulsion and Gel Preparation
2.2.1. Stock Solutions
2.2.2. Preparation and Processing of WP Emulsions
2.3. Analytical Determinations
2.3.1. Rheological Measurements
2.3.2. Particle Size Distribution
2.3.3. Physical Stability
2.4. Statistical Analysis
3. Results and Discussion
3.1. Rheological Characteristics of WP Emulsion Gels
3.2. Particle Size Measurements of WP Emulsion Gels
3.3. Physical Stability of WP Emulsion Gels
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Restrepo, B.J.; Rieger, M. Denmark’s Policy on Artificial Trans Fat and Cardiovascular Disease. Am. J. Prev. Med. 2016, 50, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Colmenero, F.; Salcedo-Sandoval, L.; Bou, R.; Cofrades, S.; Herrero, A.M.; Ruiz-Capillas, C. Novel applications of oil-structuring methods as a strategy to improve the fat content of meat products. Trends Food Sci. Technol. 2015, 44, 177–188. [Google Scholar] [CrossRef] [Green Version]
- Mao, L.; Miao, S.; Yuan, F.; Gao, Y. Study on the textural and volatile characteristics of emulsion filled protein gels as influenced by different fat substitutes. Food Res. Int. 2018, 103, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Madadlou, A.; Rakhshi, E.; Abbaspourrad, A. Engineered emulsions for obesity treatment. Trends Food Sci. Technol. 2016, 52, 90–97. [Google Scholar] [CrossRef]
- Sandrou, D.K.; Arvanitoyannis, I.S. Low-fat/calorie foods: Current state and perspectives. Crit. Rev. Food. Sci. Nutr. 2000, 40, 427–447. [Google Scholar] [CrossRef]
- Paciulli, M.; Littardi, P.; Carini, E.; Paradiso, V.M.; Castellino, M.; Chiavaro, E. Inulin-based emulsion filled gel as fat replacer in shortbread cookies: Effects during storage. LWT-Food Sci. Technol. 2020, 133, 109888. [Google Scholar] [CrossRef]
- Dickinson, E. Emulsion gels: The structuring of soft solids with protein-stabilized oil droplets. Food Hydrocoll. 2012, 28, 224–241. [Google Scholar] [CrossRef]
- Geremias-Andrade, I.M.; Souki, N.P.; Moraes, I.C.; Pinho, S.C. Rheology of Emulsion-Filled Gels Applied to the Development of Food Materials. Gels 2016, 2, 22. [Google Scholar] [CrossRef] [Green Version]
- Oliver, L.; Scholten, E.; van Aken, G.A. Effect of fat hardness on large deformation rheology of emulsion-filled gels. Food Hydrocoll. 2015, 43, 299–310. [Google Scholar] [CrossRef]
- Li, J.; Xu, X.; Chen, Z.; Wang, T.; Lu, Z.; Hu, W.; Wang, L. Zein/gum Arabic nanoparticle-stabilized Pickering emulsion with thymol as an antibacterial delivery system. Carbohydr. Polym. 2018, 200, 416–426. [Google Scholar] [CrossRef]
- Soukoulis, C.; Cambier, S.; Hoffmann, L.; Bohn, T. Chemical stability and bioaccessibility of β-carotene encapsulated in sodium alginate o/w emulsions: Impact of Ca2+ mediated gelation. Food Hydrocoll. 2016, 57, 301–310. [Google Scholar] [CrossRef]
- Ben-Harb, S.; Panouillé, M.; Huc-Mathis, D.; Moulin, G.; Saint-Eve, A.; Irlinger, F.; Bonnarme, P.; Michon, C.; Souchon, I. The rheological and microstructural properties of pea, milk, mixed pea/milk gels and gelled emulsions designed by thermal, acid, and enzyme treatments. Food Hydrocoll. 2018, 77, 75–84. [Google Scholar] [CrossRef]
- Geremias-Andrade, I.M.; Souki, N.P.; Moraes, I.C.; Pinho, S.C. Rheological and mechanical characterization of curcumin-loaded emulsion-filled gels produced with whey protein isolate and xanthan gum. LWT-Food Sci. Technol. 2017, 86, 166–173. [Google Scholar] [CrossRef]
- Guo, Q.; Bellissimo, N.; Rousseau, D. Role of gel structure in controlling in vitro intestinal lipid digestion in whey protein emulsion gels. Food Hydrocoll. 2017, 69, 264–272. [Google Scholar] [CrossRef]
- Zhu, Y.; Chen, X.; McClements, D.J.; Zou, L.; Liu, W. pH-, ion- and temperature-dependent emulsion gels: Fabricated by addition of whey protein to gliadin-nanoparticle coated lipid droplets. Food Hydrocoll. 2018, 77, 870–878. [Google Scholar] [CrossRef]
- Euston, R.; Finnigan, S.R.; Hirst, R.L. Aggregation kinetics of heated whey protein-stabilized emulsions. Food Hydrocoll. 2000, 14, 155–161. [Google Scholar] [CrossRef]
- Wolz, M.; Kulozik, U. Thermal denaturation kinetics of whey proteins at high protein concentrations. Int. Dairy J. 2015, 49, 95–101. [Google Scholar] [CrossRef]
- Wolz, M.; Mersch, E.; Kulozik, U. Thermal aggregation of whey proteins under shear stress. Food Hydrocoll. 2016, 56, 396–404. [Google Scholar] [CrossRef]
- Rinaldi, M.; Cordioli, M.; Alinovi, M.; Malavasi, M.; Barbanti, D.; Mucchetti, G. Development and Validation of CFD Models of Thermal Treatment on Milk Whey Proteins Dispersion In Batch and Continuous Process Condition. Int. J. Food Eng. 2018, 14, 9–10. [Google Scholar] [CrossRef]
- Modler, H.W.; Emmons, D.B. The use of continuous ricotta processing to reduce ingredient cost in “further processed” cheese products. Int. Dairy J. 2001, 11, 517–523. [Google Scholar] [CrossRef]
- Erabit, N.; Ndoye, F.T.; Alvarez, G.; Flick, D. Coupling Population Balance Model and Residence Time Distribution for pilot-scale modelling of β-lactoglobulin aggregation process. J. Food Eng. 2016, 177, 31–41. [Google Scholar] [CrossRef]
- Trujillo, A.J.; Roig-Sagués, A.X.; Zamora, A.; Ferragut, V. High-Pressure Homogenization for Structure Modification. In Innovative Food Processing Technologies; Knoerzer, K., Juliano, P., Smithers, G.W., Eds.; Woodhead Publishing: Sawston, UK, 2016; Volume 77, pp. 315–344. [Google Scholar]
- Surh, J.; Vladisavljević, G.T.; Mun, S.; McClements, D.J. Preparation and characterization of water/oil and water/oil/water emulsions containing biopolymer-gelled water droplets. J. Agric. Food Chem. 2007, 55, 175–184. [Google Scholar] [CrossRef] [PubMed]
- Mutilangi, W.A.M.; Panyam, D.; Kilara, A. Functional properties of hydrolysates from proteolysis of heat-denatured whey protein isolate. J. Food Sci. 1996, 61, 270–275. [Google Scholar] [CrossRef]
- Aoki, T.; Decker, E.A.; McClements, D.J. Influence of environmental stresses on stability of O/W emulsions containing droplets stabilized by multilayered membranes produced by a layer-by-layer electrostatic deposition technique. Food Hydrocoll. 2005, 19, 209–220. [Google Scholar] [CrossRef]
- Yazar, G.; Rosell, C.M. Fat replacers in baked products: Their impact on rheological properties and final product quality. Crit. Rev. Food Sci. Nutr. 2022, 1–24. [Google Scholar] [CrossRef]
- Hebishy, E.; Zamora, A.; Buffa, M.; Blasco-Moreno, A.; Trujillo, A.J. Characterization of whey protein oil-in-water emulsions with different oil concentrations stabilized by ultra-high pressure homogenization. Processes 2017, 5, 6. [Google Scholar] [CrossRef] [Green Version]
- Dybowska, B.E. Whey protein-stabilized emulsion properties in relation to thermal modification of the continuous phase. J. Food Eng. 2011, 104, 81–88. [Google Scholar] [CrossRef]
- Gauche, C.; Barreto, P.L.; Bordignon-Luiz, M.T. Effect of thermal treatment on whey protein polymerization by transglutaminase: Implications for functionality in processed dairy foods. LWT-Food Sci. Technol. 2010, 43, 214–219. [Google Scholar] [CrossRef]
- Domian, E.; Mańko-Jurkowska, D. The effect of homogenization and heat treatment on gelation of whey proteins in emulsions. J. Food Eng. 2022, 319, 110915. [Google Scholar] [CrossRef]
- Kiokias, S.; Dimakou, C.; Oreopoulou, V. Effect of heat treatment and droplet size on the oxidative stability of whey protein emulsions. Food Chem. 2007, 105, 94–100. [Google Scholar] [CrossRef]
- Sliwinski, E.L.; Roubos, P.J.; Zoet, F.D.; Van Boekel, M.A.; Wouters, J.T.M. Effects of heat on physicochemical properties of whey protein-stabilised emulsions. Colloids Surf. B 2003, 31, 231–242. [Google Scholar] [CrossRef]
- Chen, J.; Dickinson, E. Viscoelastic properties of heat-set whey protein emulsion gels. J. Texture Stud. 1998, 29, 285–304. [Google Scholar] [CrossRef]
- Demetriades, K.; Coupland, J.N.; McClements, D.J. Physicochemical properties of whey protein-stabilized emulsions as affected by heating and ionic strength. J. Food Sci. 1997, 62, 462–467. [Google Scholar] [CrossRef]
- Muñoz, J.; Prieto-Vargas, P.; García, M.C.; Alfaro-Rodríguez, M.C. Effect of a Change in the CaCl2/Pectin Mass Ratio on the Particle Size, Rheology and Physical Stability of Lemon Essential Oil/W Emulgels. Foods 2023, 12, 1137. [Google Scholar] [CrossRef] [PubMed]
- Dybowska, B.E.; Krupa-Kozak, U. Stability of oil-in-water emulsions as influenced by thermal treatment of whey protein dispersions or emulsions. Int. J. Dairy Technol. 2020, 73, 513–520. [Google Scholar] [CrossRef]
- Liu, F.; Tang, C.H. Cold, gel-like whey protein emulsions by microfluidisation emulsification: Rheological properties and microstructures. Food Chem. 2011, 127, 1641–1647. [Google Scholar] [CrossRef]
- Buggy, A.K.; McManus, J.J.; Brodkorb, A.; Carthy, N.M.; Fenelon, M.A. Stabilising effect of α-lactalbumin on concentrated infant milk formula emulsions heat treated pre-or post-homogenisation. Dairy Sci. Technol. 2017, 96, 845–859. [Google Scholar] [CrossRef] [Green Version]
- Wijayanti, H.B.; Bansal, N.; Deeth, H.C. Stability of whey proteins during thermal processing: A review. Compr. Rev. Food Sci. Food Saf. 2014, 13, 1235–1251. [Google Scholar] [CrossRef]
- Boye, J.I.; Alli, I.; Ramaswamy, H.; Raghavan, V.G.S. Interactive effects of factors affecting gelation of whey proteins. J. Food Sci. 1997, 62, 57–65. [Google Scholar] [CrossRef]
- Hebishy, E.; Buffa, M.; Guamis, B.; Blasco-Moreno, A.; Trujillo, A.J. Physical and oxidative stability of whey protein oil-in-water emulsions produced by conventional and ultra high-pressure homogenization: Effects of pressure and protein concentration on emulsion characteristics. Innov. Food Sci. Emerg. Technol. 2015, 32, 79–90. [Google Scholar] [CrossRef]
- Zamora, A.; Ferragut, V.; Guamis, B.; Trujillo, A.J. Changes in the surface protein of the fat globules during ultra-high pressure homogenisation and conventional treatments of milk. Food Hydrocoll. 2012, 29, 135–143. [Google Scholar] [CrossRef]
- Corredig, M.; Dalgleish, D.G. Effect of different heat treatments on the strong binding interactions between whey proteins and milk fat globules in whole milk. J. Dairy Res. 1996, 63, 441–449. [Google Scholar] [CrossRef]
- Ye, A.; Singh, H.; Taylor, M.W.; Anema, S. Characterization of protein components of natural and heat-treated milk fat globule membranes. Int. Dairy J. 2002, 12, 393–402. [Google Scholar] [CrossRef]
- Ruffin, E.; Schmit, T.; Lafitte, G.; Dollat, J.M.; Chambin, O. The impact of whey protein preheating on the properties of emulsion gel bead. Food Chem. 2014, 151, 324–332. [Google Scholar] [CrossRef]
- Sobhaninia, M.; Nasirpour, A.; Shahedi, M.; Golkar, A. Oil-in-water emulsions stabilized by whey protein aggregates: Effect of aggregate size, pH of aggregation and emulsion pH. J. Dispers. Sci. Technol. 2017, 38, 1366–1373. [Google Scholar] [CrossRef]
Temperature (°C) | Pressure (MPa) | n (-) | k (mPa s) | Hysteresis Area (Pa) |
---|---|---|---|---|
Control | 0.737 ± 0.001 a | 0.29 ± 0.01 e | 0.13 ± <0.01 f | |
70 | 5 | 0.490 ± 0.071 b | 1.47 ± 0.01 e | 0.34 ± 0.03 ef |
10 | 0.292 ± 0.012 c | 5.48 ± 0.36 e | 0.78 ± 0.02 ef | |
15 | 0.305 ± 0.035 c | 9.58 ± 0.71 e | 0.98 ± 0.11 ef | |
80 | 5 | 0.250 ± 0.014 c | 75.69 ± 0.45 c | 6.53 ± 0.78 d |
10 | 0.200 ± 0.014 c | 33.68 ± 3.31 de | 2.86 ± 0.19 e | |
15 | 0.210 ± 0.028 c | 190.08 ± 2.28 b | 13.86 ± 0.46 c | |
90 | 5 | 0.216 ± 0.057 c | 70.16 ± 3.31 cd | 5.50 ± 0.19 d |
10 | 0.270 ± 0.025 c | 102.11 ± 5.97 c | 19.92 ± 0.10 b | |
15 | 0.309 ± 0.019 c | 355.88 ± 29.39 a | 41.03 ± 1.83 a |
Temperature (°C) | Pressure (MPa) | Dv10 (μm) | Dv50 (μm) | Dv90 (μm) | D[3,4] (μm) |
---|---|---|---|---|---|
Control | 1.58 ± 0.02 a | 10.10 ± 0.07 bcd | 41.14 ± 6.54 bc | 18.57 ± 4.61 bc | |
70 | 5 | 0.80 ± 0.34 b | 2.56 ± 1.92 e | 10.96 ± 12.54 c | 4.65 ± 4.32 c |
10 | 0.97 ± 0.11 ab | 2.97 ± 0.16 e | 36.76 ± 2.76 bc | 13.37 ± 0.74 bc | |
15 | 1.11 ± 0.01 ab | 8.82 ± 0.5 cde | 34.46 ± 6.10 bc | 13.99 ± 2.26 bc | |
80 | 5 | 1.46 ± 0.01 a | 6.36 ± 0.54 cde | 19.34 ± 4.26 bc | 10.01 ± 3.02 bc |
10 | 1.02 ± 0.10 ab | 3.76 ± 1.60 de | 31.14 ± 3.80 bc | 11.44 ± 3.15 bc | |
15 | 0.97 ± 0.04 ab | 3.22 ± 0.38 e | 33.17 ± 2.92 bc | 12.52 ± 0.67 bc | |
90 | 5 | 1.38 ± 0.03 ab | 16.13 ± 1.68 b | 57.17 ± 13.36 ab | 26.01 ± 5.04 b |
10 | 1.46 ± 0.12 a | 11.79 ± 1.18 bc | 39.71 ± 17.95 bc | 18.85 ± 3.97 bc | |
15 | 1.49 ± 0.09 a | 22.66 ± 5.99 a | 97.95 ± 32.32 a | 43.25 ± 14.50 a |
Temperature (°C) | Pressure (MPa) | Sedimentation Stability | Creaming Stability |
---|---|---|---|
(mL of Separated Water/100 mL of Sample) | (mL of Separated Oil/100 mL of Sample) | ||
Control | - | 97.85 ± 0.21 a | 97.28 ± 0.40 a |
70 | 5 | 26.78 ± 3.08 b | 73.85 ± 0.46 b |
10 | 15.05 ± 1.31 c | 67.74 ± 0.24 c | |
15 | 11.90 ± 0.14 c | 59.41 ± 0.83 d | |
80 | 5 | 2.20 ± 0.03 d | 27.52 ± 0.70 h |
10 | 1.66 ± 0.05 d | 37.14 ± 0.51 g | |
15 | 0.58 ± 0.11 d | 41.07 ± 0.47 f | |
90 | 5 | 1.53 ± 0.03 d | 53.52 ± 0.69 e |
10 | 1.17 ± 0.04 d | 41.69 ± 0.03 f | |
15 | 0.13 ± 0.01 d | 34.91 ± 1.14 g |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alinovi, M.; Rinaldi, M.; Paciulli, M.; Bot, F.; Barbanti, D.; Chiavaro, E. Impact of Combined Thermal Pressure Treatments on Physical Properties and Stability of Whey Protein Gel Emulsions. Foods 2023, 12, 2447. https://doi.org/10.3390/foods12132447
Alinovi M, Rinaldi M, Paciulli M, Bot F, Barbanti D, Chiavaro E. Impact of Combined Thermal Pressure Treatments on Physical Properties and Stability of Whey Protein Gel Emulsions. Foods. 2023; 12(13):2447. https://doi.org/10.3390/foods12132447
Chicago/Turabian StyleAlinovi, Marcello, Massimiliano Rinaldi, Maria Paciulli, Francesca Bot, Davide Barbanti, and Emma Chiavaro. 2023. "Impact of Combined Thermal Pressure Treatments on Physical Properties and Stability of Whey Protein Gel Emulsions" Foods 12, no. 13: 2447. https://doi.org/10.3390/foods12132447
APA StyleAlinovi, M., Rinaldi, M., Paciulli, M., Bot, F., Barbanti, D., & Chiavaro, E. (2023). Impact of Combined Thermal Pressure Treatments on Physical Properties and Stability of Whey Protein Gel Emulsions. Foods, 12(13), 2447. https://doi.org/10.3390/foods12132447