Physicochemical Properties of Chicken Breast and Thigh as Affected by Sous-Vide Cooking Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Sous-Vide Cooking Procedure
2.3. Analysis of Sous-Vide Cooked Chicken Breast and Thigh
2.3.1. pH Measurement
2.3.2. Moisture Content
2.3.3. Total Collagen Content
2.3.4. Instrumental Color Measurement
2.3.5. Cooking Loss
2.3.6. Total Protein Solubility
2.3.7. Myofibrillar Fragmentation Index
2.3.8. Shear Force
2.3.9. Lipid Oxidation
2.4. Statistical Analysis
3. Results and Discussion
3.1. pH and Color Characteristics of Sous-Vide Cooked Chicken Breast and Thigh
3.2. Cooking Loss and Moisture Content of Sous-Vide Cooked Chicken Breast and Thigh
3.3. Total Collagen Content of Sous-Vide Cooked Chicken Breast and Thigh
3.4. Total Protein Solubility of Sous-Vide Cooked Chicken Breast and Thigh
3.5. Myofibrillar Fragmentation Index (MFI) of Sous-Vide Cooked Chicken Breast and Thigh
3.6. Shear Force of Sous-Vide Cooked Chicken Breast and Thigh
3.7. Lipid Oxidation of Sous-Vide Cooked Chicken Breast and Thigh
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Park, C.H.; Lee, B.; Oh, E.; Kim, Y.S.; Choi, Y.M. Combined effects of sous-vide cooking conditions on meat and sensory quality characteristics of chicken breast meat. Poult. Sci. 2020, 99, 3286–3291. [Google Scholar] [CrossRef]
- Church, I.J.; Parsons, A.L. The sensory quality of chicken and potato products prepared using cook–chill and sous vide methods. Int. J. Food Sci. Technol. 2000, 35, 155–162. [Google Scholar] [CrossRef]
- Hong, G.E.; Kim, J.H.; Ahn, S.J.; Lee, C.H. Changes in meat quality characteristics of the sous-vide cooked chicken breast during refrigerated storage. Korean J. Food Sci. Anim. Resour. 2015, 35, 757–764. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haghighi, H.; Belmonte, A.M.; Masino, F.; Minelli, G.; Lo Fiego, D.P.; Pulvirenti, A. Effect of time and temperature on physicochemical and microbiological properties of sous vide chicken breast fillets. Appl. Sci. 2021, 11, 3189. [Google Scholar] [CrossRef]
- Hasani, E.; Csehi, B.; Darnay, L.; Ladányi, M.; Dalmadi, I.; Kenesei, G. Effect of combination of time and temperature on quality characteristics of sous vide chicken breast. Foods. 2022, 11, 521. [Google Scholar] [CrossRef] [PubMed]
- Purslow, P.P. Contribution of collagen and connective tissue to cooked meat toughness; some paradigms reviewed. Meat Sci. 2018, 144, 127–134. [Google Scholar] [CrossRef]
- Liu, G.; Xiong, Y.L. Contribution of lipid and protein oxidation to rheological differences between chicken white and red muscle myofibrillar proteins. J. Agric. Food Chem. 1996, 44, 779–784. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis; Association of Official Analytical Chemists: Washington, DC, USA, 2000. [Google Scholar]
- Starkey, C.P.; Geesink, G.H.; Oddy, V.H.; Hopkins, D.L. Explaining the variation in lamb longissimus shear force across and within ageing periods using protein degradation, sarcomere length and collagen characteristics. Meat Sci. 2015, 105, 32–37. [Google Scholar] [CrossRef]
- Kim, H.W.; Yan, F.F.; Hu, J.Y.; Cheng, H.W.; Kim, Y.H.B. Effects of probiotics feeding on meat quality of chicken breast during postmortem storage. Poult Sci. 2016, 95, 1457–1464. [Google Scholar] [CrossRef]
- Warner, R.D.; Kauffman, R.G.; Greaser, M.L. Muscle protein changes post mortem in relation to pork quality traits. Meat Sci. 1997, 45, 339–352. [Google Scholar] [CrossRef]
- Gornall, A.G.; Bardawill, C.J.; David, M.M. Determination of serum proteins by means of the biuret reaction. J. Biol. Chem. 1949, 177, 751–766. [Google Scholar] [CrossRef]
- Olson, D.G.; Stromer, M.H. Myofibril fragmentation and shear resistance of three bovine muscles during postmortem storage. J. Food Sci. 1976, 41, 1036–1041. [Google Scholar] [CrossRef]
- Kim, H.W.; Lee, S.H.; Choi, J.H.; Choi, Y.S.; Kim, H.Y.; Hwang, K.E.; Park, J.H.; Song, D.H.; Kim, C.J. Effects of rigor state, thawing temperature, and processing on the physicochemical properties of frozen duck breast muscle. Poult. Sci. 2012, 91, 2662–2667. [Google Scholar] [CrossRef] [PubMed]
- Buege, J.A.; Aust, S.D. Microsomal lipid peroxidation. Meth. Enzymol. 1978, 52, 302–310. [Google Scholar]
- Xiong, Y.L.; Blanchard, S.P. Dynamic gelling properties of myofibrillar protein from skeletal muscles of different chicken parts. J. Agric. Food Chem. 1994, 42, 670–674. [Google Scholar] [CrossRef]
- Cornet, M.; Bousset, J. Free amino acids and dipeptides in porcine muscles: Differences between ‘red’ and ‘white’ muscles. Meat Sci. 1999, 51, 215–219. [Google Scholar] [CrossRef]
- Jaturasitha, S.; Srikanchai, T.; Kreuzer, M.; Wicke, M. Differences in carcass and meat characteristics between chicken indigenous to northern Thailand (Black-boned and Thai native) and imported extensive breeds (Bresse and Rhode Island Red). Poult. Sci. 2008, 87, 160–169. [Google Scholar] [CrossRef]
- Chen, Y.; Qiao, Y.; Xiao, Y.U.; Chen, H.; Zhao, L.; Huang, M.; Zhou, G. Differences in physicochemical and nutritional properties of breast and thigh meat from crossbred chickens, commercial broilers, and spent hens. Asian-Australas. J. Anim. Sci. 2016, 29, 855. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hunt, M.C.; Sørheim, O.; Slinde, E. Color and heat denaturation of myoglobin forms in ground beef. J. Food Sci. 1999, 64, 847–851. [Google Scholar] [CrossRef]
- Del Pulgar, J.S.; Gázquez, A.; Ruiz-Carrascal, J. Physico-chemical, textural and structural characteristics of sous-vide cooked pork cheeks as affected by vacuum, cooking temperature, and cooking time. Meat Sci. 2012, 90, 828–835. [Google Scholar] [CrossRef] [PubMed]
- Ismail, I.; Hwang, Y.H.; Joo, S.T. Effect of different temperature and time combinations on quality characteristics of sous-vide cooked goat Gluteus medius and Biceps femoris. Food Bioproc. Technol. 2019, 12, 1000–1009. [Google Scholar] [CrossRef]
- Al-Husseiny, K.S.; Khrebish, M.T. Determination of chemical content and some physical properties and meat pigments (myoglobin, meta myoglobin and oxymyoglobin) in different parts of slaughtered animals. Basrah J. Agric. 2019, 32, 302–319. [Google Scholar] [CrossRef]
- Baldwin, D.E. Sous vide cooking: A review. Int. J. Gastron. Food Sci. 2012, 1, 15–30. [Google Scholar] [CrossRef] [Green Version]
- Przybylski, W.; Jaworska, D.; Kajak-Siemaszko, K.; Sałek, P.; Pakuła, K. Effect of heat treatment by the sous-vide method on the quality of poultry meat. Foods 2021, 10, 1610. [Google Scholar] [CrossRef]
- Purslow, P.P.; Oiseth, S.; Hughes, J.; Warner, R.D. The structural basis of cooking loss in beef: Variations with temperature and ageing. Food Res. Int. 2016, 89, 739–748. [Google Scholar] [CrossRef]
- Tornberg, E.V.A. Effects of heat on meat proteins–Implications on structure and quality of meat products. Meat Sci. 2005, 70, 493–508. [Google Scholar] [CrossRef]
- Wattanachant, S.; Benjakul, S.; Ledward, D.A. Effect of heat treatment on changes in texture, structure and properties of Thai indigenous chicken muscle. Food Chem. 2005, 93, 337–348. [Google Scholar] [CrossRef]
- Li, C.; Wang, D.; Xu, W.; Gao, F.; Zhou, G. Effect of final cooked temperature on tenderness, protein solubility and microstructure of duck breast muscle. LWT-Food Sci. Technol. 2013, 51, 266–274. [Google Scholar] [CrossRef]
- Ayub, H.; Ahmad, A. Physiochemical changes in sous-vide and conventionally cooked meat. Int. J. Gastron. Food Sci. 2019, 17, 100145. [Google Scholar] [CrossRef]
- Martens, H.; Stabursvik, E.; Martens, M. Texture and colour changes in meat during cooking related to thermal denaturation of muscle proteins 1. J. Texture Stud. 1982, 13, 291–309. [Google Scholar] [CrossRef]
- Wang, D.; Dong, H.; Zhang, M.; Liu, F.; Bian, H.; Zhu, Y.; Xu, W. Changes in actomyosin dissociation and endogenous enzyme activities during heating and their relationship with duck meat tenderness. Food Chem. 2013, 141, 675–679. [Google Scholar] [CrossRef]
- Okitani, A.; Ichinose, N.; Itoh, J.; Tsuji, Y.; Oneda, Y.; Hatae, K.; Migita, K.; Matsuishi, M. Liberation of actin from actomyosin in meats heated to 65 C. Meat Sci. 2009, 81, 446–450. [Google Scholar] [CrossRef]
- Jayasena, D.D.; Jung, S.; Kim, H.J.; Bae, Y.S.; Yong, H.I.; Lee, J.H.; Kim, J.G.; Jo, C. Comparison of quality traits of meat from Korean native chickens and broilers used in two different traditional Korean cuisines. Asian-Australas. J. Anim. Sci. 2013, 26, 1038. [Google Scholar] [CrossRef] [Green Version]
- Barbanti, D.; Pasquini, M. Influence of cooking conditions on cooking loss and tenderness of raw and marinated chicken breast meat. LWT-Food Sci. Technol. 2005, 38, 895–901. [Google Scholar] [CrossRef]
- Bohrer, B.M. Correlation of chicken breast quality and sensory attributes with chicken thigh quality and sensory attributes. Can. J. Anim. Sci. 2019, 99, 465–474. [Google Scholar] [CrossRef]
- Yu, L.H.; Lee, E.S.; Jeong, J.Y.; Paik, H.D.; Choi, J.H.; Kim, C.J. Effect of thawing temperature on the physicochemical properties of pre-rigor frozen chicken breast and leg muscles. Meat Sci. 2005, 71, 375–382. [Google Scholar] [CrossRef] [PubMed]
- Mei, L.; Crum, A.D.; Decker, E.A. Development of lipid oxidation and inactivation of antioxidant enzymes in cooked pork and beef. J. Food Lipids 1994, 1, 273–283. [Google Scholar] [CrossRef]
- Draper, H.H.; McGirr, L.G.; Hadley, M. The metabolism of malondialdehyde. Lipids 1986, 21, 305–307. [Google Scholar] [CrossRef]
- Crawford, D.L.; Yu, T.C.; Sinnhuber, R.O. Reaction of malonaldehyde with protein. J. Food Sci. 1967, 32, 332–335. [Google Scholar] [CrossRef]
- Faustman, C.; Sun, Q.; Mancini, R.; Suman, S.P. Myoglobin and lipid oxidation interactions: Mechanistic bases and control. Meat Sci. 2010, 86, 86–94. [Google Scholar] [CrossRef]
Effect | pH Value | CIE L* (Lightness) | CIE a* (Redness) | CIE b* (Yellowness) |
---|---|---|---|---|
Muscle effect | ||||
Breast | 6.07 b | 81.44 a | 3.39 b | 14.71 b |
Thigh | 6.37 a | 75.14 b | 4.48 a | 15.35 a |
SEM (1) | 0.036 | 0.499 | 0.175 | 0.192 |
Sous-vide effect | ||||
Control (71 °C) | 6.29 | 79.63 | 4.00 b | 14.68 d |
55 °C/3 h | 6.20 | 78.09 | 5.12 a | 13.65 e |
55 °C/6 h | 6.25 | 77.53 | 4.23 b | 15.21 d |
65 °C/3 h | 6.19 | 78.23 | 4.04 b | 14.92 d |
65 °C/6 h | 6.17 | 77.98 | 2.29 c | 16.68 c |
SEM | 0.057 | 0.788 | 0.277 | 0.304 |
Muscle × Sous-vide interaction | ||||
Breast × Control | 6.21 | 82.14 | 3.57 | 14.17 BC |
Breast × 55 °C/3 h | 6.04 | 80.67 | 4.47 | 13.92 BC |
Breast × 55 °C/6 h | 6.10 | 80.38 | 3.70 | 15.10 B |
Breast × 65 °C/3 h | 6.01 | 81.04 | 3.60 | 14.97 B |
Breast × 65 °C/6 h | 6.00 | 82.98 | 1.60 | 15.36 B |
Thigh × Control | 6.38 | 77.11 | 4.42 | 15.19 B |
Thigh × 55 °C/3 h | 6.36 | 75.51 | 5.78 | 13.38 C |
Thigh × 55 °C/6 h | 6.40 | 74.69 | 4.76 | 15.31 B |
Thigh × 65 °C/3 h | 6.36 | 75.42 | 4.47 | 14.87 B |
Thigh × 65 °C/6 h | 6.34 | 72.99 | 2.98 | 17.99 A |
SEM | 0.081 | 1.115 | 0.392 | 0.429 |
Significance of p-value | ||||
Muscle effect | <0.001 | <0.001 | <0.001 | 0.028 |
Sous-vide effect | NS (2) | NS | <0.001 | <0.001 |
Interaction effect | NS | NS | NS | 0.012 |
Effect | Moisture Content (g/100 g) | Collagen Content(g/100 g) | Protein Solubility (mg/g) | MFI(Unitless) |
---|---|---|---|---|
Muscle effect | ||||
Breast | 71.66 a | 15.91 b | 43.57 | 117.83 a |
Thigh | 70.00 b | 30.39 a | 49.92 | 23.36 b |
SEM (1) | 0.202 | 0.527 | 2.703 | 2.793 |
Sous-vide effect | ||||
Control (71 °C) | 71.15 d | 24.53 c | 43.64 d | 51.82 d |
55 °C/3 h | 72.45 c | 24.34 cd | 63.74 c | 81.68 c |
55 °C/6 h | 72.36 c | 23.21 cde | 57.50 c | 75.07 c |
65 °C/3 h | 69.69 e | 22.08 de | 34.92 d | 72.31 c |
65 °C/6 h | 68.49 f | 21.58 e | 33.93 d | 72.09 c |
SEM | 0.320 | 0.735 | 4.274 | 4.416 |
Muscle × Sous-vide interaction | ||||
Breast × Control | 71.55 | 16.86 | 35.93 | 82.57 C |
Breast × 55 °C/3 h | 72.77 | 16.65 | 57.26 | 140.81 A |
Breast × 55 °C/6 h | 73.14 | 15.82 | 52.24 | 129.02 AB |
Breast × 65 °C/3 h | 70.73 | 15.18 | 37.13 | 118.27 B |
Breast × 65 °C/6 h | 70.12 | 15.01 | 35.28 | 118.46 B |
Thigh × Control | 70.76 | 32.19 | 51.35 | 21.07 D |
Thigh × 55 °C/3 h | 72.14 | 32.03 | 70.23 | 22.55 D |
Thigh × 55 °C/6 h | 71.58 | 30.60 | 62.75 | 21.12 D |
Thigh × 65 °C/3 h | 68.65 | 28.98 | 32.70 | 26.34 D |
Thigh × 65 °C/6 h | 66.86 | 28.14 | 32.59 | 25.71 D |
SEM | 0.453 | 1.039 | 6.045 | 6.245 |
Significance of p-value | ||||
Muscle effect | <0.001 | <0.001 | NS | <0.001 |
Sous-vide effect | <0.001 | <0.034 | <0.001 | 0.002 |
Interaction effect | NS (2) | NS | NS | 0.003 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Noh, S.-W.; Song, D.-H.; Ham, Y.-K.; Yang, N.-E.; Kim, H.-W. Physicochemical Properties of Chicken Breast and Thigh as Affected by Sous-Vide Cooking Conditions. Foods 2023, 12, 2592. https://doi.org/10.3390/foods12132592
Noh S-W, Song D-H, Ham Y-K, Yang N-E, Kim H-W. Physicochemical Properties of Chicken Breast and Thigh as Affected by Sous-Vide Cooking Conditions. Foods. 2023; 12(13):2592. https://doi.org/10.3390/foods12132592
Chicago/Turabian StyleNoh, Sin-Woo, Dong-Heon Song, Youn-Kyung Ham, Na-Eun Yang, and Hyun-Wook Kim. 2023. "Physicochemical Properties of Chicken Breast and Thigh as Affected by Sous-Vide Cooking Conditions" Foods 12, no. 13: 2592. https://doi.org/10.3390/foods12132592
APA StyleNoh, S. -W., Song, D. -H., Ham, Y. -K., Yang, N. -E., & Kim, H. -W. (2023). Physicochemical Properties of Chicken Breast and Thigh as Affected by Sous-Vide Cooking Conditions. Foods, 12(13), 2592. https://doi.org/10.3390/foods12132592