Moderate Reduction in Nitrogen Fertilizer Results in Improved Rice Quality by Affecting Starch Properties without Causing Yield Loss
Abstract
:1. Introduction
2. Materials and Methods
2.1. Rice Plants and Experimental Design
2.2. Starch Isolation
2.3. Grain Yield and Compositions
2.4. Texture Profile Analysis of Cooked Rice (TPA)
2.5. Observations and Measurements of Starch
2.5.1. Starch Granule Morphology
2.5.2. Particle size Analysis
2.5.3. X-ray Diffraction (XRD) Analysis
2.5.4. Fourier Transform Infrared (FTIR) Analysis
2.5.5. Amylopectin Chain-Length Distribution (CLD)
2.5.6. Determination of Pasting and Thermal Properties
2.5.7. Swelling Power and Water Solubility
2.6. Statistical Analysis
3. Results and Discussion
3.1. Effect of N Rates on Yield
3.2. Protein, Total Starch, and Apparent Amylose Content
3.3. TPA of Cooked Rice
3.4. Effect on the Structure of Starch
3.4.1. Granule Morphology
3.4.2. Granule Size Distribution
3.4.3. X-ray Diffraction (XRD) and Relative Crystallinity (RC)
3.4.4. Fourier Transform Infrared Spectrum (FTIR)
3.4.5. Amylopectin Chain-Length Distribution (CLD)
3.4.6. Pasting Properties of Starch by RVA
3.4.7. Thermal Properties of Starch by DSC
3.4.8. Swelling Power and Solubility
3.5. Relationship between Starch Structure Characteristics and Functional Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, H.; Gilbert, R.G. Starch molecular structure: The basis for an improved understanding of cooked rice texture. Carbohydr. Polym. 2018, 195, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Custodio, M.C.; Cuevas, R.P.; Ynion, J.; Laborte, A.G.; Velasco, M.L.; Demont, M. Rice quality: How is it defined by consumers, industry, food scientists, and geneticists? Trends Food Sci. Technol. 2019, 92, 122–137. [Google Scholar] [CrossRef]
- Lu, D.; Xin, S.; Cai, X.; Yan, F.; Lu, W.; Shi, Y.C. Effects of heat stress during grain filling on the structure and thermal properties of waxy maize starch. Food Chem. 2014, 143, 313–318. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.M.; Abdula, S.E.; Lee, H.J.; Cho, Y.C.; Han, L.Z.; Koh, H.J.; Cho, Y.G. Molecular aspect of good eating quality formation in Japonica rice. PLoS ONE 2011, 6, e18385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Falade, K.O.; Semon, M.; Fadairo, O.S.; Oladunjoye, A.O.; Orou, K.K. Functional and physico-chemical properties of flours and starches of African rice cultivars. Food Hydrocoll. 2014, 39, 41–50. [Google Scholar] [CrossRef]
- Zhu, D.; Zhang, H.; Guo, B.; Xu, K.; Dai, Q.; Wei, C.; Zhou, G.; Huo, Z. Effects of nitrogen level on structure and physicochemical properties of rice starch. Food Hydrocoll. 2017, 63, 525–532. [Google Scholar] [CrossRef]
- Sano, O.; Ito, T.; Saigusa, M. Effects of co-situs application of controlled-availability fertilizer on fertilizer and soil nitrogen uptake by rice (Oryza sativa L.) in paddy soils with different available nitrogen. Soil Sci. Plant Nutr. 2008, 54, 769–776. [Google Scholar] [CrossRef]
- Zhou, T.Y.; Li, Z.K.; Li, E.P.; Wang, W.L.; Yang, J.C. Optimization of nitrogen fertilization improves rice quality by affecting the structure and physicochemical properties of starch at high yield levels. J. Integr. Agric. 2021, 21, 1576–1592. [Google Scholar]
- Wu, Q.; Wang, Y.Z.; Chen, T.T.; Zheng, J.L.; Sun, Y.D.; Chi, D.C. Soil nitrogen regulation using clinoptilolite for grain filling and grain quality improvements in rice. Soil Tillage Res. 2020, 199, 104547. [Google Scholar] [CrossRef]
- Hu, Y.; Cong, S.; Zhang, H. Comparison of the Grain Quality and Starch Physicochemical Properties between Japonica Rice Cultivars with Different Contents of Amylose, as Affected by Nitrogen Fertilization. Agriculture 2021, 11, 616. [Google Scholar] [CrossRef]
- Huang, S.-J.; Zhao, C.-F.; Zhu, Z.; Zhou, L.-H.; Zheng, Q.-H.; Wang, C.-L. Characterization of eating quality and starch properties of two Wx alleles japonica rice cultivars under different nitrogen treatments. J. Integr. Agric. 2020, 19, 988–998. [Google Scholar] [CrossRef]
- Zhao, C.; Liu, G.M.; Chen, Y.; Jiang, Y.; Shi, Y.; Zhao, L.T.; Liao, P.Q.; Wang, W.L.; Xu, K.; Dai, Q.G.; et al. Excessive Nitrogen Application Leads to Lower Rice Yield and Grain Quality by Inhibiting the Grain Filling of Inferior Grains. Agriculture 2022, 12, 962. [Google Scholar] [CrossRef]
- Zhu, D.W.; Zhang, H.C.; Guo, B.W.; Xu, K.; Dai, Q.G.; Wei, H.Y.; Gao, H.; Hu, Y.J.; Cui, P.Y.; Huo, Z.Y. Effects of nitrogen level on yield and quality of japonica soft super rice. J. Integr. Agric. 2017, 16, 1018–1027. [Google Scholar] [CrossRef]
- Akhtar, K.; Wang, W.; Ren, G.; Khan, A.; Feng, Y.; Yang, G. Changes in soil enzymes, soil properties, and maize crop productivity under wheat straw mulching in Guanzhong. China Soil Tillage Res. 2018, 182, 94–102. [Google Scholar] [CrossRef]
- Zhou, L.-J.; Sheng, W.-T.; Wu, J.; Zhang, C.-Q.; Liu, Q.-Q.; Deng, Q.-Y. Differential expressions among five Waxy alleles and their effects on the eating and cooking qualities in specialty rice cultivars. J. Integr. Agric. 2015, 14, 1153–1162. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Prakash, S.; Nicholson, T.M.; Fitzgerald, M.A.; Gilbert, R.G. Instrumental measurement of cooked rice texture by dynamic rheological testing and its relation to the fine structure of rice starch. Carbohydr. Polym. 2016, 146, 253–263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, Y.; Mao, B.; Zhang, C.; Shao, Y.; Wu, T.; Hu, L.; Hu, Y.; Tang, L.; Li, Y.; Tang, W.; et al. Influence of physicochemical properties and starch fine structure on the eating quality of hybrid rice with similar apparent amylose content. Food Chem. 2021, 353, 129461. [Google Scholar] [CrossRef]
- Chen, Z.; Li, P.; Du, Y.; Jiang, Y.; Cai, M.; Cao, C. Dry cultivation and cultivar affect starch synthesis and traits to define rice grain quality in various panicle parts. Carbohydr. Polym. 2021, 269, 118336. [Google Scholar] [CrossRef]
- Goldstein, A.; George, A.; Vamadevan, V.; Tetlow, I.; Kirkensgaard, J.J.K.; Mortensen, K.; Blennow, A.; Hebelstrup, K.H.; Bertoft, E. Influence of diurnal photosynthetic activity on the morphology, structure, and thermal properties of normal and waxy barley starch. Int. J. Biol. Macromol. Struct. Funct. Interact. 2017, 98, 188–200. [Google Scholar] [CrossRef]
- Vamadevan, V.; Bertoft, E. Structure-function relationships of starch components. Starch—Stärke 2015, 67, 55–68. [Google Scholar] [CrossRef]
- Vamadevan, V.; Bertoft, E. Observations on the impact of amylopectin and amylose structure on the swelling of starch granules. Food Hydrocoll. 2020, 103, 105663. [Google Scholar] [CrossRef]
- Zhu, F. Relationships between amylopectin internal molecular structure and physicochemical properties of starch. Trends Food Sci. Technol. 2018, 78, 234–242. [Google Scholar] [CrossRef]
- Gao, L.; Wan, C.; Wang, J.; Wang, P.; Gao, X.; Eeckhout, M.; Gao, J. Relationship between nitrogen fertilizer and structural, pasting and rheological properties on common buckwheat starch. Food Chem. 2022, 389, 132664. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Bai, W.; Xia, M.; Wan, C.; Wang, M.; Wang, P.; Gao, X.; Gao, J. Diverse effects of nitrogen fertilizer on the structural, pasting, and thermal properties of common buckwheat starch. Int. J. Biol. Macromol. 2021, 179, 542–549. [Google Scholar] [CrossRef]
- Ran, L.; Yu, X.; Li, Y.; Zou, J.; Deng, J.; Pan, J.; Xiong, F. Analysis of development, accumulation and structural characteristics of starch granule in wheat grain under nitrogen application. Int. J. Biol. Macromol. 2020, 164, 3739–3750. [Google Scholar] [CrossRef]
- Kaplan, M.; Karaman, K.; Kardes, Y.M.; Kale, H. Phytic acid content and starch properties of maize (Zea mays L.): Effects of irrigation process and nitrogen fertilizer. Food Chem. 2019, 283, 375–380. [Google Scholar] [CrossRef]
- Singh, N.; Pal, N.; Mahajan, G.; Singh, S.; Shevkani, K. Rice grain and starch properties: Effects of nitrogen fertilizer application. Carbohydr. Polym. 2011, 86, 219–225. [Google Scholar] [CrossRef]
- Williams, P.; Kuzina, F.; Hlynka, I. Rapid colorimetric procedure for estimating the amylose content of starches and flours. Cereal Chem. 1970, 47, 411–420. [Google Scholar]
- Zhu, D.; Fang, C.; Qian, Z.; Guo, B.; Huo, Z. Differences in starch structure, physicochemical properties and texture characteristics in superior and inferior grains of rice varieties with different amylose contents. Food Hydrocoll. 2021, 110, 106170. [Google Scholar] [CrossRef]
- Zhou, T.; Zhou, Q.; Li, E.; Yuan, L.; Wang, W.; Zhang, H.; Liu, L.; Wang, Z.; Yang, J.; Gu, J. Effects of nitrogen fertilizer on structure and physicochemical properties of ‘super’ rice starch. Carbohydr. Polym. 2020, 239, 116237. [Google Scholar] [CrossRef]
- Wang, H.; Wang, Y.; Wang, R.; Liu, X.; Zhang, Y.; Zhang, H.; Chi, C. Impact of long-term storage on multi-scale structures and physicochemical properties of starch isolated from rice grains. Food Hydrocoll. 2022, 124, 107255. [Google Scholar] [CrossRef]
- Lu, D.; Lu, W. Effects of protein removal on the physicochemical properties of waxy maize flours. Starch—Stärke 2012, 64, 874–881. [Google Scholar] [CrossRef]
- Zhu, D.; Zhang, H.; Guo, B.; Xu, K.; Dai, Q.; Wei, C.; Zhou, G.; Huo, Z. Physicochemical properties of indica-japonica hybrid rice starch from Chinese varieties. Food Hydrocoll. 2017, 63, 356–363. [Google Scholar] [CrossRef]
- Dong, Z.; Wu, L.; Chai, J.; Zhu, Y.; Chen, Y.; Zhu, Y. Effects of Nitrogen Application Rates on Rice Grain Yield, Nitrogen-Use Efficiency, and Water Quality in Paddy Field. Commun. Soil Sci. Plant Anal. 2015, 46, 1579–1594. [Google Scholar] [CrossRef]
- Wang, W.; Lu, J.; Ren, T.; Li, X.; Su, W.; Lu, M. Evaluating regional mean optimal nitrogen rates in combination with indigenous nitrogen supply for rice production. Field Crops Res. 2012, 137, 37–48. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, Y.-Y.; Song, N.-Y.; Chen, Q.-L.; Sun, H.-Z.; Peng, T.; Huang, S.; Zhao, Q.-Z. Response of grain-filling rate and grain quality of mid-season indica rice to nitrogen application. J. Integr. Agric. 2021, 20, 1465–1473. [Google Scholar] [CrossRef]
- Lu, H.; Hu, Y.; Wang, C.; Liu, W.; Ma, G.; Han, Q.; Ma, D. Effects of High Temperature and Drought Stress on the Expression of Gene Encoding Enzymes and the Activity of Key Enzymes Involved in Starch Biosynthesis in Wheat Grains. Front. Plant Sci. 2019, 10, 1414. [Google Scholar] [CrossRef]
- Deng, F.; Wang, L.; Mei, X.F.; Li, S.X.; Pu, S.L.; Li, Q.P.; Ren, W.J. Polyaspartic acid (PASP)-urea and optimised nitrogen management increase the grain nitrogen concentration of rice. Sci. Rep. 2019, 9, 313. [Google Scholar] [CrossRef] [Green Version]
- Champagne, E.T.; Bett-Garber, K.L.; Thomson, J.L.; Fitzgerald, M.A. Unraveling the Impact of Nitrogen Nutrition on Cooked Rice Flavor and Texture. Cereal Chem. 2009, 86, 274–280. [Google Scholar] [CrossRef] [Green Version]
- Gunaratne, A.; Sirisena, N.; Ratnayaka, U.K.; Ratnayaka, J.; Kong, X.; Arachchi, L.P.V.; Corke, H. Effect of fertiliser on functional properties of flour from four rice varieties grown in Sri Lanka. J. Sci. Food Agric. 2011, 91, 1271–1276. [Google Scholar] [CrossRef]
- Hurkman, W.J.; Mccue, K.F.; Altenbach, S.B.; Korn, A.; Tanaka, C.K.; Kothari, K.M.; Johnson, E.L.; Bechtel, D.B.; Wilson, J.D.; Anderson, O.D. Effect of temperature on expression of genes encoding enzymes for starch biosynthesis in developing wheat endosperm. Plant Sci. 2003, 164, 873–881. [Google Scholar] [CrossRef]
- Asaoka, M.; Okuno, K.; Fuwa, H. Effect of environmental temperature at the milky stage on amylose content and fine structure of amylopectin of waxy and nonwaxy endosperm starches of rice (Oryza sativa L.). Agric. Biol. Chem. 1985, 49, 373–379. [Google Scholar]
- Arikit, S.; Wanchana, S.; Khanthong, S.; Saensuk, C.; Thianthavon, T.; Vanavichit, A.; Toojinda, T. QTL-seq identifies cooked grain elongation QTLs near soluble starch synthase and starch branching enzymes in rice (Oryza sativa L.). Sci. Rep. 2019, 9, 8328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yao, D.; Wu, J.; Luo, Q.; Li, J.; Zhuang, W.; Xiao, G.; Deng, Q.; Lei, D.; Bai, B. Influence of high natural field temperature during grain filling stage on the morphological structure and physicochemical properties of rice (Oryza sativa L.) starch. Food Chem. 2020, 310, 125817. [Google Scholar] [CrossRef]
- Friedman, H.H.; Whitney, J.E.; Szczesniak, A.S. The Texturometer—A New Instrument for Objective Texture Measurement. J. Food Sci. 1963, 28, 390–396. [Google Scholar] [CrossRef]
- Rewthong, O.; Soponronnarit, S.; Taechapairoj, C.; Tungtrakul, P.; Prachayawarakorn, S. Effects of cooking, drying and pretreatment methods on texture and starch digestibility of instant rice. J. Food Eng. 2011, 103, 258–264. [Google Scholar] [CrossRef]
- Wang, W.; Ge, J.; Xu, K.; Gao, H.; Liu, G.; Wei, H.; Zhang, H. Differences in starch structure, thermal properties, and texture characteristics of rice from main stem and tiller panicles. Food Hydrocoll. 2020, 99, 105341. [Google Scholar] [CrossRef]
- Patindol, J.A.; Siebenmorgen, T.J.; Wang, Y.J. Impact of environmental factors on rice starch structure: A review. Starch—Stärke 2015, 67, 42–54. [Google Scholar] [CrossRef]
- Yang, Y.; Guoqiang, L.; Xurun, Y.; Yunfei, W.; Fei, X. Rice starch accumulation at different endosperm regions and physical properties under nitrogen treatment at panicle initiation stage. Int. J. Biol. Macromol. 2020, 160, 328–339. [Google Scholar] [CrossRef]
- SPark, H.; Wilson, J.D.; Seabourn, B.W. Starch granule size distribution of hard red winter and hard red spring wheat: Its effects on mixing and breadmaking quality. J. Cereal Sci. 2009, 49, 98–105. [Google Scholar]
- Wang, W.; Cui, W.; Xu, K.; Gao, H.; Wei, H.; Zhang, H. Effects of Early- and Late-Sowing on Starch Accumulation and Associated Enzyme Activities During Grain Filling Stage in Rice. Rice Sci. 2021, 28, 191–199. [Google Scholar]
- Wani, A.A.; Singh, P.; Shah, M.A.; Schweiggert-Weisz, U.; Gul, K.; Wani, I.A. Rice Starch Diversity: Effects on Structural, Morphological, Thermal, and Physicochemical Properties—A Review. Compr. Rev. Food Sci. Food Saf. 2012, 11, 417–436. [Google Scholar] [CrossRef]
- Tang, S.; Zhang, H.; Liu, W.; Dou, Z.; Zhou, Q.; Chen, W.; Wang, S.; Ding, Y. Nitrogen fertilizer at heading stage effectively compensates for the deterioration of rice quality by affecting the starch-related properties under elevated temperatures. Food Chem. 2019, 277, 455–462. [Google Scholar] [CrossRef]
- Xiong, R.; Xie, J.; Chen, L.; Yang, T.; Tan, X.; Zhou, Y.; Pan, X.; Zeng, Y.; Shi, Q.; Zhang, J.; et al. Water irrigation management affects starch structure and physicochemical properties of indica rice with different grain quality. Food Chem. 2021, 347, 129045. [Google Scholar] [CrossRef] [PubMed]
- Dou, Z.; Tang, S.; Li, G.H.; Liu, Z.H.; Ding, C.Q.; Chen, L.; Wang, S.H.; Ding, Y.F. Application of Nitrogen Fertilizer at Heading Stage Improves Rice Quality under Elevated Temperature during Grain-Filling Stage. Crop Sci. 2017, 57, 2183–2192. [Google Scholar] [CrossRef] [Green Version]
- Waduge, R.N.; Xu, S.; Bertoft, E.; Seetharaman, K. Exploring the surface morphology of developing wheat starch granules by using atomic force microscopy. Starch—Stärke 2013, 65, 398–409. [Google Scholar] [CrossRef]
- Nawaz, M.A.; Gaiani, C.; Fukai, S.; Bhandari, B. X-ray photoelectron spectroscopic analysis of rice kernels and flours: Measurement of surface chemical composition. Food Chem. 2016, 212, 349–357. [Google Scholar] [CrossRef]
- Singh, N.; Nakaura, Y.; Inouchi, N.; Nishinari, K. Fine Structure, Thermal and Viscoelastic Properties of Starches Separated fromIndica Rice Cultivars. Starch—Stärke 2007, 59, 10–20. [Google Scholar] [CrossRef]
- Lindeboom, N.; Chang, P.R.; Tyler, R.T. Analytical, biochemical and physicochemical aspects of starch granule size, with emphasis on small granule starches: A review. Starch—Stärke 2004, 56, 89–99. [Google Scholar] [CrossRef]
- Cheetham, N.W.; Tao, L. Variation in crystalline type with amylose content in maize starch granules: An X-ray powder diffraction study. Carbohydr. Polym. 1998, 36, 277–284. [Google Scholar] [CrossRef]
- Bernazzani, P.; Sanchez, R.F.; Woodward, M.; Williams, S. Determination of the glass transition temperature of thin unsupported polystyrene films using interference fringes. Thin Solid Film. 2008, 516, 7947–7951. [Google Scholar] [CrossRef]
- Gul, K.; Singh, A.; Sonkawade, R. Physicochemical, thermal and pasting characteristics of gamma irradiated rice starches. Int. J. Biol. Macromol. 2016, 85, 460–466. [Google Scholar] [CrossRef] [PubMed]
- Warren, F.J.; Gidley, M.J.; Flanagan, B.M. Infrared spectroscopy as a tool to characterise starch ordered structure—A joint FTIR–ATR, NMR, XRD and DSC study. Carbohydr. Polym. 2016, 139, 35–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, J.; Man, J.; Huang, J.; Liu, Q.; Wei, W.; Wei, C. Relationship between structure and functional properties of normal rice starches with different amylose contents. Carbohydr. Polym. 2015, 125, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Lin, L.; Wang, J.; Wang, Z.; Liu, Q.; Wei, C. In vitro digestion properties of heterogeneous starch granules from high-amylose rice. Food Hydrocoll. 2016, 54, 10–22. [Google Scholar] [CrossRef]
- Qin, F.; Man, J.; Xu, B.; Hu, M.; Gu, M.; Liu, Q.; Wei, C. Structural properties of hydrolyzed high-amylose rice starch by α-amylase from Bacillus licheniformis. J. Agric. Food Chem. 2011, 59, 12667–12673. [Google Scholar] [CrossRef]
- Patindol, J.; Gu, X.; Wang, Y.-J. Chemometric analysis of cooked rice texture in relation to starch fine structure and leaching characteristics. Starch—Stärke 2010, 62, 188–197. [Google Scholar] [CrossRef]
- Bertoft, E. Understanding Starch Structure: Recent Progress. Agronomy 2017, 7, 56. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Wambugu, P.W.; Zhang, B.; Henry, R.J. The biosynthesis, structure and gelatinization properties of starches from wild and cultivated African rice species (Oryza barthii and Oryza glaberrima). Carbohydr. Polym. Sci. Technol. Asp. Ind. Important Polysacch. 2015, 129, 92–100. [Google Scholar] [CrossRef]
- Tarahi, M.; Shahidi, F.; Hedayati, S. Physicochemical, Pasting, and Thermal Properties of Native Corn Starch-Mung Bean Protein Isolate Composites. Gels 2022, 8, 693. [Google Scholar] [CrossRef]
- Ji, Z.; Yu, L.; Liu, H.; Bao, X.; Wang, Y.; Chen, L. Effect of pressure with shear stress on gelatinization of starches with different amylose/amylopectin ratios. Food Hydrocoll. 2017, 72, 331–337. [Google Scholar] [CrossRef]
- Li, H.; Xu, M.; Chen, Z.; Li, J.; Wen, Y.; Liu, Y.; Wang, J. Effects of the degree of milling on starch leaching characteristics and its relation to rice stickiness. J. Cereal Sci. 2021, 98, 103163. [Google Scholar] [CrossRef]
- Adebowale, K.O.; Olu-Owolabi, B.I.; Olawumi, E.K.; Lawal, O.S. Functional properties of native, physically and chemically modified breadfruit (Artocarpus artilis) starch. Ind. Crops Prod. 2005, 21, 343–351. [Google Scholar] [CrossRef]
- Kong, X.; Zhu, P.; Sui, Z.; Bao, J. Physicochemical properties of starches from diverse rice cultivars varying in apparent amylose content and gelatinisation temperature combinations. Food Chem. 2015, 172, 433–440. [Google Scholar] [CrossRef]
- Simi, C.K.; Abraham, T.E. Physicochemical rheological and thermal properties of Njavara rice (Oryza sativa) starch. J. Agric. Food Chem. 2008, 56, 12105–12113. [Google Scholar] [CrossRef]
- Sang, Y.; Bean, S.; Seib, P.A.; Pedersen, J.; Shi, Y.-C. Structure and functional properties of sorghum starches differing in amylose content. J. Agric. Food Chem. 2008, 56, 6680–6685. [Google Scholar] [CrossRef]
- Aboubacar, A.; Moldenhauer, K.A.; McClung, A.M.; Beighley, D.H.; Hamaker, B.R. Effect of growth location in the United States on amylose content, amylopectin fine structure, and thermal properties of starches of long grain rice cultivars. Cereal Chem. 2006, 83, 93–98. [Google Scholar] [CrossRef]
- Krueger, B.; Knutson, C.; Inglett, G.; Walker, C. A differential scanning calorimetry study on the effect of annealing on gelatinization behavior of corn starch. J. Food Sci. 1987, 52, 715–718. [Google Scholar] [CrossRef]
- Yuan, T.; Ye, F.; Chen, T.; Li, M.; Zhao, G. Structural characteristics and physicochemical properties of starches from winter squash (Cucurbita maxima Duch.) and pumpkin (Cucurbita moschata Duch. ex Poir.). Food Hydrocoll. 2022, 122, 107115. [Google Scholar] [CrossRef]
- Lin, L.; Cai, C.; Gilbert, R.G.; Li, E.; Wang, J.; Wei, C. Relationships between amylopectin molecular structures and functional properties of different-sized fractions of normal and high-amylose maize starches. Food Hydrocoll. 2016, 52, 359–368. [Google Scholar] [CrossRef] [Green Version]
- Zhu, D.; Qian, Z.; Wei, H.; Guo, B.; Xu, K.; Dai, Q.; Zhang, H.; Huo, Z. The effects of field pre-harvest sprouting on the morphological structure and physicochemical properties of rice (Oryza sativa L.) starch. Food Chem. 2019, 278, 10–16. [Google Scholar] [CrossRef] [PubMed]
- Chung, H.-J.; Liu, Q.; Lee, L.; Wei, D. Relationship between the structure, physicochemical properties and in vitro digestibility of rice starches with different amylose contents. Food Hydrocoll. 2011, 25, 968–975. [Google Scholar] [CrossRef]
- Noda, T.; Nishiba, Y.; Sato, T.; Suda, I. Properties of Starches from Several Low-Amylose Rice Cultivars. Cereal Chem. 2003, 80, 193–197. [Google Scholar] [CrossRef]
- Witt, T.; Doutch, J.; Gilbert, E.P.; Gilbert, R.G. Relations between molecular, crystalline, and lamellar structures of amylopectin. Biomacromolecules 2012, 13, 4273–4282. [Google Scholar] [CrossRef]
- Tao, K.; Li, C.; Yu, W.; Gilbert, R.G.; Li, E. How amylose molecular fine structure of rice starch affects functional properties. Carbohydr. Polym. 2019, 204, 24–31. [Google Scholar] [CrossRef]
- Shi, S.; Zhang, G.; Chen, L.; Zhang, W.; Wang, X.; Pan, K.; Li, L.; Wang, J.; Liu, J.; Cao, C.; et al. Different nitrogen fertilizer application in the field affects the morphology and structure of protein and starch in rice during cooking. Food Res. Int. 2023, 163, 112193. [Google Scholar] [CrossRef]
Year | Cultivars | Treatment | D [3, 2] (μm) | D [4, 3] (μm) | d (0.1) (μm) | d (0.5) (μm) | d (0.9) (μm) | A-Type (%) | B-Type (%) | 1045/1022 (cm−1) | 995/1022 (cm−1) |
---|---|---|---|---|---|---|---|---|---|---|---|
2020 | Bengal | N0 | 4.26 ± 0.12 c | 7.33 ± 0.15 c | 1.2 ± 0.04 e | 6.5 ± 0.01 d | 11.76 ± 0.04 c | 14.75 ± 0.05 c | 85.25 ± 0.05 d | 0.66 ± 0.02 c | 0.65 ± 0.01 d |
N1 | 4.04 ± 0.01 d | 6.85 ± 0.08 d | 1.29 ± 0.03 d | 5.83 ± 0.05 e | 11.87 ± 0.06 c | 16.62 ± 0.01 b | 83.38 ± 0.01 e | 0.72 ± 0 b | 0.67 ± 0 c | ||
N2 | 4.85 ± 0.07 b | 6.76 ± 0.14 d | 1.27 ± 0 d | 5.74 ± 0.02 f | 12.38 ± 0.29 b | 17.81 ± 0.02 a | 82.19 ± 0.02 f | 0.73 ± 0.01 b | 0.7 ± 0 b | ||
SD505 | N0 | 4.92 ± 0 b | 8.54 ± 0.01 a | 1.74 ± 0 a | 7.45 ± 0.02 a | 13.62 ± 0.14 a | 11.28 ± 0.07 f | 88.72 ± 0.07 a | 0.68 ± 0.02 c | 0.71 ± 0.01 b | |
N1 | 5.5 ± 0.05 a | 8.39 ± 0.01 a | 1.51 ± 0.01 b | 7.12 ± 0 b | 13.33 ± 0.18 a | 12.57 ± 0.07 e | 87.43 ± 0.07 b | 0.73 ± 0.01 b | 0.74 ± 0.01 a | ||
N2 | 5.55 ± 0.01 a | 7.63 ± 0.07 b | 1.37 ± 0.02 d | 6.85 ± 0.04 c | 13.49 ± 0.31 a | 13.51 ± 0.05 d | 86.49 ± 0.05 c | 0.76 ± 0 a | 0.76 ± 0 a | ||
2021 | Bengal | N0 | 4.31 ± 0.03 f | 7.21 ± 0.05 c | 1.26 ± 0.01 c | 6.13 ± 0.03 d | 11.82 ± 0.01 c | 16.08 ± 0.03 c | 83.92 ± 0.03 d | 0.68 ± 0.02 d | 0.65 ± 0.01 d |
N1 | 4.82 ± 0.03 d | 6.95 ± 0.16 d | 1.24 ± 0.04 cd | 5.81 ± 0.02 e | 11.94 ± 0.03 c | 16.83 ± 0.02 b | 83.17 ± 0.02 e | 0.74 ± 0.01 b | 0.72 ± 0.01 c | ||
N2 | 4.69 ± 0.02 e | 6.67 ± 0.19 e | 1.2 ± 0.02 d | 5.77 ± 0.02 e | 12.45 ± 0.03 b | 17.73 ± 0.05 a | 82.27 ± 0.05 f | 0.77 ± 0 ab | 0.74 ± 0 b | ||
SD505 | N0 | 6.28 ± 0.04 a | 8.45 ± 0.04 a | 1.53 ± 0.01 a | 6.93 ± 0.02 a | 12.72 ± 0.01 b | 12.63 ± 0.04 f | 87.37 ± 0.04 a | 0.71 ± 0.03 c | 0.71 ± 0.01 c | |
N1 | 4.9 ± 0.04 c | 8.21 ± 0.02 a | 1.49 ± 0.02 ab | 6.72 ± 0.04 b | 13.42 ± 0.42 a | 12.77 ± 0.01 e | 87.23 ± 0.01 b | 0.76 ± 0.01 ab | 0.74 ± 0 b | ||
N2 | 5.2 ± 0.02 b | 7.78 ± 0.06 b | 1.46 ± 0.01 b | 6.38 ± 0.08 c | 13.74 ± 0.07 a | 13.33 ± 0.05 d | 86.67 ± 0.05 c | 0.78 ± 0.01 a | 0.75 ± 0 a |
Cultivars | Year | Treatment | A (%) | B1 (%) | B2 (%) | B3 (%) | ACL (DP) | A + B1/B2 + B3 | A + B1 (%) |
---|---|---|---|---|---|---|---|---|---|
Bengal | 2020 | N0 | 29.93 e | 49.22 c | 10.70 b | 10.14 a | 19.44 a | 3.80 e | 79.15 f |
N1 | 30.01 d | 49.19 d | 10.71 b | 10.09 b | 19.40 b | 3.81 e | 79.20 d | ||
N2 | 30.18 c | 49.15 e | 10.75 a | 9.91 c | 19.34 c | 3.84 d | 79.34 d | ||
2021 | N0 | 30.19 c | 49.32 f | 10.54 c | 9.95 c | 19.31 d | 3.88 c | 79.51 c | |
N1 | 30.31 b | 49.49 b | 10.38 d | 9.83 d | 19.23 e | 3.95 b | 79.80 b | ||
N2 | 30.61 a | 49.49 a | 10.34 e | 9.55 e | 19.12 f | 4.03 a | 80.10 a | ||
SD505 | 2020 | N0 | 29.59 f | 48.64 d | 10.93 a | 10.84 a | 19.72 a | 3.59 f | 78.23 f |
N1 | 29.80 e | 48.83 c | 10.84 ab | 10.52 b | 19.56 b | 3.68 e | 78.63 e | ||
N2 | 29.83 d | 48.90 b | 10.75 b | 10.51 b | 19.57 b | 3.70 d | 78.73 d | ||
2021 | N0 | 30.16 c | 48.95 b | 10.60 c | 10.28 c | 19.43 c | 3.79 c | 79.11 c | |
N1 | 30.32 b | 49.11 a | 10.58 c | 9.98 d | 19.32 d | 3.86 b | 79.44 b | ||
N2 | 30.54 a | 49.11 a | 10.54 c | 9.81 e | 19.23 e | 3.91 a | 79.64 a |
Year | Cultivars | Treatment | Pasting Properties | Thermal Properties | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
PV (cp) | TV (cp) | BD (cp) | FV (cp) | SB (cp) | PT (℃) | ΔH (J/g) | T0 (℃) | Tp (℃) | Tc (℃) | |||
2020 | Bengal | N0 | 3303 ± 22.23 a | 1874 ± 37.67 a | 1429 ± 15.51 a | 3001 ± 46.68 a | 1127 ± 12.33 a | 71.27 ± 0.45 b | 6.88 ± 0.08 e | 61.28 ± 1.02 c | 68.70 ± 0.22 bc | 76.23 ± 0.09 d |
N1 | 3165.67 ± 78.41 ab | 1883.33 ± 101.21 a | 1282.33 ± 120.48 ab | 2996 ± 83.33 a | 1112.67 ± 22.4 a | 71.88 ± 0.02 ab | 7.51 ± 0.07 b | 62.13 ± 0.87 abc | 68.93 ± 0.17 ab | 76.37 ± 0.12 d | ||
N2 | 3028.33 ± 124.63 bc | 1876.67 ± 87.75 a | 1151.67 ± 44.31 bc | 3013.67 ± 137.91 a | 1137 ± 50.46 a | 71.88 ± 0.02 ab | 7.67 ± 0.08 a | 62.53 ± 0.54 abc | 69.17 ± 0.12 ab | 76.90 ± 0.22 b | ||
SD505 | N0 | 3040.33 ± 44.73 bc | 1899.33 ± 67.37 a | 1141 ± 84.75 bc | 2994.67 ± 50.61 a | 1095.33 ± 105 a | 71.50 ± 0.39 b | 7.12 ± 0.07 d | 61.56 ± 0.49 bc | 68.10 ± 0.08 d | 76.63 ± 0.12 c | |
N1 | 2955.33 ± 67.43 c | 1859 ± 24.71 a | 1096.33 ± 69.43 cd | 2924.67 ± 17.44 ab | 1065.67 ± 28.41 a | 72.63 ± 0.67 a | 7.31 ± 0.02 c | 63.03 ± 0.41 ab | 68.57 ± 0.17 c | 77.00 ± 0.08 b | ||
N2 | 2763.33 ± 47.13 d | 1791 ± 5.35 a | 972.33 ± 42.28 d | 2791 ± 89.29 b | 1000 ± 89.5 a | 72.60 ± 0.04 a | 7.48 ± 0.06 b | 63.63 ± 0.25 a | 68.97 ± 0.17 ab | 77.17 ± 0.12 a | ||
2021 | Bengal | N0 | 3063.33 ± 20.4 a | 1985 ± 32.95 a | 1078.33 ± 51.19 ab | 3169.67 ± 25.95 a | 1184.67 ± 17.25 a | 71.22 ± 0.34 ab | 6.83 ± 0.05 e | 62.47 ± 0.05 a | 68.17 ± 0.09 b | 74.43 ± 0.26 d |
N1 | 2836.67 ± 34.74 bc | 1863.33 ± 24.85 bc | 973.33 ± 39.19 c | 2983.67 ± 38.85 ab | 1120.33 ± 21.3 bc | 71.23 ± 0.4 ab | 7.07 ± 0.05 cd | 62.33 ± 0.17 a | 68.47 ± 0.25 b | 75.33 ± 0.17 c | ||
N2 | 2721 ± 20.4 d | 1730.33 ± 13.89 d | 990.67 ± 17.15 c | 2863.33 ± 33.08 d | 1133 ± 21.23 b | 71.78 ± 0.02 a | 7.27 ± 0.12 ab | 62.70 ± 0.22 a | 69.03 ± 0.12 a | 76.43 ± 0.21 a | ||
SD505 | N0 | 3063.33 ± 91.58 a | 1961 ± 111.08 ab | 1102.33 ± 35.37 a | 3069 ± 104.01 ab | 1108 ± 10.2 bc | 70.70 ± 0.39 b | 6.96 ± 0.11 de | 62.37 ± 0.17 a | 69.10 ± 0.08 a | 75.37 ± 0.12 c | |
N1 | 2856.33 ± 28.22 b | 1773.33 ± 52.56 cd | 1083 ± 33.08 ab | 2892 ± 41.98 bc | 1118.67 ± 14.38 bc | 70.95 ± 0.04 b | 7.14 ± 0.02 bc | 62.37 ± 0.12 a | 69.30 ± 0.08 a | 75.63 ± 0.21 bc | ||
N2 | 2752.33 ± 20.37 cd | 1742.33 ± 8.06 cd | 1010 ± 24.91 bc | 2821 ± 22.2 d | 1078.67 ± 25.93 c | 71.28 ± 0.33 ab | 7.36 ± 0.06 a | 62.77 ± 0.05 a | 69.40 ± 0.24 a | 75.87 ± 0.05 bc |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Liang, C.; Liu, J.; Zhou, C.; Wu, Z.; Guo, S.; Liu, J.; A, N.; Wang, S.; Xin, G.; et al. Moderate Reduction in Nitrogen Fertilizer Results in Improved Rice Quality by Affecting Starch Properties without Causing Yield Loss. Foods 2023, 12, 2601. https://doi.org/10.3390/foods12132601
Li Y, Liang C, Liu J, Zhou C, Wu Z, Guo S, Liu J, A N, Wang S, Xin G, et al. Moderate Reduction in Nitrogen Fertilizer Results in Improved Rice Quality by Affecting Starch Properties without Causing Yield Loss. Foods. 2023; 12(13):2601. https://doi.org/10.3390/foods12132601
Chicago/Turabian StyleLi, Yimeng, Chao Liang, Junfeng Liu, Chanchan Zhou, Zhouzhou Wu, Shimeng Guo, Jiaxin Liu, Na A, Shu Wang, Guang Xin, and et al. 2023. "Moderate Reduction in Nitrogen Fertilizer Results in Improved Rice Quality by Affecting Starch Properties without Causing Yield Loss" Foods 12, no. 13: 2601. https://doi.org/10.3390/foods12132601
APA StyleLi, Y., Liang, C., Liu, J., Zhou, C., Wu, Z., Guo, S., Liu, J., A, N., Wang, S., Xin, G., & Henry, R. J. (2023). Moderate Reduction in Nitrogen Fertilizer Results in Improved Rice Quality by Affecting Starch Properties without Causing Yield Loss. Foods, 12(13), 2601. https://doi.org/10.3390/foods12132601