Extraction Efficiency and Alpha-Glucosidase Inhibitory Activities of Green Tea Catechins by Different Infusion Methods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Green Tea Extract (GTE) Preparation
2.3. Catechin Analysis of GTEs by High-Performance Liquid Chromatography (HPLC)
2.4. Measurement of the Inhibitory Activity of GTE and Its Catechins on Rat Alpha-Glucosidase
- Cc: Glucose content of the negative control;
- Cb: Glucose content of the blank;
- Cs: Glucose content of the sample;
- Csb: Glucose content of the sample blank.
2.5. Measurement of the Inhibitory Activity of GTE and Its Major Catechins on Alpha-Glucosidase in Human Caco-2 Cells
2.6. Molecular Docking Analysis
- Uele: Coulomb force;
- Uvdw: Van der Waals force;
- Ustrain: Difference between the internal energy of the ligand in the complex and the internal energy of the unbound ligand.
2.7. Statistical Analysis
3. Results
3.1. Catechin Extraction Efficiency of GTEs by Different Solvents and Methods
3.2. Inhibitory Activity of GTEs and Its Catechins on Rat Alpha-Glucosidase
3.3. Inhibitory Activity of GTE and Its Catechins on Human Alpha-Glucosidase
3.4. Prediction of Binding Site, Energy, and Distance of Catechins Binding to Human Alpha-Glucosidase and Catechins by MOE-ASEDock
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Setiawan, V.; Phangestu, S.; Soetikno, A.G.; Arianti, A.; Kohar, I. Rapid Screening Analysis of Antioxidant Activities in Green Tea Products Using DPPH and FRAP. Pharm. J. Indones. 2021, 7, 9–14. [Google Scholar] [CrossRef]
- Ren, J.L.; Yu, Q.X.; Liang, W.C.; Leung, P.Y.; Ng, T.K.; Chu, W.K.; Pang, C.P.; Chan, S.O. Green Tea Extract Attenuates LPS-Induced Retinal Inflammation in Rats. Sci. Rep. 2018, 8, 429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suzuki, T.; Pervin, M.; Goto, S.; Isemura, M.; Nakamura, Y. Beneficial Effects of Tea and the Green Tea Catechin Epigallocatechin-3-Gallate on Obesity. Molecules 2016, 21, 1305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pervin, M.; Unno, K.; Ohishi, T.; Tanabe, H.; Miyoshi, N.; Nakamura, Y. Beneficial Effects of Green Tea Catechins on Neurodegenerative Diseases. Molecules 2018, 23, 1297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagao, T.; Hase, T.; Tokimitsu, I. A Green Tea Extract High in Catechins Reduces Body Fat and Cardiovascular Risks in Humans. Obesity 2007, 15, 1341–1630. [Google Scholar] [CrossRef]
- Mizukami, Y.; Sawai, Y.; Yamaguchi, Y. Simultaneous Analysis of Catechins, Gallic Acid, Strictinin, and Purine Alkaloids in Green Tea by Using Catechol as an Internal Standard. J. Agric. Food Chem. 2007, 55, 4957–4964. [Google Scholar] [CrossRef]
- Xu, Y.Q.; Gao, Y.; Granato, D. Effects of Epigallocatechin Gallate, Epigallocatechin and Epicatechin Gallate on the Chemical and Cell-Based Antioxidant Activity, Sensory Properties, and Cytotoxicity of a Catechin-Free Model Beverage. Food Chem. 2021, 339, 128060. [Google Scholar] [CrossRef]
- He, J.; Xu, L.; Yang, L.; Wang, X. Epigallocatechin Gallate Is the Most Effective Catechin against Antioxidant Stress via Hydrogen Peroxide and Radical Scavenging Activity. Med. Sci. Monit. 2018, 24, 8198–8206. [Google Scholar] [CrossRef]
- Farhan, M.; Khan, H.Y.; Oves, M.; Al-Harrasi, A.; Rehmani, N.; Arif, H.; Hadi, S.M.; Ahmad, A. Cancer Therapy by Catechins Involves Redox Cycling of Copper Ions and Generation of Reactive Oxygenspecies. Toxins 2016, 8, 37. [Google Scholar] [CrossRef] [Green Version]
- Kochman, J.; Jakubczyk, K.; Antoniewicz, J.; Mruk, H.; Janda, K. Health Benefits and Chemical Composition of Matcha Green Tea: A Review. Molecules 2020, 26, 85. [Google Scholar] [CrossRef]
- International Diabetes Federation. IDF Diabetes Atlas, 10th ed.; International Diabetes Federation: Brussels, Belgium, 2021; pp. 31–35. [Google Scholar]
- Diabetes. Available online: https://www.who.int/news-room/fact-sheets/detail/diabetes (accessed on 28 June 2023).
- Chiasson, J.; Josse, R.; Gomis, R.; Hanefeld, M.; Karasik, A.; Laakso, M. Acarbose Treatment and the Risk of Cardiovascular Disease and Hypertension in Patients With Impaired Glucose Tolerancee: The STOP-NIDDM trial. JAMA 2003, 290, 486–494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, B.H.; Lin, A.H.M.; Nichols, B.L.; Jones, K.; Rose, D.R.; Quezada-Calvillo, R.; Hamaker, B.R. Mucosal C-Terminal Maltase-Glucoamylase Hydrolyzes Large Size Starch Digestion Products That May Contribute to Rapid Postprandial Glucose Generation. Mol. Nutr. Food Res. 2014, 58, 1111–1121. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.W.; Li, X.; Sun, W.L.; Xing, Y.; Xiu, Z.L.; Zhuang, C.L.; Dong, Y.S. Dietary Flavonoids and Acarbose Synergistically Inhibit α-Glucosidase and Lower Postprandial Blood Glucose. J. Agric. Food Chem. 2017, 65, 8319–8330. [Google Scholar] [CrossRef]
- Wen, L.; Wu, D.; Tan, X.; Zhong, M.; Xing, J.; Li, W.; Li, D.; Cao, F. The Role of Catechins in Regulating Diabetes: An Update Review. Nutrients 2022, 14, 4681. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Narwal, S.; Kumar, V.; Prakash, O. α-Glucosidase Inhibitors from Plants: A Natural Approach to Treat Diabetes. Pharmacogn. Rev. 2011, 5, 19–29. [Google Scholar] [CrossRef] [Green Version]
- Yilmazer-Musa, M.; Griffith, A.M.; Michels, A.J.; Schneider, E.; Frei, B. Grape Seed and Tea Extracts and Catechin 3-Gallates Are Potent Inhibitors of α-Amylase and α-Glucosidase Activity. J. Agric. Food Chem. 2012, 60, 8924–8929. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Wang, C.; Liu, F.; Hu, T.; Shen, W.; Li, E.; Liao, S.; Zou, Y. Mulberry Leaf Polyphenols Attenuated Postprandial Glucose Absorption: Via Inhibition of Disaccharidases Activity and Glucose Transport in Caco-2 Cells. Food Funct. 2020, 11, 1835–1844. [Google Scholar] [CrossRef]
- Nakamura, S.; Shimada, K.; Tanabe, G.; Muraoka, O.; Nakanishi, I. Computational Study on the Comparative Differences in the Activity of Inhibitors of Human versus Rat Alpha-Glucosidase. Open J. Med. Chem. 2017, 7, 19–28. [Google Scholar] [CrossRef] [Green Version]
- Khokhar, S.; Magnusdottir, S.G.M. Total Phenol, Catechin, and Caffeine Contents of Teas Commonly Consumed in the United Kingdom. J. Agric. Food Chem. 2002, 50, 565–570. [Google Scholar] [CrossRef]
- Dalluge, J.J.; Nelson, B.C.; Thomas, J.B.; Sander, L.C. Selection of column and gradient elution system for the separation of catechins in green tea using high-performance liquid chromatography. J. Chromatogr. A 1998, 793, 265–274. [Google Scholar] [CrossRef]
- MacHida, S.; Mukai, S.; Kono, R.; Funato, M.; Saito, H.; Uchiyama, T. Synthesis and Comparative Structure-Activity Study of Carbohydrate-Based Phenolic Compounds as α-Glucosidase Inhibitors and Antioxidants. Molecules 2019, 24, 4340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, K.; Beak, D.; Kim, Y.; Kim, Y.; Lee, M.; Lee, S.; Kim, C. Catechin and Caffeine Concentration Variations in Jeju Green Tea Varieties Harvested Over a Seven-Month Period. J. Food Sci. Nutr. 2010, 15, 229–232. [Google Scholar] [CrossRef]
- Monobe, M.; Nomura, S.; Ema, K.; Matsunaga, A.; Nesumi, A.; Yoshida, K.; Maeda-Yamamoto, M.; Horie, H. Quercetin Glycosides-rich Tea Cultivars (Camellia sinensis L.) in Japan. Food Sci. Technol. Res. 2015, 21, 333–340. [Google Scholar] [CrossRef] [Green Version]
- Nagao, T.; Meguro, S.; Hase, T.; Otsuka, K.; Komikado, M.; Tokimitsu, I.; Yamamoto, T.; Yamamoto, K. A Catechin-Rich Beverage Improves Obesity and Blood Glucose Control in Patients with Type 2 Diabetes. Obesity 2009, 17, 310–317. [Google Scholar] [CrossRef]
- Van de Laar, F.A. Alpha-Glucosidase Inhibitors in the Early Treatment of Type 2 Diabetes. Vasc. Health Risk Manag. 2008, 4, 1189–1195. [Google Scholar] [CrossRef] [Green Version]
- Ren, L.; Qin, X.; Cao, X.; Wang, L.; Bai, F.; Bai, G.; Shen, Y. Structural Insight into Substrate Specificity of Human Intestinal Maltase-Glucoamylase. Protein Cell 2011, 2, 827–836. [Google Scholar] [CrossRef] [Green Version]
- Jones, K.; Sim, L.; Mohan, S.; Kumarasamy, J.; Liu, H.; Avery, S.; Naim, H.Y.; Quezada-Calvillo, R.; Nichols, B.L.; Mario Pinto, B.; et al. Mapping the Intestinal Alpha-Glucogenic Enzyme Specificities of Starch Digesting Maltase-Glucoamylase and Sucrase-Isomaltase. Bioorg. Med. Chem. 2011, 19, 3929–3934. [Google Scholar] [CrossRef]
- Simsek, M.; Quezada-Calvillo, R.; Ferruzzi, M.G.; Nichols, B.L.; Hamaker, B.R. Dietary Phenolic Compounds Selectively Inhibit the Individual Subunits of Maltase-Glucoamylase and Sucrase-Isomaltase with the Potential of Modulating Glucose Release. J. Agric. Food Chem. 2015, 63, 3873–3879. [Google Scholar] [CrossRef]
- Lim, J.; Kim, D.K.; Shin, H.; Hamaker, B.R.; Lee, B.H. Different Inhibition Properties of Catechins on the Individual Subunits of Mucosal α-Glucosidases as Measured by Partially-Purified Rat Intestinal Extract. Food Funct. 2019, 10, 4407–4413. [Google Scholar] [CrossRef]
- Shimizu, M.; Kobayashi, Y.; Suzuki, M.; Satsu, H.; Miyamoto, Y. Regulation of Intestinal Glucose Transport by Tea Catechins. BioFactors 2000, 13, 61–65. [Google Scholar] [CrossRef]
- Zhu, Q.Y.; Zhang, A.; Tsang, D.; Huang, Y.; Chen, Z.Y. Stability of Green Tea Catechins. J. Agric. Food Chem. 1997, 45, 4624–4628. [Google Scholar] [CrossRef]
- Auricchio, S.; Semenza, G.; Rubino, A. Multiplicity of Human Intestinal Disaccharidases II. Characterization of the Individual Maltases. Biochim. Biophys. Acta 1965, 96, 498–507. [Google Scholar] [CrossRef]
- Quezada-Calvillo, R.; Sim, L.; Ao, Z.; Hamaker, B.R.; Quaroni, A.; Brayer, G.D.; Sterchi, E.E.; Robayo-Torres, C.C.; Rose, D.R.; Nichols, B.L. Luminal starch substrate “brake” on maltase-glucoamylase activity is located within the glucoamylase subunit. J. Nutr. 2008, 138, 685–692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, J.; Yang, G.; You, Q.; Sun, S.; Chen, R.; Lin, Z.; Simal-Gandara, J.; Lv, H. Updates on the Chemistry, Processing Characteristics, and Utilization of Tea Flavonoids in Last Two Decades (2001–2021). Crit. Rev. Food Sci. Nutr. 2021, 13, 1–28. [Google Scholar] [CrossRef] [PubMed]
- Varghese, G.K.; Bose, L.V.; Habtemariam, S. Antidiabetic Components of Cassia Alata Leaves: Identification through α-Glucosidase Inhibition Studies. Pharm. Biol. 2013, 51, 345–349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, D.; Park, J.Y.; Lee, S.; Kang, K.S. In Vitro Studies to Assess the α-Glucosidase Inhibitory Activity and Insulin Secretion Effect of Isorhamnetin 3-o-Glucoside and Quercetin 3-o-Glucoside Isolated from Salicornia Herbacea. Processes 2021, 9, 483. [Google Scholar] [CrossRef]
- Arumugam, B.; Palanisamy, U.D.; Chua, K.H.; Kuppusamy, U.R. Potential Antihyperglycaemic Effect of Myricetin Derivatives from Syzygium Malaccense. J. Funct. Foods 2016, 22, 325–336. [Google Scholar] [CrossRef]
- Fallingborg, J.; Christensen, L.A.; Ingeman-Nielsen, M.; Jacobsen, B.A.; Abildgaard, K.; Rasmussen, H.H. PH-Profile and Regional Transit Times of the Normal Gut Measured by a Radiotelemetry Device. Aliment. Pharmacol. Ther. 1989, 3, 605–614. [Google Scholar] [CrossRef]
- Evans, D.F.; Pye, G.; Bramley, R.; Clark, A.G.; Dyson, J.; Hardcastle, J.D. Measurement of Gastrointestinal PH Profiles in Normal Ambulant Human Subjects. Gut 1988, 29, 1035–1041. [Google Scholar] [CrossRef] [Green Version]
- James, P.S.; Smith, M.W.; Tivey, D.R. Single-villus Analysis of Disaccharidase Expression by Different Regions of the Mouse Intestine. J. Physiol. 1988, 401, 533–545. [Google Scholar] [CrossRef] [Green Version]
- Chaikomin, R.; Rayner, C.K.; Jones, K.L.; Horowitz, M. Upper Gastrointestinal Function and Glycemic control in Diabetes Mellitus. World J. Gastroenterol. 2006, 12, 5611–5621. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Qian, K.; Han, W. Prediction of Hyaluronic Acid Target on Sucrase-Isomaltase (SI) with Reverse Docking and Molecular Dynamics Simulations for Inhibitors Binding to SI. PLoS ONE 2021, 16, e0255351. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.T.H.; Jung, S.H.; Lee, S.; Ryu, H.J.; Kang, H.K.; Moon, Y.H.; Kim, Y.M.; Kimura, A.; Kim, D. Inhibitory Effects of Epigallocatechin Gallate and Its Glucoside on the Human Intestinal Maltase Inhibition. Biotechnol. Bioprocess Eng. 2012, 17, 966–971. [Google Scholar] [CrossRef] [PubMed]
Area | Breed | Inhibitory Activity (%) | ||
---|---|---|---|---|
70% EtOH (25 °C, 24 h) | H2O (25 °C, 24 h) | H2O (90 °C, 1.5 min) | ||
Nishinoomote | Kuritawase | 97.0 ± 0.6 c | 91.1 ± 2.9 c | 72.9 ± 0.9 a |
Saemidori | 92.6 ± 1.9 b | 92.2 ± 1.6 c | 81.6 ± 0.4 cde | |
Yabukita | 96.5 ± 0.8 c | 92.9 ± 1.4 c | 78.1 ± 0.4 c | |
Chiran | Yutakamidori | 82.5 ± 1.9 a | 91.3 ± 0.7 c | 77.9 ± 0.7 c |
Saemidori | 86.3 ± 2.0 a | 81.4 ± 3.2 ab | 79.0 ± 0.5 cd | |
Yabukita | 93.1 ± 1.0 bc | 79.8 ± 7.0 a | 84.9 ± 0.3 e | |
Ariake | Yutakamidori | 94.4 ± 0.7 bc | 89.5 ± 1.1 bc | 80.0 ± 0.3 cd |
Saemidori | 95.1 ± 0.6 bc | 86.7 ± 0.9 abc | 83.2 ± 0.9 de | |
Yabukita | 95.4 ± 0.2 bc | 91.1 ± 1.0 c | 79.3 ± 1.7 cd | |
Mizobe | Semidry | 93.8 ± 0.3 bc | 92.9 ± 1.0 c | 73.1 ± 2.4 ab |
Asanoka | 95.4 ± 0.3 bc | 92.3 ± 1.2 c | 78.5 ± 2.2 cd | |
Yabukita | 96.3 ± 0.1 bc | 88.4 ± 1.4 abc | 77.8 ± 2.1 bc | |
Mean ± SD | 93.2 ± 4.21 a | 89.1 ± 4.23 a | 78.7 ± 3.37 b |
Pearson’s Correlation Coefficient | |||
---|---|---|---|
Each Infusion Method | |||
Catechins | 70% EtOH (25 °C, 24 h) | H2O (25 °C, 24 h) | H2O (90 °C, 1.5 min) |
EC | −0.45 | 0.31 | 0.13 |
EGC | −0.24 | −0.01 | 0.21 |
(+)C | −0.53 | 0.44 | 0.30 |
GC | −0.48 | 0.13 | 0.36 |
Free form | −0.29 | 0.15 | 0.35 |
ECg | 0.74 ** | 0.78 * | 0.92 *** |
EGCg | 0.83 *** | 0.69 * | 0.95 *** |
GCg | −0.11 | −0.25 | 0.63 * |
Gallate form | 0.83 *** | 0.71 ** | 0.95 *** |
Total catechins | 0.61 * | 0.49 | 0.74 * |
H2O (90 °C, 1.5 min) | H2O (25 °C, 24 h) | 70% EtOH (25 °C, 24 h) | |
---|---|---|---|
Total catechins (g/100 g dry leaves) | 2.97 ± 0.506 a | 4.36 ± 0.642 b | 7.95 ± 0.970 c |
Gallate catechins (g/100 g dry leaves) | 1.36 ± 0.293 a | 1.57 ± 0.316 a | 5.06 ± 0.830 b |
Free catechins (g/100 g dry leaves) | 1.57 ± 0.313 a | 2.83 ± 0.553 a | 2.95 ± 0.594 b |
GCs/FCs ratio | 0.90 a | 0.58 b | 1.79 c |
Alpha-glucosidase inhibitory activity (%) | 78.7 ± 3.37 a | 89.1 ± 4.23 b | 93.2 ± 4.21 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Orita, T.; Chogahara, S.; Okuda, M.; Sakao, K.; Miyata, T.; Hou, D.-X. Extraction Efficiency and Alpha-Glucosidase Inhibitory Activities of Green Tea Catechins by Different Infusion Methods. Foods 2023, 12, 2611. https://doi.org/10.3390/foods12132611
Orita T, Chogahara S, Okuda M, Sakao K, Miyata T, Hou D-X. Extraction Efficiency and Alpha-Glucosidase Inhibitory Activities of Green Tea Catechins by Different Infusion Methods. Foods. 2023; 12(13):2611. https://doi.org/10.3390/foods12132611
Chicago/Turabian StyleOrita, Tsukasa, Satoshi Chogahara, Mayuko Okuda, Kozue Sakao, Takeshi Miyata, and De-Xing Hou. 2023. "Extraction Efficiency and Alpha-Glucosidase Inhibitory Activities of Green Tea Catechins by Different Infusion Methods" Foods 12, no. 13: 2611. https://doi.org/10.3390/foods12132611
APA StyleOrita, T., Chogahara, S., Okuda, M., Sakao, K., Miyata, T., & Hou, D. -X. (2023). Extraction Efficiency and Alpha-Glucosidase Inhibitory Activities of Green Tea Catechins by Different Infusion Methods. Foods, 12(13), 2611. https://doi.org/10.3390/foods12132611