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Abstract: Focus on local food production and supply chains has heightened in recent years, as
evidenced and amplified by the COVID-19 pandemic. This study aimed to assess the suitability of
soft red winter (SRW) wheat breeding lines for local artisan bakers interested in locally sourced, strong
gluten wheat for bread. Seventy-six genotyped SRW wheat breeding lines were milled into whole
wheat flour and baked into small loaves. Bread aroma, flavor, and texture were evaluated by a sensory
panel, and bread quality traits, including sedimentation volume, dough extensibility, and loaf volume,
were measured to estimate heritability. SE-HPLC was performed on white flour, and breeding lines
were characterized for different protein fraction ratios. Heritability of loaf volume was moderately
high (h2 = 0.68), while heritability of sedimentation volume, a much easier trait to measure, was
slightly lower (h2 = 0.55). Certain protein fraction ratios strongly related to loaf volume had high
heritability (h2 = 0.7). Even though only a moderate heritability estimate of dough extensibility was
found in our study, high positive correlations were found between this parameter and sedimentation
volume (r = 0.6) and loaf volume (r = 0.53). This low-input and highly repeatable parameter could be
useful to estimate dough functionality characteristics. Flavor and texture heritability estimates ranged
from 0.16 to 0.37, and the heritability estimate of aroma was not significantly different from zero.
However, the sensorial characteristics were significantly correlated with each other, suggesting that
we might be able to select indirectly for aroma by selecting for flavor or texture characteristics. From
a genome-wide association study (GWAS), we identified six SNPs (single nucleotide polymorphisms)
associated with loaf volume that could be useful in breeding for this trait. Producing high-quality
strong gluten flour in our high rainfall environment is a challenge, but it provides local growers and
end users with a value-added opportunity.

Keywords: local and regional food systems; loaf volume; bread-making quality; genomic prediction;
protein concentration

1. Introduction

Wheat (Triticum aestivum L.) is the most widely grown cereal in the world. As a
source of both carbohydrates and protein, it provides the majority of daily calories in many
diets [1]. Around 700 million tons of wheat are produced worldwide every year [2]. In
Kentucky, wheat is grown on approximately 216,000 hectares with an average yield of
4.9 tons ha−1 over the last 10 years [3]. In addition, wheat is a suitable crop to grow as
a double-crop under no-tillage systems in a crop rotation following corn (Zea mays L.)
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and preceding soybean (Glycine max (L.) Merr.). Furthermore, wheat provides significant
agroecological services, such as winter cover, to reduce soil erosion and improve soil health
and economic revenue at a different time of the year than summer crops, improving farmers’
cash flow.

Kentucky’s soft red winter (SRW) wheat grain is typically sold as a commodity to
millers and grain elevators and produces a weak-gluten flour that is used by the industry
for cakes, pastries, and cookies. At the same time, an interest in identifying value-added
markets for Kentucky-grown wheat is growing rapidly as the industry and consumers are
more eager to source ingredients locally for their baked goods. Furthermore, it is expected
that farmers would receive increased prices by supplying high-quality grain; thus, there
is an economic potential to be exploited by gaining access to those specialized markets.
Therefore, when evaluating the quality characteristics of wheat grown in Kentucky, it is
of great interest to understand what needs to be carried out next to supply the growing
local demand.

Specialized, value-added markets for premium quality products have already been
developed for other crops that are usually grown and sold as commodities. For instance, a
study by Rekik et al. [4] demonstrated that achieving desirable traits in coffee can unlock a
price premium potential, improving farmers’ incomes. Another study involving maize con-
cluded that, although the current protocol among nearly all large-scale bourbon distilleries
is to utilize commodity yellow dent hybrid corn, variation in flavor and alcohol yield still
occurs between hybrids and can be targeted by characterizing their diverse organoleptic
profiles [5]. Unfortunately, there is an expressed concern that modern wheat selection
programs have narrowed the genetic base of newer wheat varieties by the propagation of
successful, high-yielding varieties that are genetically related. In this scenario, introducing
aroma and flavor quality as a new breeding criterion could contribute to broadening the
genetic diversity of modern bread wheat.

According to a previous study on wheat [6], aroma and flavor parameters have become
valuable criteria in consumer selection. However, although bread aroma is one of the first
characteristics perceived by consumers, it is not typically assessed as a quality parameter
by the milling or baking industry [2]. According to Chang et al. [7], the quality of bread
can be judged based on loaf volume, texture, color, and flavor. In addition, Laidig et al. [8]
highlighted that the baking quality of wheat is mainly determined by protein concentration
and protein quality, but the proportion of the variability in loaf volume that can be explained
by differences in protein concentration is inconsistent between studies. Unfortunately, the
contribution that wheat flour makes to bread flavor has not been so well described, although
some studies noted that components found in wheat flour are likely contributors to overall
bread flavor [9].

Gluten strength depends on grain protein concentration and composition [10]. Wheat
storage proteins consist of monomeric gliadins and polymeric glutenins. Gliadins affect
dough extensibility, while glutenins are associated with dough elasticity [11]. Glutenins
are differentiated by their molecular weight as high molecular weight subunits (HMW-
GS) and low molecular weight subunits (LMW-GS). The HMW:LMW ratio is used as
a predictor of a cultivar’s bread-making quality [12]. In addition, the development of
methods to evaluate the protein size distribution, such as size-exclusion HPLC (SE-HPLC),
has contributed to an understanding of the role of the different protein fractions and
their association with bread-baking quality [13]. For instance, Gupta et al. [14] reported
a significant correlation between the percentage of SDS-unextractable polymeric protein
(%UPP) and extensograph maximum resistance. Singh et al. [13] reported high and positive
correlation coefficients between the relative quantity of glutenin obtained through SE-HPLC
analysis and loaf volume, extensograph dough resistance and extensibility, and mixograph
peak development time of flour from 15 wheat cultivars with diverse bread-making quality.
Another study used the SE-HPLC methodology and multivariate analyses to develop
models that were able to categorize hard and soft white wheat with high precision [15].



Foods 2023, 12, 2617 3 of 20

In the context of creating value-added products, establishing a standard method of
performing sensory analysis of bread might help increase the value of wheat flour as
well as the interest of consumers, considering that sensory attributes of food allow the
consumer to quantify quality [16]. A sensory evaluation involves collecting responses as
food is tasted and can be used in cereal science to determine how much a person likes
a baked good or to describe the intensity of the sensory properties of the product [17].
Some studies have indicated that it is possible to perceive differences in various grain
sub-products due to genotypic variability using sensory panel evaluations. Starr et al. [6]
were able to distinguish between different wheat varieties which were prepared as cooked
grains. Using a sensory panel to evaluate unaged-whiskey, Arnold et al. [5] found differ-
ences attributable to the variety used for its distillation, the terroir, and their interaction.
Moreover, Herb et al. [18] found differences in beer sensory descriptors when comparing
barley genotypes.

In addition to describing sensorial characteristics, research is needed to examine the
genetic basis and the heritability of these quality traits to be able to incorporate them into a
breeding program. Research on heritability and the genetic basis of dough functionality
traits is more commonly found in the literature [19–21] than similar research on sensory
analysis. Unfortunately, breeding for sensorial traits is hindered by the time-consuming
evaluation activity, which can reduce the number of lines that a breeding program is able to
analyze. In this sense, the study from Longin et al. [2] highlighted the key role that genomic
prediction can play in these kinds of traits by training a predictive model with a subset of
lines and determining the performance of the remaining genotypes with molecular marker
data. Moreover, being able to identify proxies of quality characteristics that reduce the
amount of time spent in baking would be of great value and could help wheat breeders
incorporate new evaluation parameters to supply farmers and, ultimately, the industry
with high-baking-quality wheat varieties.

Given this background, the goals of the present work were to: (i) quantify and charac-
terize genetic variation in sensory and dough functionality characteristics among breeding
lines from the University of Kentucky (UK) Wheat Breeding Program, (ii) estimate the
heritability of these traits to understand if we can incorporate them as selection criteria in a
breeding program, and (iii) analyze the relationship between sensory parameters, dough
functionality parameters, and protein fractions. The results of this research should help to
identify breeding lines that have desirable baking qualities in combination with superior
agronomic traits as well as the capacity to be grown in Kentucky and the mid-south region
and sold to local artisan millers and bakers.

2. Materials and Methods
2.1. Grain Source

For this study, 76 genotyped lines from the UK Wheat Breeding Program were eval-
uated from two growing seasons (seasons 2019–2020 and 2020–2021). The first year of
replicated, multi-location testing for these genotypes was 2020 as part of the Advanced
Yield Trial Stage, and the following year these lines were advanced to the Max Trial Stage
so that we had 2 years of multi-location yield and agronomic trait characterization and
2 years of evaluation for Fusarium head blight resistance.

The lines were planted in October and harvested in July for both seasons at Spindletop
Research Farm near Lexington, KY (38◦7′37.81′′ N, 84◦29′44.85′′ W), where the soil type
was Maury silt loam (a fine, mixed, active, mesic Typic Paleudalf; [22]). Weather data
can be found in Supplemental Table S1. Management was in accordance with common
practices of the region for fertilization, weeds, pests, and disease control [23]. Conventional
practices call for nitrogen (N) applications at Feekes growth stages 3 and 5. In addition,
given that we were planning to bake bread, a late N application was supplied at heading
(Feekes growth stage 10.5; [24]) to boost grain protein level. The source of N for the three
applications was urea, broadcast and hand-applied at a rate of 35, 70, and 35 kg N ha−1 at
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the three respective growth stages. Once the grain was cleaned after harvest, samples were
stored in a freezer at −20 ◦C until milling and baking.

Protein concentration and predicted kernel hardness were measured using near-
infrared reflectance spectrometry (NIR) from whole grain samples with a DA 7250 NIR
analyzer (Perten Instruments, Hägersten, Sweden).

2.2. SDS Sedimentation Volume

As a predictive measure of protein quality, a sodium dodecyl sulfate (SDS) sedimenta-
tion test was performed following the AACC Method 56–70 [25] with minor modifications.
This method measures the relative gluten strength in whole wheat meal and does not
require sieving. It is useful for screening plant breeding materials due to the low amount of
meal needed.

For this procedure, 5 g of whole wheat meal were obtained with a Cyclone sample mill
(UDY, Fort Collins, CO, USA) equipped with a 1 mm sieve. One gram of meal was placed
in a 25 mL glass graduated cylinder, and 4 mL of distilled water were added. Each cylinder
was vortexed at maximum speed for 3 s. After a 5 min rest, the cylinders were vortexed
again for 3 s and left to sit for 5 more minutes. This procedure was repeated one more time
for a total of 3 iterations. Subsequently, 12 mL of SDS-lactic acid solution were added, and
cylinders were inverted 10 times on a tube rocker. Tubes were placed in an upright position
and left to settle for 15 min before the sedimentation volume was recorded as milliliters of
the sediment column. Duplicated evaluations were conducted for each sample, and mean
values were used for data analysis for each season.

The SDS-lactic acid solution was prepared daily by adding 20 g SDS powder and
20.8 mL of refluxed 0.1% (v/v) lactic acid to 1000 mL distilled water. The solution was
stirred for 30 min until these substances were thoroughly dissolved and placed into a
bottle-top dispenser.

2.3. Extraction and SE- HPLC Analysis of Protein Fractions

The flour protein was extracted for size-exclusion HPLC (SE-HPLC) as described
by [14] with minor modifications [26,27]. White flour samples were obtained with a
Brabender Quadrumat Junior mill (Brabender® GmbH & Co. KG, Duisburg, Germany). The
SDS-extractable fraction was obtained with 1 mL of 1% SDS and 0.1 M sodium phosphate
buffer (pH 6.9). The residue was resuspended in 1 mL of the extraction buffer in order
to solubilize SDS unextractable proteins and sonicated in a probe-type sonicator (Sonic
Dismembrator 100; Fisher Scientific, Waltham, MA, USA). SE-HPLC was performed using
an Agilent 1100 Series (Agilent Technologies, Santa Clara, CA, USA). The SDS-extractable
and SDS-unextractable protein fractions were analyzed individually on a narrow-bore size
exclusion column (Yarra 3µm SEC S4000, 300 × 4.6 mm, Phenomenex, Torrance, CA, USA)
with a precolumn in-line filter assembly (0.2 µm, 0.125′′ dia. SST Frit, Analytical Scientific
Instrument US Inc., Richmond, CA, USA) and a guard cartridge (BioSep SEC S4000) [27].
Duplicated evaluations were conducted for each sample, and mean values were used for
data analysis for each season.

Absorbance data from SE-HPLC chromatograms of protein extracts were interpolated
and analyzed with an in-house program that was developed using MATLAB (version 6,
The MathWorks, Natick, MA, USA) [15,27,28]. The SE-HPLC profiles were divided into
four fractions (F1–F4) for flour samples for both SDS extractable and unextractable fractions.
Primary components constituting individual fractions were high molecular weight poly-
meric proteins (F1), low molecular weight glutenin polymers (F2), gliadins (F3), albumin,
globulins, and protein hydrolysates (F4). The total was equal to SDS extractable plus SDS
unextractable data.

Different ratios were calculated from the absorbance area raw data, such as gliadin
to glutenin (F3 to F1 + F2 fractions), HMW:LMW (F1 to F2 ratio), or UPP:TPP (SDS un-
extractable polymeric protein to total polymeric protein). For this study, absorbance area
percentage (A%) data were preferred over absorbance area (AA, expressed in mAU*min)
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since AA values represent a quantitative variation in protein eluted at a given moment, thus
affected by the total protein content, while A% is the percentage of AA at a given retention
time interval over total AA and represents the variation in protein compositions [15].

2.4. Bread Baking

For each tasting session, grain from five breeding lines plus a control (‘Edison’—hard
white spring wheat) was milled on a Mockmill 100 Stone Grain Mill (Mockmill USA,
Fairfield, IA, USA). Two hundred grams of whole-wheat flour were obtained and used
for baking small loaves of bread. The bread was made following a commonly used 70%
hydration bread recipe. Small amounts of yeast (1 g) were used in order to limit the yeast
flavor and odor influence in the final product, with a 20 h fermentation process at 3 ◦C.
Measurements taken from the baked bread included loaf height, weight, and volume, and
loaf density was calculated from loaf weight and volume.

Before baking, a 50 g sample was separated from the dough to perform the window-
pane test to evaluate dough extensibility. The windowpane test consisted of rolling the
sample of dough into a ball and manually stretching it between the fingers to form a thin
layer without breaking it. The capacity of the dough to be gently stretched without tearing
it was scored on a 1 to 7 scale, where 1 is the lowest resistance to stretching, and 7 is the
highest. This methodology is typically used by bakers as a qualitative assessment of gluten
development and sufficiency of kneading or stretching and folding.

2.5. Sensory Panel Evaluation

The sensory panel evaluation consisted of 4 to 6 evaluators that assessed each bread
sample. The sensory panel judged the overall aroma, flavor, and crumb and crust texture of
each sample on a scale from 1 (dislike very much) to 7 (like very much) with unit intervals.
Evaluations of bread samples from the grain of the 2019–2020 season were conducted
between January and May of 2021, usually once a week in groups of 6 samples. Evaluations
of samples made with the grain from season 2020–2021 were conducted between August
and December of that same year, also once a week with 6 samples of bread each week.
The evaluator panel remained the same between the two seasons in order to reduce the
variability of the evaluations.

2.6. Data Analysis

Overall sensorial characteristics (aroma, flavor, and texture parameters from the
sensory panel evaluation) as well as SDS volume, protein concentration, and predicted
kernel hardness were analyzed using JMP® Version 16.0.0 (SAS Institute Inc., Cary, NC,
USA) with the following generalized linear model (GLM) in order to determine genotypic
differences and estimate heritability:

yijk = µ + ai + rj : ai + gk + aigk + eijk, (1)

where yijk was the observed trait for the ith year, in the jth replication of the kth genotype,
µ the general mean, ai the effect of the ith year, rj : ai the effect of the jth replication within
the ith year, gk the effect of the kth genotype, aigk the interaction effect of the ith year and
the kth genotype, and eijk the residual error. In the case of sensory evaluation parameters,
the evaluators were considered the replications.

Heritability and 90% confidence intervals were estimated from the mean squares (MS)
obtained from the analysis of variance as in [29]:

h2 = 1− MS[genotype× year]
MS[genotype]

, (2)

UL = 1−
[(

MS[genotype]
MS[genotype× year]

)
× F1− α

2 ;d f 1,d f 2

]−1
, (3)
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LL = 1−
[(

MS[genotype]
MS[genotype× year]

)
× Fα

2 ;d f 1,d f 2

]−1
, (4)

where UL is the upper limit and LL the lower limit of the confidence interval, and
F1−α/2:df 1,df 2 indicates the value from the F distribution such that the probability of ex-
ceeding this value is 1 − α/2. Fα/2:df 1,df 2 is the analogous statistic. When replication
within the year was not feasible, heritability estimates were calculated using the genotypic
variance (σ2

g ) and error variance (σ2
e ) components, and year as a replicate (r), as in [2]:

h2 =
σ2

g[
σ2

g +
(

σ2
e
r

)] . (5)

Such was the case for loaf volume, loaf density, loaf height, dough extensibility, flour
protein concentration, and flour protein fractions from SE-HPLC.

In addition, a principal component analysis (PCA) was performed based on flavor,
aroma, and texture parameters, as well as dough functionality traits collected for each
genotype across the two seasons. With the individual variables scaled and centered,
Pearson’s correlation coefficient between traits was calculated.

A second principal component analysis was performed using the protein fractions
data from SE-HPLC, SDS sedimentation volume, predicted kernel hardness, and flour and
grain protein concentration. The ultimate goal of performing a separated PCA with these
variables was to obtain the principal component scores to be used to fit a regression model
(PCR) with measured loaf volume [30,31].

2.7. SNP Calling and Genome-Wide Association Study (GWAS)

SNP genotype calling was carried out as in [32]. DNA from leaf samples was extracted
using the Sbeadex plant kit from BioSearch Technologies, and genotyping by sequencing
(GBS) was performed following the protocol from Poland and Rife [33]. The final number
of retained SNPs was 12,808 after filtering by missing data (≤50%), minor allele frequency
(≥5%), and heterozygous calls per marker locus (≤10%).

GWAS was performed using data from four “environments”: harvest year 2020
(ENV1), harvest year 2021 (ENV2), average data from both years (ENV3), and BLUPs
(ENV4). We fitted three models, BLINK, FarmCPU, and GLM, using GAPIT v3.1.0 package
in R [34]. The cutoff critical p-value was set at 1/n, where n was the number of SNPs, and
only those SNPs with false discovery rate (FDR) adjusted p-value less than 0.1 were consid-
ered as significant trait-associated QTL. To establish more rigorous criteria, we required
that SNPs should be declared significant in at least two environments or using two GWAS
models to be considered significant for our results. Specific information about each model
can be found in [34].

3. Results

The summary statistics and ANOVA components used to calculate heritability es-
timates of the quality parameters are shown in Table 1. Heritability estimates with 90%
confidence intervals are shown in Figure 1. High heritability estimates (h2 = from 0.68
to 0.85) were found for flour protein fractions (total gliadins, total LMW-GS, and total
HMW-GS) and loaf volume. Heritability estimates for gliadin to glutenin ratio (T_Gli:Glu)
and SDS unextractable polymeric protein to total polymeric protein ratio (UPP:TPP) were
also high (h2 = 0.9 and 0.69, respectively). Moderate heritability estimates (h2 = from 0.4
to 0.55) were found for bread flavor, the texture of the crumb, the texture of the crust, and
sedimentation volume. Lower heritability estimates (h2 = from 0.16 to 0.37) were obtained
for bread aroma, grain and flour protein concentration, predicted kernel hardness, loaf
density, loaf height, dough extensibility score, and total HMW:LMW ratio. Bread aroma,
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grain and flour protein concentration, predicted kernel hardness, and loaf density were the
only quality parameters for which heritability was not significantly different from 0.

Table 1. Summary of statistics and ANOVA components used to calculate the heritability of the quality
parameters evaluated in this study. “T_”: total SDS extractable and SDS unextractable protein frac-
tions; UPP:TPP: SDS unextractable polymeric protein to total polymeric protein ratio. (*) p-value < 0.1,
(**) p-value < 0.05, (***) p-value < 0.001, and (ns) not significant. † Scale from a 1 (dislike very much)
to 7 (like very much) with unit intervals. ‡ Scale from 1 (lowest resistance to stretching) to 7 (highest
resistance to stretching).

Quality Parameter Units
Entry Means Mean Squares

Min Max Mean Year Genotype Genotype ×
Year Error

Aroma 1–7 scale † 3.10 5.20 4.0 4.72 1.57 * 1.23 1.24
Flavor 1–7 scale † 3.10 5.20 4.0 10.47 1.75 ** 1.06 1.28

Texture: Crumb 1–7 scale † 2.70 5.10 3.70 7.04 2.47 *** 1.11 1.17
Texture: Crust 1–7 scale † 3.20 5.10 4.10 1.58 2.17 *** 1.13 1.07
Grain Protein
Concentration % 9.12 14.64 11.27 12.43 1.67 *** 1.19 0.09

Kernel Hardness % 7.32 31.12 19.36 40.22 30.20 *** 24.02 2.72
SDS Sedimentation

Volume cm3 4.75 15.25 9.25 1548.39 5.71 *** 2.69 0.17

Loaf Volume cm3 400 625 502 3517.66 1875.86 *** 602.08
Loaf Density gr/cm3 0.41 0.74 0.53 6.15 × 10−7 0.0021 ns 0.002
Loaf Height cm 5.4 8.9 6.9 2.73 0.33 ** 0.20

Dough extensibility score 1–7 scale ‡ 1.00 7.00 3.30 35.03 3.31 ** 2.15
Flour Protein
Concentration % 8.28 15.07 10.87 0.93 ns 0.76

T_HMW-GS A% 21.33 31.59 26.46 5.18 *** 0.79
T_LMW-GS A% 10.21 16.03 13.06 0.98 *** 0.18

T_Gli A% 35.35 45.14 39.34 5.85 *** 1.18
T_HMW:LMW - 1.50 2.44 2.04 0.02 * 0.01

T_Gli:Glu - 0.79 1.36 1.00 0.02 *** 0.002
UPP:TPP - 0.34 0.59 0.47 0.002 *** 0.001

Principal components analysis of the 76 wheat genotypes on bread-making quality pa-
rameters showed a clear separation of the bread samples according to the harvest year with
respect mainly to principal component 2 (PC2; Figure 2). According to the PC loading ma-
trix (Supplemental Table S2), this main differentiation could be explained by sedimentation
volume, grain protein concentration, and predicted kernel hardness differences between
the two years, and differences in bread sensory parameters scores (flavor, aroma, texture
of the crumb, and texture of the crust). The main differentiation across PC1 according to
the loading matrix is explained by loaf density (negatively loading PC1) and loaf volume,
loaf height, and dough extensibility score (positively loading PC1). Between PC1 and PC2,
we were able to explain 57.6% of the variability of the dataset, with PC1 explaining 35.3%
of the variability and PC2 explaining 22.3% of the variability. Furthermore, grain samples
from the harvest year 2020 showed a higher level of variability, expressed as a wider spread
of the data points mainly around principal component 1 (PC1), while samples from 2021
were displayed in a tighter arrangement with respect to this axis.

Principal component analysis of the flour protein fractions, grain and flour protein
content, predicted kernel hardness, and SDS sedimentation volume is shown in Figure 3.
The separation of the samples between the harvest years is clear, presenting primarily on
the PC1 axis. Between the first two PC, we captured 66% of the variability on the dataset.
Principal component 1 captured 34.8% of the variation, while PC2 captured 31.2% of the
variation in the dataset. According to the loading matrix (Supplemental Table S3), PC1
is loaded positively by SDS sedimentation volume (SV), SDS unextractable polymeric
protein to total polymeric protein ratio (UPP:TPP), SDS unextractable HMW-GS to SDS
unextractable LMW-GS ratio (U_HMW:LMW), and flour and grain protein concentration.
Conversely, PC1 is negatively loaded by SDS extractable LMW-GS (E_LMW), total LWM-
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GS (T_LMW), and SDS extractable HMW-GS (E_HMW). Regarding PC2, total HMW-GS
(T_HMW) is the main positive contributor, while the gliadin fractions (E_Gli, T_Gli, and
T_Gli:Glu ratio) contribute negatively to this PC.
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Figure 2. Principal component analysis biplot of 76 wheat genotypes for their quality parameters
across the two harvest seasons. The numbers in parentheses on the axis labels refer to the proportion
of variance explained by the PC. The red circle and triangle represent the ‘Edison’ cultivar from the
harvest years 2020 and 2021, respectively. LD: loaf density; KH: predicted kernel hardness; GPC:
grain protein concentration; SV: SDS sedimentation volume; LH: loaf height; DE: dough extensibility
score; LV: loaf volume; Crust: texture of the bread crust; Aroma: aroma of the bread; Flavor: flavor of
the bread; Crumb: texture of the bread crumb.
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Figure 4. Regression between actual loaf volume and predicted loaf volume from a principal com-
ponent regression. 

Figure 3. Principal component analysis biplot of 76 wheat genotypes across the two harvest seasons,
using the protein fraction parameters obtained through SE-HPLC, grain and flour protein concentra-
tion, predicted kernel hardness, and SDS sedimentation volume. The numbers in parenthesis on the
axis labels refer to the proportion of variance explained by the PC. “T_”: total SDS extractable and
SDS unextractable protein fractions; “U_”: SDS unextractable protein fractions; “E_”: SDS extractable
protein fractions; UPP:TPP: SDS unextractable polymeric protein to total polymeric protein ratio;
GPC: grain protein concentration; FPC: flour protein concentration; KH: predicted kernel hardness;
SV: SDS sedimentation volume.

Loaf volume prediction through principal component regression (PCR) using the
first six PC scores of the protein fractions PCA returned an R2 of 0.32 (Figure 4). These
first six principal component scores explained almost 97% of the variability of the dataset
(Supplemental Table S4).
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Pearson’s correlations (Table 2 and Supplemental Table S5) among quality parameters
showed that sensorial parameters (i.e., aroma, flavor and texture of the crumb, and the
crust) were significantly correlated with each other and significantly correlated with dough
functionality parameters. For example, the texture of the crumb and the texture of the
crust with respect to sedimentation volume, dough extensibility, loaf height, and loaf
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volume showed correlation coefficients between 0.30 and 0.45 with associated p-values < 0.1.
Furthermore, sedimentation volume was significantly correlated (p-value < 0.001) with
protein concentration (r = 0.51), loaf height (r = 0.57), dough extensibility (r = 0.6), and loaf
volume (r = 0.5), and negatively correlated with loaf density (r = −0.33). Flour protein
concentration was significantly correlated with grain protein concentration (r = 0.81), SDS
sedimentation volume (r = 0.47), and dough extensibility score (r = 0.4), but it was not
significantly correlated with loaf volume or loaf density. Regarding protein fractions,
loaf volume was negatively correlated with total LMW-GS (r = −0.24) and positively
correlated with total HMW:LMW ratio (r = 0.32) and unextractable polymeric protein
to total polymeric protein ratio (UPP:TPP; r = 0.53). Interestingly, UPP:TPP was also
significantly correlated to the bread sensory parameters texture of the crumb and texture of
the crust (r = 0.29 and 0.49, respectively), sedimentation volume (r = 0.63), and loaf height
(r = 0.58).

The GWAS results (Table 3) identified 25 significant SNPs associated with dough
extensibility (n = 1), loaf height (n = 4), loaf volume (n = 6), texture of the crust (n = 1), flour
protein concentration (n = 1), SDS extractable gliadin (‘E_Gliadin’; n = 2), SDS extractable
HMW-GS (E_HMW; n = 5), SDS unextractable HMW-GS (U_HMW; n = 4), and SDS
unextractable LMW-GS (U_LMW; n = 1). Particularly, loaf volume-associated SNPs had
effects of the greatest magnitude (between 9 and 22.5%), while the SNPs associated with
the remaining traits had smaller effects (up to 2.5%). These GWAS analyses were conducted
using 2-year entry means, as well as individual year entry means and BLUPS. Interestingly,
only one SNP was found to be significantly associated with a trait for all environments and
models tested (S1B_15439623). This SNP was associated with SDS extractable gliadin with
an effect in the range of 1.9 to 2.6%.

In addition, we compared the means of the lines for those SNPs that were significantly
associated with a trait to determine the robustness of the SNP effect across the array of
genotypes through a t-test (Figure 5). Our results showed significant differences in all the
traits’ means of the lines having different allelic forms for each of the SNPs detected with
the GWAS, except for the SNP S1A_590142135 associated with SDS extractable gliadins
where the two allelic alternatives did not significantly differ between each other (α = 0.05).
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Table 2. Pearson’s correlation coefficients from average data of harvest years 2020 and 2021. LD: loaf density; KH: predicted kernel hardness; GPC: grain protein
concentration; SV: SDS: sedimentation volume; LH: loaf height; DE: dough extensibility score; LV: loaf volume; Crust: texture of the bread crust; Aroma: aroma of
the bread; Flavor: flavor of the bread; Crumb: texture of the bread crumb; FPC: flour protein concentration; “T_”: total SDS extractable + unextractable fractions;
UPP:TPP: SDS unextractable polymeric protein to total polymeric protein ratio. (*) p-value < 0.1, (**) p-value < 0.05, (***) p-value < 0.001, and (ns) not significant.

Flavor Crumb Crust GPC KH SV LH DE LV LD FPC T_HMW T_LMW T_Gli T_HMW:
LMW

T_Gli:
Glu UPP:TPP

Aroma 0.4 ** 0.43 *** 0.35 * 0.15 ns −0.01 ns 0.39 ** 0.28 * 0.51 *** 0.32 * −0.18 ns 0.16 ns 0.13 ns −0.01 ns 0.14 ns 0.16 ns −0.1 ns 0.21 ns

Flavor 0.58 *** 0.4 *** 0.04 ns −0.1 ns 0.36 * 0.31 * 0.34 * 0.26 * −0.12 ns −0.01 ns 0.23 ns 0.02 ns −0.2 ns 0.25 * −0.17 ns 0.24 ns

Crumb 0.66 *** 0.08 ns −0.16 ns 0.32 * 0.3 * 0.44 *** 0.34 * −0.37 * 0.12 ns 0.18 ns −0.02 ns −0.09 ns 0.22 ns −0.09 ns 0.29 *
Crust 0.18 ns −0.02 ns 0.45 *** 0.39 ** 0.45 *** 0.4 ** −0.35 * 0.17 ns 0.19 ns −0.12 ns −0.12 ns 0.35 * −0.08 ns 0.49 ***
GPC 0.5 *** 0.51 *** 0.27 * 0.39 ** 0.21 ns −0.12 ns 0.81 *** −0.27 * −0.39 ** 0.28 * 0.13 ns 0.32 ** 0.23 *
KH 0.2 ns 0.07 ns −0.05 ns −0.09 ns 0.14 ns 0.31 * −0.33 * −0.23 ns 0.32 * −0.12 ns 0.33 ** 0.11 ns

SV 0.57 *** 0.6 *** 0.5 *** −0.33 * 0.47 *** 0.29 * −0.1 ns −0.24 ns 0.45 *** −0.23 ns 0.63 ***
LH 0.47 *** 0.66 *** −0.45 *** 0.27 * 0.29 * −0.1 ns −0.24 ns 0.45 *** −0.21 ns 0.58 ***
DE 0.54 *** −0.46 *** 0.4 ** 0.14 ns −0.11 ns −0.19 ns 0.41 ** 0.16 ns 0.25 *
LV −0.76 *** 0.1 ns 0.06 ns −0.24 * −0.07 ns 0.32 * 0.01 ns 0.53 ***
LD −0.08 ns −0.02 ns 0.15 ns −0.01 ns −0.18 ns −0.02 ns −0.4 *
FPC −0.08 ns −0.18 ns 0.12 ns 0.14 ns 0.11 ns 0.06 ns

T_HMW 0.63 *** −0.91 *** 0.49 *** −0.96 *** 0.1 ns

T_LMW −0.65 *** −0.38 ** −0.76 *** −0.34 *
T_Gli −0.36 * 0.97 *** −0.09 ns

T_HMW:LMW −0.29 * 0.49 ***
T_Gli:Glu 0.01 ns
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Table 3. Genome-wide association study (GWAS) for 76 SRW wheat lines grown in 2020 (ENV 1),
2021 (ENV 2), average data from 2020 and 2021 seasons (ENV 3), and BLUPS (ENV4), tested under
BLINK, FarmCPU, and GLM models using GAPIT. Only SNPs with an effect size higher than 0.1%
and a false discovery rate (FDR) adjusted p-value smaller than 0.1 are shown in this table. The effect
of each SNP is expressed as a percentage of the mean of each trait.

Trait SNP Chr Position Environment Model Effect (%) FDR Adj.
p-Value

CRUST
TEXTURE

S1D_414898399 1D 414898399
ENV 1 (2020) FARMCPU 0.35 4.7 × 10−2

ENV 3
(AVERAGE) BLINK 0.24 9.3 × 10−3

LOAF
HEIGHT

S1B_659387140 1B 659387140

ENV 3
(AVERAGE)

BLINK 0.26 6.2 × 10−2

FARMCPU 0.21 1.6 × 10−3

ENV 4 (BLUPS)
BLINK 0.15 2.8 × 10−3

FARMCPU 0.12 3.6 × 10−4

GLM 0.19 4.5 × 10−2

S1D_411189520 1D 411189520
ENV 1 (2020)

BLINK −0.32 6.3 × 10−5

GLM −0.33 7.2 × 10−2

ENV 3
(AVERAGE) GLM −0.21 1.5 × 10−2

S1D_411312538 1D 411312538

ENV 1 (2020) GLM −0.33 7.2 × 10−2

ENV 3
(AVERAGE) GLM −0.27 4.9 × 10−3

ENV 4
(BLUPS) GLM −0.13 4.5 × 10−2

S1D_411312546 1D 411312546

ENV 1 (2020) GLM 0.33 7.2 × 10−2

ENV 3
(AVERAGE)

BLINK 0.25 5.3 × 10−6

FARMCPU 0.20 8.8 × 10−6

GLM 0.27 4.9 × 10−3

ENV 4 (BLUPS)

BLINK 0.12 1.0 × 10−4

FARMCPU 0.09 3.5 × 10−4

GLM 0.13 4.5 × 10−2

LOAF
VOLUME

S1D_411312538 1D 411312538

ENV 1 (2020) FARMCPU −22.37 1.5 × 10−2

ENV 4
(BLUPS) FARMCPU −12.50 7.0 × 10−2

S1D_411312546 1D 411312546

ENV 1 (2020) FARMCPU 20.21 3.4 × 10−2

ENV 4
(BLUPS) FARMCPU 12.50 7.0 × 10−2

S1D_413406182 1D 413406182 ENV 1 (2020) BLINK −21.08 2.2 × 10−4

FARMCPU −21.08 1.5 × 10−2

S1D_415646908 1D 415646908

ENV 1 (2020) FARMCPU 19.75 2.5 × 10−2

ENV 3
(AVERAGE)

BLINK 17.41 2.1 × 10−4

FARMCPU 9.07 3.0 × 10−2

ENV 4
(BLUPS) FARMCPU 12.41 5.5 × 10−2

S1D_416355573 1D 416355573

ENV 1 (2020) FARMCPU −19.31 4.2 × 10−2

ENV 4
(BLUPS) FARMCPU −12.94 5.5 × 10−2

S1D_416403815 1D 416403815

ENV 1 (2020) FARMCPU 22.50 2.2 × 10−2

ENV 4
(BLUPS) FARMCPU 12.95 5.5 × 10−2
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Table 3. Cont.

Trait SNP Chr Position Environment Model Effect (%) FDR Adj.
p-Value

DOUGH
EXTENSIBILITY

S5A_511963647 5A 511963647

ENV 1 (2020) BLINK 1.17 3.7 × 10−6

FARMCPU 0.63 6.6 × 10−2

ENV 3
(AVERAGE)

BLINK 0.75 4.4 × 10−7

FARMCPU 0.58 9.9 × 10−6

ENV 4 (BLUPS) BLINK 0.30 6.9 × 10−5

FARMCPU 0.22 1.6 × 10−4

FLOUR
PROTEIN

S3B_10656866 3B 10656866 ENV 1 (2020) BLINK 0.87 1.7 × 10−3

FARMCPU 0.87 4.6 × 10−2

E_GLIADIN

S1A_590142135 1A 590142135

ENV 2 (2021)
BLINK 0.87 6.6 × 10−3

FARMCPU 0.70 5.0 × 10−4

ENV 3
(AVERAGE) FARMCPU 0.55 1.2 × 10−2

ENV 4
(BLUPS) FARMCPU 0.42 7.1 × 10−3

S1B_15439623 1B 15439623

ENV 1 (2020)

BLINK 2.52 8.6 × 10−10

FARMCPU 2.30 2.4 × 10−19

GLM 2.59 2.4 × 10−3

ENV 2 (2021)

BLINK 2.43 5.8 × 10−11

FARMCPU 2.35 1.6 × 10−12

GLM 2.35 7.2 × 10−4

ENV 3
(AVERAGE)

BLINK 2.50 4.0 × 10−12

FARMCPU 2.10 1.3 × 10−13

GLM 2.46 1.2 × 10−4

ENV 4 (BLUPS)

BLINK 2.05 3.3 × 10−12

FARMCPU 1.91 3.6 × 10−15

GLM 2.02 1.2 × 10−4

E_HMW

S1B_15439623 1B 15439623

ENV 1 (2020) BLINK −1.07 6.0 × 10−3

ENV 2 (2021)

BLINK −1.28 8.8 × 10−6

FARMCPU −1.06 1.1 × 10−7

GLM −1.58 8.2 × 10−3

ENV 3
(AVERAGE)

BLINK −1.13 7.5 × 10−6

FARMCPU −1.23 4.9 × 10−9

GLM −1.41 5.9 × 10−3

ENV 4 (BLUPS)

BLINK −0.82 2.8 × 10−6

FARMCPU 0.59 3.7 × 10−8

GLM −1.07 7.2 × 10−3

S1D_416132802 1D 416132802

ENV 2 (2021) GLM 1.03 8.2 × 10−3

ENV 3
(AVERAGE) GLM 0.96 5.4 × 10−3

ENV 4 (BLUPS)

BLINK 0.59 1.0 × 10−6

FARMCPU −0.81 4.0 × 10−8

GLM 0.71 7.2 × 10−3
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Table 3. Cont.

Trait SNP Chr Position Environment Model Effect (%) FDR Adj.
p-Value

S1D_416356089 1D 416356089

ENV 2 (2021)

BLINK −0.89 8.8 × 10−6

FARMCPU −1.03 1.6 × 10−10

GLM −1.11 8.2 × 10−3

ENV 3
(AVERAGE)

BLINK −0.74 1.1 × 10−5

FARMCPU −0.61 1.6 × 10−4

GLM −0.98 5.4 × 10−3

ENV 4
(BLUPS) GLM −0.71 7.2 × 10−3

S6A_546620773 6A 546620773
ENV 3

(AVERAGE)
BLINK 1.12 1.5 × 10−2

FARMCPU 0.84 1.0 × 10−1

S6D_6274375 6D 6274375

ENV 2 (2021) FARMCPU −1.18 2.0 × 10−4

ENV 4 (BLUPS) BLINK −0.97 1.1 × 10−3

FARMCPU −0.90 3.5 × 10−3

U_HMW

S1B_159912958 1B 159912958 ENV 1 (2020)
BLINK 0.96 3.4 × 10−2

FARMCPU 1.23 2.2 × 10−2

S2B_732056487 2B 732056487 ENV 1 (2020)
BLINK −0.97 3.4 × 10−2

FARMCPU −1.37 3.7 × 10−2

S4A_629489197 4A 629489197

ENV 3
(AVERAGE) BLINK −1.05 1.9 × 10−4

ENV 4
(BLUPS) BLINK −0.75 1.1 × 10−3

S7A_27004902 7A 27004902

ENV 3
(AVERAGE) BLINK −0.84 3.5 × 10−3

ENV 4
(BLUPS) BLINK −0.60 1.2 × 10−2

U_LMW S1B_15439623 1B 15439623 ENV 1 (2020)
BLINK −0.46 1.4 × 10−6

FARMCPU −0.44 4.4 × 10−8
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4. Discussion

Evaluating the aroma, flavor, and dough characteristics of wheat through bread baking
is a high-input and time-consuming activity, mostly carried out during the late stages of the
breeding program [35]. The disadvantage of this approach lies in the difficulty of identifying
genetic variability late in the breeding program when elite agronomic performers have
been selected. Knowing that genetic variation is the main factor determining the success of
a breeding program, this strategy is problematic because one might have already discarded
promising strong gluten types, for example. To our knowledge, there are few studies
evaluating the capability of breeding SRW wheat that could produce high-quality flour for
artisan bread-bakers. Such wheat would provide farmers with a specialty crop to grow
without the need for extreme diversification of their current production systems.

In this study, we estimated the heritability of easy-to-measure parameters as well as
their correlations with the aim of identifying assessments that could be easily repeated in
the early stages of the breeding program. Furthermore, we performed a GWAS aiming
to find SNPs significantly associated with quality parameters. Previous research has
already demonstrated that genotype is the main source of variation regarding flour quality
parameters [36]. Additionally, we were able to establish significant genotypic differences
among the lines for most of the traits under study, indicating that these are at least partially
under genetic control and could be improved through breeding [37,38].

We found that the heritability of flavor and the texture of the crumb and crust assessed
with a sensory panel evaluation method was moderate, ranging from 0.4 to 0.5, while the
heritability of aroma was not significantly different from zero. Rapp et al. [39] reported sim-
ilar heritability values for flavor (h2 = 0.56) in a study of spelt bread but higher heritability
estimates for aroma (h2 = 0.45) compared to our results. The lack of significant heritability
for aroma in our study might be driven by the complexity of aroma determination with
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the panel evaluation methodology. Furthermore, the standard error of this measurement
was the lowest compared to flavor, the texture of the crumb, and the texture of the crust,
implying low variability or difficulty in recognizing such variability. However, these four
sensorial characteristics were significantly correlated with each other, suggesting that we
might be able to indirectly select for aroma by selecting for flavor or texture characteristics.

Regarding dough functionality parameters, we found moderate heritability for SDS
sedimentation volume (h2 = 0.53), lower than that reported by [2] for bread wheat (h2 = 0.88)
and by [40] for durum wheat (h2 = 0.84), but closer to that reported by [35] for soft winter
wheat (h2 = 0.67–0.7). As highlighted by [41], even though SDS sedimentation volume could
be regarded independently of weather conditions due to the strong linkage with the genetic
pattern of gluten proteins, interactions with nutrient availability can still be observed.

A study on durum wheat reported a heritability estimate for a protein concentration of
0.59 [40], and Rapp et al. [39] reported a heritability estimate of 0.67. While our estimate for
protein was not significantly different from zero, none of these studies reported confidence
intervals or standard errors associated with their calculations. Furthermore, we observed
important differences in weather conditions during harvest seasons 2020 and 2021, with
a late frost event around heading in 2020 that reduced the yield potential of the crop and
resulted in higher grain protein concentration (2020 protein concentration average = 11.9%,
vs. 2021 protein concentration average = 10.1%). On the other hand, harvest season 2021
was excellent for yield performance which could have generated a dilution effect on protein
concentration [42].

In addition, the heritability of dough extensibility score (h2 = 0.35) was also lower
than that reported in a study for spelt bread (h2 = 0.55) [39] or in a study of bread wheat
(h2 = 0.66) [2]. The dough extensibility score is presented in our study as a way of estimating
gluten development capacity, which is a function of protein concentration and protein
quality [10]. Thus, factors affecting protein concentration (such as the earlier-mentioned
weather variability) could also affect dough extensibility. Further support for this idea
is found in the significant correlation observed between dough extensibility and protein
concentration (r = 0.39). Even though only a moderate heritability estimate of dough
extensibility was found in our study, high positive correlations were found between this
parameter and SDS sedimentation volume (r = 0.6) and loaf volume (r = 0.53), implying
that this low-input and highly repeatable parameter could be useful to estimate dough
functionality characteristics.

Even though loaf volume is a particularly important quality determinant, it is one
of the most time-consuming and input-demanding tests, so the adaptability and utility
in early breeding stages are reduced. Our heritability estimates showed high values for
loaf volume (h2 = 0.68), similar to those found by [2] for bread volume (h2 = 0.56) or
height/width ratio (h2 = 0.53). In addition, all the identified SNPs had significantly high
effect estimates, validated through the t-test, and identified with multiple variations of the
model and datasets used to run the GWAS with GAPIT. Unfortunately, we were not able
to identify SNPs significantly associated with sensory parameters other than the texture
of the crust. We recognize that the number of lines in this study might be small for these
types of parameters with low to moderate heritability, which could reflect the intervention
of numerous genes with small effects.

In addition to the significant association and strong effect of the six SNPs identified for
loaf volume, it is important to highlight that all of them were located on the 1D chromosome.
The D genome of hexaploid wheat has been previously and widely associated with quality
characteristics [43–46]. Particularly, Payne [20] showed that bread-making quality was
mainly associated with variations at the Glu-D1 locus, with the allelic pairs 1Dx5-1Dy10
(5 + 10 subunits) and 1Dx2-1Dy12 (2 + 12 subunits) detected for high and low bread-
baking quality, respectively. Moreover, based on conversations with Noah DeWitt [47] and
previous research that identified DNA markers for HMW glutenin subunits [48–51], we
hypothesized that the most significant SNPs we identified could be associated with the
Glu-D1 gene.
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Regarding the effects of protein composition, our results showed high heritability esti-
mates for all the protein fractions under study, similar to those reported by [52] for spring
bread wheat. Considering the effect of protein composition on bread-baking quality, we
found that loaf volume was positively correlated with UPP:TPP (r = 0.53) and HMW:LMW
(r = 0.32), with similar results reported by [14]. SDS sedimentation volume was significantly
correlated with the HMW:LMW ratio, as well as negatively correlated with total gliadin.
Even though other researchers have reported a significant negative correlation between
the Gli:Glu ratio and loaf volume [53], we were not able to establish such a relationship in
our dataset. In contrast, we found similar positive correlations as those reported by [53]
between dough extensibility and loaf volume with HMW:LMW ratio. SDS unextractable
polymeric protein fraction tends to show a greater molecular weight compared to the SDS
extractable fraction, thus affecting baking properties [14,54,55]. Similarly, we found signifi-
cant positive correlations between loaf volume and U_Glu (SDS unextractable glutenin)
and a significant negative correlation with E_Glu (SDS extractable glutenin) and E_LMW
(SDS extractable LMW-GS).

Considering that this research was conducted in the context of a breeding program
and that our goal was to identify breeding lines that have desirable baking qualities, after
two years of bread baking and evaluation, we selected those lines with the highest mean
loaf volume from the initial set of 76 lines. This set of selected lines included 21 genotypes
in the top-10 rank for loaf volume (more than one line had the same loaf volume value).
If instead of selecting based on loaf volume, we selected based on top-10 values for SDS
sedimentation volume, based on the average data, we would have selected 25 lines from
which 15 lines were also top-10 loaf volume lines. When selecting genotypes to advance in
the breeding program, the breeder would typically select based on one year of data, so it is
important to highlight that SDS sedimentation volume from the year 2020 was not highly
correlated with the year 2021 (r = 0.32), and the breeder could incur an error and select
undesirable lines following this approach. To illustrate this, of the 34 top-10 lines in 2020
for sedimentation volume, only 14 became top-10 loaf volume lines in 2021 (41%). In this
sense, the UPP:TPP ratio (SDS unextractable polymeric protein to total polymeric protein)
seems to be a more reliable parameter based on the high heritability estimate (h2 = 0.7) and
correlation coefficient between the year 2020 and year 2021 data (r = 0.53). Based on this
parameter, if we selected the top-10 lines for UPP:TPP in 2020, we would have selected
12 lines, from which 6 were in the top-10 loaf volume rank in 2021 (50%). However, it must
be noted that the UPP:TPP parameter requires vastly more time, energy, and equipment
than the SDS sedimentation test, so a breeding program would have to weigh the costs and
benefits of this choice.

5. Conclusions

Identifying high-quality bread-baking SRW wheat genotypes might represent a chal-
lenge, but we were able to select a few parameters that can be used in the early stages of a
breeding program that could help to increase the availability of variation and that showed
significant heritability estimates. From our results, SDS sedimentation volume, dough
extensibility score, and selecting those SNPs highly associated with loaf volume could
be easily implemented strategies. Furthermore, knowledge of flour protein composition
from the SE-HPLC could significantly improve the information that a breeder has available
to make indirect selections for loaf volume, but this technology might not be as easily
available as the SDS sedimentation volume test.

Ultimately, our results become more significant if we consider that the amount of
variation available in the breeding stage of these lines was very likely limited when the
lines were chosen for this study. That said, we also recognize that the number of lines in
this study might be small for a GWAS, and we look forward to continuing the investigation
of the associated SNPs. Consumers continue to be interested in local foods and working in
specialty small grains is emergent in our region as compared to other value chains (e.g.,
produce). Therefore, developing acceptable bread wheat within a market class traditionally
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designated for low-protein products has significance for economic diversification on farms
and local and regional food systems as a whole.
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PCA, individual percentage of variability explained by each component, and cumulative percentage;
Table S5. Pearson’s correlation coefficient for all the traits under study.
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