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Abstract: Chilies undergo multiple stages from field production to reaching consumers, making
them susceptible to contamination with foreign materials. Visually similar foreign materials are
difficult to detect manually or using color sorting machines, which increases the risk of their presence
in the market, potentially affecting consumer health. This paper aims to enhance the detection
of visually similar foreign materials in chilies using hyperspectral technology, employing object
detection algorithms for fast and accurate identification and localization to ensure food safety. First,
the samples were scanned using a hyperspectral camera to obtain hyperspectral image information.
Next, a spectral pattern recognition algorithm was used to classify the pixels in the images. Pixels
belonging to the same class were assigned the same color, enhancing the visibility of foreign object
targets. Finally, an object detection algorithm was employed to recognize the enhanced images and
identify the presence of foreign objects. Random forest (RF), support vector machine (SVM), and
minimum distance classification algorithms were used to enhance the hyperspectral images of the
samples. Among them, RF algorithm showed the best performance, achieving an overall recognition
accuracy of up to 86% for randomly selected pixel samples. Subsequently, the enhanced targets
were identified using object detection algorithms including R-CNN, Faster R-CNN, and YoloV5.
YoloV5 exhibited a recognition rate of over 96% for foreign objects, with the shortest detection time
of approximately 12 ms. This study demonstrates that the combination of hyperspectral imaging
technology, spectral pattern recognition techniques, and object detection algorithms can accurately
and rapidly detect challenging foreign objects in chili peppers, including red stones, red plastics,
red fabrics, and red paper. It provides a theoretical reference for online batch detection of chili
pepper products, which is of significant importance for enhancing the overall quality of chili pepper
products. Furthermore, the detection of foreign objects in similar particulate food items also holds
reference value.

Keywords: foreign objects; hyperspectral imaging; object detection; spectral classification

1. Introduction

Chili peppers belong to the Solanaceae family and are native to Mexico [1]. They were
initially cultivated and used by indigenous peoples in Central and South America [2]. Since
the 16th century, chili peppers have been brought to Europe and Asia, quickly becoming an
essential seasoning in local cuisines [3]. Chili peppers are rich in nutrients such as vitamin
C, vitamin A, fiber, and antioxidants [4]. Additionally, chili peppers have many health
benefits, including promoting metabolism, enhancing the immune system, and reducing
inflammation [5,6].

Chili pepper foreign bodies encompass various types, such as stones, fabrics, plastics,
and more. Consuming chili peppers with foreign bodies can have adverse effects on human
health. If these foreign bodies are not promptly detected and removed, they can have
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negative impacts on the oral cavity, esophagus, gastrointestinal tract, and other areas of the
body [7]. Ingesting foreign bodies can cause abrasions to the oral and esophageal mucosa,
leading to symptoms such as oral ulcers and bleeding. In severe cases, it can even result in
esophageal perforation or bleeding [8]. Additionally, foreign bodies can carry pathogens or
harmful substances, potentially causing poisoning or infection after entering the body [9].

Therefore, in the food production process, it is desirable to identify and locate for-
eign bodies through a non-destructive detection system before processing. Based on the
information regarding the type and coordinates of the detected foreign bodies, appropri-
ate measures can be taken by the operators to remove them, ensuring the safety of the
food product.

In recent years, spectral imaging technology has been increasingly applied in the field
of food inspection due to its advantages of speed, non-destructiveness, and accuracy [10].
Díaz et al. [11] evaluated the feasibility of this technology in detecting foreign bodies
in meat products using a hyperspectral system, demonstrating its significant potential
since it combines the advantages of traditional machine vision and spectroscopy. Saeidan
et al. [12] investigated the feasibility of using hyperspectral imaging technology to detect
and differentiate four types of foreign bodies (wood, plastic, stone, and plant organs) in the
cocoa processing industry, and the results showed that the accuracy of the support vector
machine (SVM) classifier in classifying cocoa beans and foreign bodies reached 89.10%. Sun
et al. [13] developed an electromagnetic vibration feeder combined with a hyperspectral
imaging system for detecting tea stems and insect foreign bodies in finished tea products.
Feature wavelengths were selected through correlation analysis, and six feature parameters
including maximum length, maximum width, length-to-width ratio, roundness, area, and
perimeter were extracted from the corresponding images to construct a linear discriminant
analysis (LDA) model. Compared to image extraction, the LDA model based on image
feature parameters (785.6 nm channel) performed the best, achieving 100% precision, 100%
recall, and 97.56% accuracy. Sugiyama et al. [14] successfully visualized foreign bodies
(leaves and stems) in frozen blueberries using near-infrared (NIR) spectral imaging and
discriminant analysis. Ok et al. [15] detected foreign bodies concealed in dry food using a
high-resolution raster scan imaging system operating in the sub-terahertz wave range of
210 GHz.

These studies have achieved the identification of foreign bodies using non-destructive
detection methods. In this study, we not only utilized hyperspectral technology for foreign
body identification but also combined it with target detection techniques to accurately
locate the chili pepper foreign bodies. This will provide the necessary information for
regulatory authorities to remove the foreign bodies from the products.

2. Materials and Methods
2.1. Sample Preparation

The chili pepper samples used in the experiments were obtained from the local veg-
etable wholesale market. Based on commonly encountered foreign bodies in actual produc-
tion, we selected chili peppers and four types of foreign bodies (red stones, red plastics, red
fabrics, and red paper) as shown in Figure 1.

2.2. Hyperspectral Image Acquisition

The samples were scanned and acquired using the GaiaSorter Hyperspectral sorter,
manufactured by Dualix (Zolix, Beijing, China) in Figure 2. The sorter was equipped
with the SpecVIEW software (DualixSpectral Imaging, Wuxi, China). The high-spectral
imaging system used a camera with a spectral range of 400 nm–1000 nm, covering both
visible light and a portion of near-infrared light. The camera had 176 bands and a spectral
resolution of 3.4 nm. The sorter included four halogen lamps, a horizontally movable
platform, and a high-precision stepper motor. All these components were enclosed in a
dark box measuring 500 mm × 1100 mm × 1800 mm, designed to eliminate the influence
of external ambient light.
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Figure 2. (a) Sketch map of hyperspectral system. (b) Real photos of the Hypersectral Camera.

Prior to capturing high-spectral images of the samples, a preheating period of ap-
proximately half an hour was required to avoid the initial instability of the instrument
and minimize baseline drift. Through multiple parameter optimizations, the camera ex-
posure time was set to 8.1 ms, and the forward speed of the displacement platform was
set to 1 cm/s. This speed ensured that there would be no distortion or deformation in the
scanning direction of the camera. Additionally, a platform rollback time of 2.5 cm/s was
set to save sample collection time. Once all the parameters were set, the samples were
placed on the displacement platform, and the SpecVIEW software (DualixSpectral Imaging,
Wuxi, China) was used to coordinate the control of the stepper motor and the high-spectral
imaging system for data acquisition.
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2.3. Correction of Hyperspectral Images

Black–white board calibration is an important method in the calibration of hyper-
spectral images, which involves the inclusion of black and white reference objects in the
images to improve their quantitative accuracy and precision [16]. During the acquisition
of hyperspectral images, factors such as the sensor’s nonlinear response, spectral fluc-
tuations, and background noise can introduce errors in the image intensity and spectral
response, thereby affecting subsequent data analysis and applications. The black–white
board calibration method addresses this issue by incorporating black and white reference
objects in the hyperspectral images, transforming them into reflectance or radiance images,
thus enhancing the quantitative accuracy and precision of the images. Specifically, the
method exploits the distinct spectral responses of the black and white boards, utilizing the
comparison between their respective images to correct spectral deviations and noise in the
hyperspectral image. During the black–white board calibration process, the calibration
software’s interface is used to position the calibration white board directly beneath the end
point to capture the white board image. Subsequently, the lens cover is closed, and a black
board image is scanned.

The calculation formula of black and white calibration is:

Icorr =
I − Iblack

Iwhite − Idark
(1)

In Formula (1), I is the original image data; Iblack is all black image data; Iwhite is all
white image data; and Icorr is the corrected image data. After all the original image data
were calibrated in black and white, the subsequent analysis could be carried out.

2.4. Acquisition of Model Training Samples

For SVM, RF, BP, and other algorithms, 6000 pixels or spectral lines were selected
from the high-resolution spectral data for training in Figure 3. First, a mask image was
created, and then the coordinates of the selected pixels in the hyperspectral data were
obtained using the mask image. Finally, the corresponding spectral data were extracted by
performing index calculations in the spectral cube based on the obtained coordinates in
Figure 4.
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2.5. Methods for Establishing Discriminant Models

Supervised classification methods, including random forest, support vector machine,
and minimum distance, were adopted for pixel level classification.

Random forest is an ensemble learning algorithm based on decision trees, which
combines the results of multiple decision trees to perform classification or regression [17].
The core of the random forest algorithm is the random selection of training data and features
to reduce overfitting. When constructing each decision tree, random forest randomly
selects a subset of data from the training set and performs random feature selection. This
randomness enables random forest to effectively address the overfitting problem and
improve the model’s generalization ability. Additionally, random forest can evaluate the
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contribution of each feature to the classification results, aiding in feature selection for users.
Random forest demonstrates high accuracy and robustness in practical applications and is
widely used for classification and regression tasks in various fields.

Support vector machine (SVM) is a binary classification model based on statistical
learning theory. It can transform linearly inseparable samples into linearly separable forms
by mapping them to a high-dimensional space [18]. The goal of SVM is to find an optimal
hyperplane that can separate positive and negative samples, while maximizing the distance
between the hyperplane and the closest samples. SVM can be categorized into linear SVM
and non-linear SVM. Linear SVM seeks the best linear classification hyperplane in the
original feature space, while non-linear SVM maps the original data to a high-dimensional
space using a kernel function and then finds the optimal linear classification hyperplane
in that space. SVM exhibits excellent classification performance and generalization ability,
particularly in handling small-sample and high-dimensional data [19].
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The minimum distance method is a classification approach based on distance mea-
surements. It compares the distances between the unlabeled samples and the samples from
known classes and assigns the unlabeled samples to the class with the closest distance [20].
The core idea of the minimum distance classification method is to treat the distances be-
tween the unlabeled samples and the known samples as a measure of dissimilarity, thereby
transforming the classification problem into a distance measurement problem. The mini-
mum distance classification method includes different distance measurement methods such
as Euclidean distance, Manhattan distance, and Chebyshev distance. Euclidean distance
is the most commonly used distance measurement method, which considers the errors in
each dimension equally and is suitable for classification problems with continuous features.

2.6. Object Detection Algorithm

R-CNN (regions with CNN features), Faster R-CNN (region-based convolutional neu-
ral network), and YOLOv5 (you only look once version 5) are object detection methods
based on convolutional neural networks (CNN). R-CNN decomposes the object detec-
tion problem into region proposal and classification [21], while Faster R-CNN introduces
the region proposal network (RPN) for generating region proposals [22]. YOLOv5 is a
fast and efficient method that employs an anchor-free approach and adaptive multi-scale
training [23]. These methods combine deep features with traditional algorithms, offering
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advantages such as high accuracy, scalability, fast detection speed, and improved accu-
racy. They have been widely applied in various domains, including image and video
object detection.

2.7. Evaluation Metrics for Classification Algorithms

Commonly used evaluation metrics for classification algorithms include accuracy, per-
class accuracy, recall, specificity, precision, and F1 score. Accuracy measures the proportion
of correctly classified samples, while per-class accuracy measures the proportion of correctly
classified samples for each class. Recall measures the ability to identify positive samples,
while specificity measures the ability to identify negative samples. Precision measures the
accuracy of positive sample predictions, and F1 score is a metric that combines recall and
precision. These metrics can be selected and weighted based on specific requirements. For
imbalanced data, precision and recall may be more important, while overall accuracy is
suitable for balanced datasets. The formulas for these metrics are provided accordingly.

Accuracy = (TP1 +TP2+ . . . +TPn)/(All) (2)

Per-class Accuracy = (TP +TN)/(TP + FP +TN + FN) (3)

Recall = TP/(TP + FN) (4)

Precision = TP/(TP + FP) (5)

Specificity = TN/(TN + FP) (6)

F1 Score = (2 × P × R)/(P + R) (7)

where TPn is the number of correctly classified samples for each class, All is the total
number of test samples, TP is true positive, TN is true negative, FP is false positive, FN is
false negative, P is precision, and R is recall.

2.8. Evaluation Metrics for Object Detection Algorithms

The evaluation metrics for object detection algorithms include the following aspects:
Accuracy measures the correctness of the model’s detection results, specifically the

proportion of correctly predicted positive samples.
Mean Average Precision (mAP) is one of the widely used evaluation metrics in object

detection. It evaluates the overall performance of the model by calculating the area under
the precision-recall curve for different classes.

Speed is a metric that measures the efficiency of the model’s execution, including
the inference time or frame rate. Faster detection speed is an important consideration in
real-time applications or large-scale dataset processing.

2.9. Data Processing Flow

The methods employed in this study involve the following steps: First, a set of
high-resolution hyperspectral images was acquired from the field as samples. These
images contained spectral information from different scenes. Next, we applied pattern
recognition classification methods for pixel-level classification of the hyperspectral images.
By comparing the performance metrics of different classification methods, we selected
the random forest classification method as the best model. Random forest exhibits good
classification performance and robustness when dealing with high-dimensional data and
complex scenes.

For object detection and annotation, we used the LabelImg tool to generate annotated
images. This tool allowed us to manually mark the target objects in the images and provided
accurate label information for subsequent training and evaluation.
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Subsequently, we conducted the training and evaluation of object detection algorithms
and identified YoloV5 as the optimal model. YoloV5 is a fast and accurate object detection
algorithm capable of effectively identifying and localizing target objects in complex scenes.
With the trained YoloV5 model, we were able to recognize mixed foreign objects and obtain
their planar coordinate information.

Finally, we transmitted the coordinates of the foreign objects to the execution unit
through an industrial communication network to achieve automatic removal of the foreign
objects. This step ensured the efficiency and accuracy of foreign object removal.

The entire process involves multiple technical methods and algorithm models, includ-
ing hyperspectral image acquisition, pixel-level classification, and object detection. By
integrating these methods in Figure 5, we successfully achieved the efficient and accurate
identification and removal of foreign objects. This research provides valuable technical and
methodological references for hyperspectral image processing and applications and holds
broad potential for various applications.
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3. Results and Discussion
3.1. Spectral Characteristic Analysis

After establishing the spectral pattern recognition models, we performed pixel-level
classification on the hyperspectral images and compared the classification results of the
random forest method (Figure 6A), minimum distance method (Figure 6B), and support
vector machine (Figure 6C), as shown in Figure 6. From the figure, it can be observed
that the random forest method effectively differentiated pixels of each class, resulting in
an overall better performance. The minimum distance method exhibited class overlap,
leading to suboptimal classification results. The performance of the support vector machine
method fell in between, demonstrating a moderate performance.
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Next, we conducted a more rigorous quantitative analysis to further evaluate the
classification performance. This involved the use of evaluation metrics such as accuracy,
recall, and F1 score to objectively quantify the models’ performances. Through quantitative
analysis, we could more accurately assess the performance of each classification method
and provide a scientific basis for selecting the optimal classification model.

By performing pixel-level classification on the hyperspectral images and conduct-
ing subsequent scientific quantitative analysis, we gained a better understanding of the
effectiveness of various classification methods. This provided a reliable foundation and
guidance for subsequent hyperspectral image processing and analysis.

3.2. Evaluation of Different Spectral Classification Algorithms

A quantitative test method was used to test the classification model. First, 5000 pixels
were randomly selected from the test sample as the test set, including 1000 pixels for
each category, and the performance of the three classification models on the test set was
calculated. The overall accuracy of random forest was 86% higher than support vector
machine and the minimum distance model in Figure 7. In the confusion matrix shown
in Figure 8, it is clear to see the number of correct classifications for each category and
the misclassifications where a category is classified into one of the other five categories.
Meanwhile, by analyzing other indicators of classification effect, as shown in Figure 9, it
could be seen that random also had a good classification index on a single category.

3.3. Labeling of the Detected Object

When annotating the enhanced samples, the LabelImg was used in Figure 10. This
tool enables manual annotation of the target objects in the samples. Prior to annotation,
five predefined categories were set, namely chili, paper, stone, plastic, and fabric.



Foods 2023, 12, 2618 9 of 16
Foods 2023, 12, x FOR PEER REVIEW 10 of 19 
 

 

 
Figure 7. Comparison of overall accuracy rates of classification algorithms. 

 
Figure 8. Confusion matrix of random forest classification model. 

Figure 7. Comparison of overall accuracy rates of classification algorithms.

Foods 2023, 12, x FOR PEER REVIEW 10 of 19 
 

 

 
Figure 7. Comparison of overall accuracy rates of classification algorithms. 

 
Figure 8. Confusion matrix of random forest classification model. Figure 8. Confusion matrix of random forest classification model.

Foods 2023, 12, x FOR PEER REVIEW 11 of 19 
 

 

 
Figure 9. Evaluation metrics of random forest classification model on different categories. 

3.3. Labeling of the Detected Object 
When annotating the enhanced samples, the LabelImg was used in Figure 10. This 

tool enables manual annotation of the target objects in the samples. Prior to annotation, 
five predefined categories were set, namely chili, paper, stone, plastic, and fabric. 

 
Figure 10. five classes of samples are labeled. 

Using the LabelImg tool, the sample image was opened, and the appropriate class 
label was selected in the tool’s interface. The position and boundaries of the target were 
marked by drawing bounding boxes around the objects. Each bounding box represented 

Figure 9. Evaluation metrics of random forest classification model on different categories.



Foods 2023, 12, 2618 10 of 16

Foods 2023, 12, x FOR PEER REVIEW 11 of 19 
 

 

 
Figure 9. Evaluation metrics of random forest classification model on different categories. 

3.3. Labeling of the Detected Object 
When annotating the enhanced samples, the LabelImg was used in Figure 10. This 

tool enables manual annotation of the target objects in the samples. Prior to annotation, 
five predefined categories were set, namely chili, paper, stone, plastic, and fabric. 

 
Figure 10. five classes of samples are labeled. 

Using the LabelImg tool, the sample image was opened, and the appropriate class 
label was selected in the tool’s interface. The position and boundaries of the target were 
marked by drawing bounding boxes around the objects. Each bounding box represented 

Figure 10. Five classes of samples are labeled.

Using the LabelImg tool, the sample image was opened, and the appropriate class label
was selected in the tool’s interface. The position and boundaries of the target were marked
by drawing bounding boxes around the objects. Each bounding box represented one target
object and was associated with a predefined class. Careful observation of the target objects
in the image was required during the annotation process to ensure accuracy and consistency.
The tool provides features such as zooming and panning to aid in better recognition and
annotation of the targets. Once the annotation was completed, the LabelImg tool generated
annotation files associated with each target object, containing information about the target
class and the location of the bounding box. These annotation files were used for training
and evaluating the object detection algorithm and played a crucial role in subsequent tasks
such as target recognition and classification.

By annotating the enhanced samples using the LabelImg tool and labeling the target
objects according to the predefined five categories, accurate training data were provided
for subsequent object detection and classification tasks, thereby aiding in improving the
performance and accuracy of the algorithm.

3.4. Detection of Foreign Objects Using Object Detection Algorithms

After the spectral information of the hyperspectrum was used to strengthen the target
classifier, the easily confused objects became easy to distinguish. Under this premise, small
samples were used to train the model—300 labeled samples of each type, and 1500 labeled
samples in total.

By comparing the experimental results, as shown in Table 1, we found that YOLOv5
outperformed Faster R-CNN and R-CNN in terms of performance metrics. YOLOv5
achieved higher accuracy and recall in the object detection task, while having a lower false
positive rate. Figure 11 shows the detection results in the mixed state, while Figures 12–
15 demonstrate the detection results in the overlapping state. In addition, YOLOv5 also
exhibited faster execution speed and could complete detection operations at the millisecond
level, which is very valuable for real-time applications.
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Table 1. Evaluation of object detection algorithms.

Object Detection Algorithm mAp Accuracy Average Time

Faster-CNN 0.75 85% 50 ms
R-CNN 0.65 75% 1.2 s
Yolo V5 0.93 96% 12 msFoods 2023, 12, x FOR PEER REVIEW 13 of 19 
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3.5. Calculating the Geometric Coordinates of foreign Objects Using the Results of Object
Detection

By using the YoloV5 object detection algorithm, we were not only able to accurately
identify foreign objects but also obtain the centroid coordinates of these objects. The pur-
pose of this foreign object detection was to facilitate batch removal of these objects. In
the production line workflow, the scanned samples first passed through a hyperspectral
detection device, where the computer captured the corresponding detection images. Subse-
quently, by applying the YoloV5 algorithm to analyze these images, we could obtain the
spatial coordinates of the foreign objects, as shown in Figure 16.
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Once we had obtained the coordinates of the foreign objects, we could transmit this
positional information to subsequent execution mechanisms, such as XY-type or parallel-
type robots, through an industrial network. These robots could then perform the necessary
operations to remove the foreign objects based on the provided coordinates. This enabled
automated removal of foreign objects in the production line.
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3.6. Statistical Results of Measurement Errors of Object Detection Methods

For 100 sets of samples, we performed coordinate measurements using a digital vernier
caliper and compared the results with those obtained from the object detection algorithm.
By comparing the measurements, we found that the maximum error in the X coordinate
was 0.61 mm, while the maximum error in the Y coordinate was 0.58 mm. To better evaluate
the error situation, we calculated the average error values after taking the absolute values.
The results showed an average error of 0.33 mm for the X coordinate and 0.3 mm for
the Y coordinate. By plotting these results, we could visually observe the distribution of
measurement errors in Figure 17.
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4. Conclusions

In this study, we investigated the application of hyperspectral image processing and
object detection methods in foreign object recognition and removal. By acquiring hyper-
spectral images of the samples and performing pixel-level classification using pattern
recognition techniques, we identified random forest classification as the optimal model
and generated annotated images using the LabelImg tool. Subsequently, we trained and
evaluated object detection algorithms, ultimately selecting YoloV5 as the best model. By
applying the YoloV5 object detection algorithm, we successfully achieved a recognition
accuracy of 96% for mixed foreign objects and obtained the centroid coordinates of the
objects with a positioning accuracy of ±0.61 mm. Through an industrial communication
network, we were able to transmit these coordinates to execution mechanisms for auto-
mated foreign object removal. This comprehensive approach combines different technical
methods and algorithm models in various stages, including hyperspectral image process-
ing, pixel-level classification, and object detection, providing a viable solution for efficient
and accurate foreign object recognition and removal. Future research can focus on further
optimizing algorithm models and industrial execution mechanisms to improve the effi-
ciency and reliability of foreign object detection and removal, offering better solutions for
industrial production.
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