Determination of Fatty Acid Profile in Processed Fish and Shellfish Foods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Chemicals and Reagents
2.3. Lipids Extraction and Preparation of FAMEs
2.4. GC-FID Analysis
2.5. Atherogenicity Index (AI) and Thrombogenicity Index (TI)
2.6. Flesh–Lipid Quality Index
2.7. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gil, A.; Gil, F. Fish, a Mediterranean source of n-3 PUFA: Benefits do not justify limiting consumption. Br. J. Nutr. 2015, 113, S58–S67. [Google Scholar] [CrossRef] [Green Version]
- Luczynska, J.; Paszczyk, B.; Nowosad, J.; Luczynski, M.J. Mercury, Fatty Acids Content and Lipid Quality Indexes in Muscles of Freshwater and Marine Fish on the Polish Market. Risk Assessment of Fish Consumption. Int. J. Environ. Res. Public Health 2017, 14, 1120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Copat, C.; Grasso, A.; Fiore, M.; Cristaldi, A.; Zuccarello, P.; Signorelli, S.S.; Oliveri Conti, G.; Ferrante, M. Trace elements in seafood from the Mediterranean Sea: An exposure risk assessment. Food Chem. Toxicol. 2018, 115, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Sioen, I.A.; Pynaert, I.; Matthys, C.; De Backer, G.; Van Camp, J.; De Henauw, S. Dietary Intakes and Food Sources of Fatty Acids for Belgian Women, Focused on n-6 and n-3 Polyunsaturated Fatty Acids. Lipids 2006, 41, 415–422. [Google Scholar] [CrossRef] [Green Version]
- Noger-Huet, E.; Vagner, M.; Le Grand, F.; Graziano, N.; Bideau, A.; Brault-Favrou, M.; Churlaud, C.; Bustamante, P.; Lacoue-Labarthe, T. Risk and benefit assessment of seafood consumption harvested from the Pertuis Charentais region of France. Environ. Pollut. 2022, 292, 118388. [Google Scholar] [CrossRef] [PubMed]
- Di Bella, G.; Litrenta, F.; Pino, S.; Tropea, A.; Potortì, A.G.; Nava, V.; Lo Turco, V. Variations in fatty acid composition of Mediterranean anchovies (Engraulis encrasicolus) after different cooking methods. Eur. Food Res. Technol. 2022, 248, 2285–2290. [Google Scholar] [CrossRef]
- Tilami, S.K.; Sampels, S. Nutritional Value of Fish: Lipids, Proteins, Vitamins, and Minerals. Rev. Fish. Sci. Acquacult. 2018, 26, 243–253. [Google Scholar]
- Laird, M.J.; Aristizabal Henao, J.J.; Reyes, E.S.; Stark, K.D.; Low, G.; Swanson, H.K.; Laird, B.D. Mercury and omega-3 fatty acid profiles in freshwater fish of the Dehcho Region, Northwest Territories: Informing risk benefit assessments. Sci. Total Environ. 2018, 637–638, 1508–1517. [Google Scholar] [CrossRef]
- Simopoulos, A.P. Nutrition tidbites: Essential fatty acids in health and chronic disease. Food Rev. Int. 1997, 13, 623–631. [Google Scholar] [CrossRef]
- EFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies). Scientific Opinion on health benefits of seafood (fish and shellfish) consumption in relation to health risks associated with exposure to methylmercury. EFSA J. 2014, 12, 3761. [Google Scholar] [CrossRef] [Green Version]
- Schmitz, G.; Ecker, J. The opposing effects of n-3 and n-6 fatty acids. Prog. Lipid Res. 2008, 47, 147–155. [Google Scholar] [CrossRef] [PubMed]
- Bresson, J.L.; Flynn, A.; Heinonen, M.; Hulshof, K.; Korhonen, H.; Lagiou, P.; Marchelli, R.; Martin, A.; Moseley, B.; Przyrembel, H. Scientific Opinion of the Panel on Dietetic products, Nutrition and Allergies on a request from European Commission related to labelling reference intake values for n-3 and n-6 polyunsaturated fatty acids. EFSA J. 2009, 1176, 1–11. [Google Scholar]
- Nava, V.; Di Bella, G.; Fazio, F.; Potortì, A.G.; Lo Turco, V.; Licata, P. Hg Content in EU and Non-EU Processed Meat and Fish Foods. Appl. Sci. 2023, 13, 793. [Google Scholar] [CrossRef]
- Weaver, C.M.; Dwyer, J.; Fulgoni, V.L.; III King, J.C.; Leveille, G.A.; MacDonald, R.S.; Ordovas, J.; Schnakenberg, D. Processed foods: Contributions to nutrition. Am. J. Clin. Nutr. 2014, 99, 1525–1542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abraha, B.; Admassu, H.; Mahmud, A.; Tsighe, N.; Shui, X.W.; Fang, Y. Effect of processing methods on nutritional and physico-chemical composition of fish: A review. MOJ Food Process. Technol. 2018, 6, 376–382. [Google Scholar] [CrossRef] [Green Version]
- Choo, P.Y.; Azlan, A.; Khoo, H.E. Cooking methods affect total fatty acid composition and retention of DHA and EPA in selected fish fillets. Sci. Asia 2018, 44, 92–101. [Google Scholar] [CrossRef] [Green Version]
- Galanakis, C.M. Nutraceutical and Functional Food Components: Effects of Innovative Processing Techniques, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2021. [Google Scholar]
- Careche, M.; Borderias, A.J.; Sanchez-Alonso, I.; Lund, E.K. Functional Seafood Products; Woodhead Publishing Series in Food Science, Technology and Nutrition; Woodhead Publishing: Sawston, UK, 2011; pp. 557–581. [Google Scholar]
- Granato, D.; Barba, F.J.; Bursac Kovacevic, D.; Lorenzo, J.M.; Cruz, A.G.; Putnik, P. Functional Foods: Product Development, Technological Trends, Efficacy Testing, and Safety. Annu. Rev. Food Sci. Technol. 2020, 11, 93–118. [Google Scholar] [CrossRef] [Green Version]
- Jamshidi, A.; Cao, H.; Xiao, J.; Simal-Gandara, J. Advantages of techniques to fortify food products with the benefits of fish oil. Food Res. Int. 2020, 137, 109353. [Google Scholar] [CrossRef]
- Kitts, D.D.; Pratap-Singh, A.; Singh, A.; Chen, X.; Wang, S. A Risk-Benefit Analysis of First Nation’s Traditional Smoked Fish Processing. Foods 2023, 12, 111. [Google Scholar] [CrossRef]
- Folch, J.; Lees, M.; Stanley, G.S. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef]
- ISO 5509:2000; Animal and vegetable fats and oils—Preparation of methyl esters of fatty acids. United Nations Standards Coordinating Committee: Geneva, Switzerland, 2000.
- Ulbricht, T.L.V.; Southgate, D.A.T. Coronary heart disease: Seven dietary factors. Lancet 1991, 338, 985–992. [Google Scholar] [CrossRef] [PubMed]
- Pleadin, J.; Lesic, T.; Kresic, G.; Baric, R.; Bogdanovic, T.; Oraic, D.; Vulic, A.; Legac, A.; Zrncic, S. Nutritional Quality of Different Fish Species Farmed in the Adriatic Sea. Ital. J. Food Sci. 2017, 29. [Google Scholar] [CrossRef]
- Lunn, J.; Theobald, H.E. The health effects of dietary unsaturated fatty acids. Br. Nutr. Found. Nutr. Bull. 2006, 31, 178–224. [Google Scholar] [CrossRef]
- German, J.B.; Dillard, C.J. Saturated fats: What dietary intake? Am. J. Clin. Nutr. 2004, 80, 550–559. [Google Scholar] [CrossRef] [Green Version]
- Abrami, G.; Natiello, F.; Bronzi, P.; McKenzie, D.; Bolis, L.; Agradi, E. A comparison of highly unsaturated fatty acid levels in wild and farmed eels (Anguilla anguilla). Comp. Biochem. Physiol. 1992, 101, 79–81. [Google Scholar] [CrossRef] [PubMed]
- Mesa, M.D.; Gil, F.; Olmedo, P.; Gil, A. Nutritional Importance of Selected Fresh Fishes, Shrimps and Mollusks to Meet Compliance with Nutritional Guidelines of n-3 LC-PUFA Intake in Spain. Nutrients 2021, 13, 465. [Google Scholar] [CrossRef] [PubMed]
- Grazina, L.; Rodrigues, P.J.; Igrejas, G.; Nunes, M.A.; Mafra, I.; Arlorio, M.; Oliveira, M.B.P.P.; Amaral, J.S. Machine Learning Approaches Applied to GC-FID Fatty Acid Profiles to Discriminate Wild from Farmed Salmon. Foods 2020, 9, 1622. [Google Scholar] [CrossRef]
- Maldonado-Pereira, L.; Barnaba, C.; de Los Campos, G.; Medina-Meza, I.G. Evaluation of the nutritional quality of ultra-processed foods (ready to eat + fast food): Fatty acids, sugar, and sodium. J. Food Sci. 2022, 87, 3659–3676. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Sinclair, A.J.; Li, D. Comparison of Lipid Content and Fatty Acid Composition in the Edible Meat of Wild and Cultured Freshwater and Marine Fish and Shrimps from China. J. Agric. Food Chem. 2011, 59, 1871–1881. [Google Scholar] [CrossRef]
- Latyshev, N.A.; Kasyanov, S.P.; Kharlamenko, V.I.; Svetashev, V.I. Lipids and of fatty acids of edible crabs of the north-western Pacific. Food Chem. 2009, 116, 657–661. [Google Scholar] [CrossRef]
- Tarley, C.R.T.; Visentainer, J.V.; Matsushita, M.; de Souza, N.E. Proximate composition, cholesterol and fatty acids profile of canned sardines (Sardinella brasiliensis) in soybean oil and tomato sauce. Food Chem. 2004, 88, 1–6. [Google Scholar] [CrossRef]
- Mesias, M.; Holgado, F.; Sevenich, R.; Briand, J.C.; Marquez-Ruiz, G.; Morales, F.J. Fatty acids profile in canned tuna and sardine after retort sterilization and high pressure thermal sterilization treatment. J. Food Nutr. Res. 2015, 54, 171–178. [Google Scholar]
- Yerlikaya, P.; Topuz, O.K.; Buyukbenli, H.A.; Gokoglu, N. Fattu Acid Profiles of Different Shrimp Species Effect of Depth of Cathing. J. Aquat. Food Prod. Technol. 2013, 22, 290–297. [Google Scholar] [CrossRef]
- do Couto, M.V.S.; da Costa Sousa, N.; Abe, H.A.; Rodrigues Dias, J.A.; Martins Cordeiro, C.A.; Guimares Paixao, P.E.; Reis Santos, T.B.; dos Santos Cunha, F.; Oliveira Meneses, J.; Nogueira Filho, R.M.; et al. Benefits of Virgin Coconut Oil in Diet to Colossoma macropomum (Cuvier, 1818). Aquac. Nutr. 2022, 2022, 4387692. [Google Scholar] [CrossRef]
- Connor, W.E.; Lowensohn, R.; Hatcher, L. Increased docosahexaenoic acid levels in human newborn infants by administration of sardines and fish oil during pregnancy. Lipids 1996, 31, S183–S187. [Google Scholar] [CrossRef] [PubMed]
- European Food Safety Authority NDA Panel. Scientific opinion on nutrient requirements and dietary intakes of infants and young children in the European Union. EFSA J. 2013, 11, 3408. [Google Scholar]
- Sioen, I.; Van Lieshout, L.; Eilander, A.; Fleith, M.; Lohner, S.; Szommer, A.; Petisca, C.; Eussen, S.; Forsyth, S.; Calder, P.C.; et al. Systematic Review on N-3 and N-6 Polyunsaturated Fatty Acid Intake in European Countries in Light of the Current Recommendations-Focus on Specific Population Groups. Ann. Nutr. Metab. 2017, 70, 39–50. [Google Scholar] [CrossRef]
- Rincon-Cervera, M.A.; Gonzalez-Barriga, V.; Romero, J.; Rojas, R.; Lopez-Arana, S. Quantification and Distribution of Omega-3 Fatty Acids in South Pacific Fish and Shellfish Species. Foods 2020, 9, 233. [Google Scholar] [CrossRef] [Green Version]
- Li, N.; Yue, H.; Jia, M.; Liu, W.; Qiu, B.; Hou, H.; Huang, F.; Xu, T. Effect of low-ratio n-6/n-3 PUFA on blood glucose: A Meta-analysis. Food Funct. 2019, 10, 4557–4565. [Google Scholar] [CrossRef]
- Li, N.; Jia, M.; Deng, Q.; Wang, Z.; Huang, F.; Hou, H.; Xu, T. Effect of low-ration n-6/n-3 PUFA on blood lipid level: A meta-analysis. Hormones 2021, 20, 697–706. [Google Scholar] [CrossRef]
- Department of Health. Nutritional Aspects of Cardiovascular Disease. Report on Health and Social Subject N. 46; Her Majesty’s Stationery Office: London, UK, 1994. [Google Scholar]
- Larsen, D.; Quek, S.Y.; Eyres, L. Effect of cooking method on the fatty acid profile of New Zealand King Salmon (Oncorhynchus tshawytscha). Food Chem. 2010, 119, 785–790. [Google Scholar] [CrossRef]
- Merdzhanova, A.; Stancheva, M.; Dobreva, D.A.; Makedonski, L. Fatty acid and fat soluble vitamins composition of raw and cooked Black Sea horse mackerel. Ovidius Univ. Ann. Chem. 2013, 24, 27–34. [Google Scholar] [CrossRef] [Green Version]
- Blanchet, C.; Lucas, M.; Julien, P.; Morin, R.; Gingras, S.; Dewailly, E. Fatty Acid Composition of Wild and Farmed Atlantic Salmon (Salmo salar) and Rainbow Trout (Oncorhynchus mykiss). Lipids 2005, 40, 529–531. [Google Scholar] [CrossRef]
- Selmi, S.; Monser, L.; Sadok, S. The influence of Local Canning Process and Storage on Pelagica Fish from Tunisia: Fatty Acid Profiles and Quality Indicators. J. Food Process. Preserv. 2008, 32, 443–457. [Google Scholar] [CrossRef]
- Iverson, S.J.; Frost, K.J.; Lang, S.L.C. Fat Content and fatty acid composition of forage fish and invertebrates in Prince William Sound, Alaska: Factors contributing to among and within species variability. Mar. Ecol. Prog. Ser. 2002, 241, 161–181. [Google Scholar] [CrossRef] [Green Version]
- Saito, H.; Yamashiro, R.; Alasalvar, C.; Konno, T. Influence of diet on fatty acids of three subtropical fish, subfamily caesioninae (Caesio diagramma and C. tile) and family siganidae (Siganus canaliculatus). Lipids 1999, 34, 1073–1082. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Ma, L.; Du, Y.; Fan, S.; Dai, R. Chemical Composition Analysis of Three Commercially Important Fish Species (Sardine, Anchovy and Mackerel). Adv. Mater. Res. 2012, 554–556, 900–904. [Google Scholar] [CrossRef]
- Moussa, E.R.W.H.; Shereen, A.N.; Manal, A.; Mehanni, A.H.E.; Rasha, A.E. Nutritional value and fatty acid composition of household cooking on fish fatty acids profile using atherogenicity and thrombogenicity indices. J. Food Chem. Nutr. 2014, 2, 27–41. [Google Scholar]
- Cherif, S.; Frikha, F.; Gargouri, Y.; Miled, N. Fatty acid composition of green crab (Carcinus mediterraneus) from the Tunisian mediterranean coasts. Food Chem. 2008, 11, 930–933. [Google Scholar] [CrossRef]
- Neff, M.R.; Bhavsar, S.P.; Braekevelt, E.; Arts, M.T. Effects of different cooking methods on fatty acid profiles in four freshwater fishes from the Laurentian Great Lakes region. Food Chem. 2014, 164, 544–550. [Google Scholar] [CrossRef]
- Tenyang, N.; Ponka, R.; Tiencheu, B.; Djikeng, F.T.; Womeni, H.M. Effect of Traditional Drying Methods on Proximate Composition, Fatty Acid Profile, and Oil Oxidation of Fish Species Consumed in the Far-North of Cameroon. Glob. Chall. 2020, 4, 2000007. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, S.; Mao, S.; Xia, Q.; Cui, Z.; Duan, H.; Ren, G.; Li, X.; Ge, H.; Liu, M.; Dong, Z. Effects of Different Habitat Space on Growth Performance and Nutritional Composition of Swimming Crabs (Portunus trituberculatus). Acquacult. Res. 2023, 2023, 1307590. [Google Scholar] [CrossRef]
- Dvoretsky, A.G.; Bichkaeva, F.A.; Baranova, N.F.; Dvoretsky, V.G. Fatty acid composition of the Barents Sea red king crab (Paralithodes camtschaticus) leg meat. J. Food Compos. Anal. 2021, 98, 103826. [Google Scholar] [CrossRef]
- Sampels, S. The effcts of processing technologies and preparation on the final quality of fish products. Trends Food Sci. Technol. 2015, 44, 131–146. [Google Scholar] [CrossRef]
- Aberoumand, A.; Baesi, F. Evaluation of fatty acid-related nutritional quality indices in processed and raw (Lethrinus lentjan) fish fillets. Food Sci. Nutr. 2023, 11, 963–971. [Google Scholar] [CrossRef]
- Bazarsadueva, S.V.; Radnaeva, L.D.; Shiretorova, V.G.; Dylenova, E.P. The Comparison of Fatty Acid Composition and Lipid Quality Indices of Roach, Perch, and Pike of Lake Gusinoe (Western Transbaikalia). Int. J. Environ. Res. Public Health 2021, 18, 9032. [Google Scholar] [CrossRef] [PubMed]
Sample Code | Sample | Number of Samples | Species | Country or Origin | Lot | Manufacture Data | Processing Condition | Expired Data | Ingredients |
---|---|---|---|---|---|---|---|---|---|
F1 | Canned horse mackerel | 3 | Trachurus murphyi | Chile | * | * | Canning | 24 May 2025 | mackerel, water, salt |
F2 | Canned mackerel fillets | 5 | * | Portugal | * | * | Canning | 11 November 2026 | mackerel fillets, olive oil, salt |
F3 | Grilled mackerel fillets in olive oil | 5 | Scomber japonicus | Portugal | L301U-B12 | * | Grilling and canning | October 2024 | mackerel (87%), organic extra virgin olive oil (10%), salt (3%) |
F4 | Natural grilled mackerel fillets | 5 | Scomber japonicus | Portugal | L309U-B2 | * | Grilling and canning | November 2024 | mackerel (87%), water, salt |
F5 | Canned sardines | 4 | Sardina pilchardus | Morocco | LKX149L/S | 07 February 2019 | Canning | 29 May 2026 | Sardines, olive oil (29%), salt |
F6 | Dried sardines | 5 | Sardinella aurita | Argentina | * | * | Drying | * | * |
F7 | Canned pink Salmon | 3 | * | USA | 3028163 | * | Canning | 31 December 2022 | Salmon, water, salt |
F8 | Natural Alaskan salmon | 5 | Oncorhynchus nerka | Denmark | L13221-3 | * | Canning | 31 December 2025 | Salmon, water, salt |
F9 | Canned tuna pâté | 3 | Euthynnus (Katsuwonus) pelamis | Italy | F048-T1 | * | Canning | February 2025 | tuna (37%), water, corn seed oil (20%), green olives, soya protein, modified maize starch, capers (1%), salt, oregano, natural flavoring: nutmeg with other natural flavorings |
F10 | Canned crab meat | 3 | * | Indonesia | CMCRCI064T | * | Canning | 7 February 2023 | Crab meat, water, salt, sugar, acidifier (E330), sodium metabisulphite, E385 |
F11 | Dried shrimp | 3 | * | Argentina | * | * | Drying | * | * |
F12 | Natural shrimp | 3 | * | Italy | L20058 | * | * | 27 February 2023 | peeled and pre-cooked shrimps, water, salt, sugar, citric acid. May contain traces of shellfish and fish |
Tot | 47 |
F1 | F2 | F3 | F4 | F5 | F6 | F7 | F8 | F9 | F10 | F11 | F12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Fat | 8.62 | 25.65 | 10.17 | 5.79 | 44.81 | 1.69 | 3.60 | 2.08 | 11.84 | 0.64 | 3.48 | 1.13 |
C12:0 | 0.09 ± 0.01 | 0.03 ± 0.00 | 0.01 ± 0.00 | 0.07 ± 0.02 | 0.03 ± 0.00 | 0.13 ± 0.02 | 0.09 ± 0.01 | 0.05 ± 0.01 | 0.01 ± 0.00 | 0.18 ± 0.02 | 0.23 ± 0.03 | 0.26 ± 0.05 |
C14:0 | 6.26 ± 0.25 | 3.51 ± 0.37 | 0.89 ± 0.20 | 4.21 ± 0.61 | 1.43 ± 0.23 | 3.77 ± 0.51 | 4.91 ± 0.27 | 3.74 ± 0.44 | 0.07 ± 0.01 | 1.70 ± 0.31 | 4.73 ± 0.22 | 2.90 ± 0.30 |
C15:0 | 0.47 ± 0.05 | 0.26 ± 0.03 | 0.23 ± 0.07 | 1.07 ± 0.33 | 0.09 ± 0.01 | 1.03 ± 0.41 | 0.70 ± 0.17 | 0.55 ± 0.12 | 0.02 ± 0.00 | 0.59 ± 0.09 | 0.75 ± 0.23 | 0.70 ± 0.15 |
C16:0 iso * | 0.10 ± 0.01 | 0.02 ± 0.00 | 0.02 ± 0.00 | 0.02 ± 0.00 | 0.01 ± 0.00 | 0.15 ± 0.02 | 0.11 ± 0.01 | 0.10 ± 0.02 | 0.01 ± 0.00 | 0.00 ± 0.00 | 0.12 ± 0.01 | 0.10 ± 0.02 |
C16:0 | 18.36 ± 0.77 | 11.90 ± 0.34 | 12.54 ± 0.93 | 20.62 ± 1.22 | 11.82 ± 0.61 | 28.31 ± 0.66 | 13.36 ± 0.88 | 16.90 ± 1.01 | 10.75 ± 0.52 | 21.20 ± 1.01 | 25.85 ± 0.75 | 19.94 ± 0.57 |
C17:0 | 0.39 ± 0.05 | 0.25 ± 0.03 | 0.36 ± 0.09 | 1.13 ± 0.37 | 0.13 ± 0.01 | 1.25 ± 0.28 | 0.50 ± 0.13 | 0.10 ± 0.04 | 0.08 ± 0.01 | 1.32 ± 0.17 | 1.55 ± 0.17 | 0.55 ± 0.08 |
C18:0 | 5.13 ± 0.70 | 2.92 ± 0.11 | 4.52 ± 1.05 | 6.52 ± 1.02 | 3.77 ± 0.56 | 6.05 ± 0.81 | 2.67 ± 0.33 | 3.15 ± 0.46 | 1.85 ± 0.20 | 9.95 ± 0.91 | 12.73 ± 0.22 | 3.60 ± 0.28 |
C20:0 | 0.18 ± 0.03 | 0.29 ± 0.05 | 0.38 ± 0.06 | 0.39 ± 0.10 | 0.38 ± 0.07 | 0.21 ± 0.07 | 0.14 ± 0.02 | 0.12 ± 0.03 | 0.37 ± 0.07 | 0.51 ± 0.07 | 1.01 ± 0.37 | 0.26 ± 0.04 |
C22:0 | 0.12 ± 0.02 | 0.10 ± 0.0q | 0.13 ± 0.02 | 0.24 ± 0.08 | 0.09 ± 0.01 | 0.26 ± 0.04 | 0.07 ± 0.01 | 0.10 ± 0.02 | 0.12 ± 0.02 | 0.26 ± 0.04 | 2.04 ± 0.49 | 0.42 ± 0.10 |
C24:0 | 0.06 ± 0.01 | 0.05 ± 0.00 | 0.07 ± 0.02 | 0.12 ± 0.03 | 0.06 ± 0.00 | 1.06 ± 0.22 | 0.05 ± 0.01 | 0.13 ± 0.02 | 0.18 ± 0.03 | 0.13 ± 0.01 | 0.84 ± 0.13 | 0.30 ± 0.07 |
∑ SFA | 31.29 ± 1.45 AB | 19.46 ± 1.22 AB | 19.25 ± 1.20 AB | 34.70 ± 1.78 AB | 17.92 ± 1.02 AB | 42.78 ± 1.70B | 22.77 ± 1.27 AB | 25.29 ± 1.55 AB | 13.55 ± 1.08A | 36.57 ± 1.46 AB | 50.48 ± 1.77B | 29.66 ± 1.33 AB |
C16:1 n-7 | 7.50 ± 1.10 | 2.01 ± 0.41 | 1.48 ± 0.43 | 3.67 ± 0.85 | 2.38 ± 0.55 | 1.75 ± 0.40 | 3.63 ± 0.77 | 2.83 ± 0.50 | 0.15 ± 0.01 | 3.77 ± 0.48 | 8.87 ± 1.01 | 3.73 ± 0.41 |
C17:1 | 0.06 ± 0.01 | 0.24 ± 0.04 | 0.18 ± 0.04 | 0.44 ± 0.08 | 0.11 ± 0.01 | 0.46 ± 0.15 | 0.54 ± 0.10 | 0.56 ± 0.12 | 0.04 ± 0.00 | 0.01 ± 0.03 | 1.32 ± 0.35 | 0.27 ± 0.05 |
C18:1 n-9 | 15.16 ± 1.11 | 40.35 ± 1.56 | 57.78 ± 3.66 | 16.07 ± 1.55 | 60.11 ± 2.01 | 11.06 ± 0.88 | 14.36 ± 0.79 | 14.45 ± 0.90 | 29.04 ± 1.07 | 24.53 ± 0.98 | 12.44 ± 0.73 | 21.93 ± 0.67 |
C18:1 n-7 * | 4.25 ± 0.91 | 1.71 ± 0.22 | 2.15 ± 0.77 | 2.82 ± 0.68 | 2.15 ± 051 | 2.55 ± 0.44 | 1.89 ± 0.29 | 2.30 ± 0.44 | 0.58 ± 0.13 | 3.37 ± 0.40 | 5.18 ± 1.01 | 5.68 ± 0.38 |
C20:1 n-11 * | 0.21 ± 0.02 | 0.31 ± 0.06 | 0.06 ± 0.02 | 0.17 ± 0.03 | 0.02 ± 0.00 | 0.07 ± 0.01 | 5.63 ± 0.79 | 4.44 ± 1.11 | 0.11 ± 0.01 | 0.74 ± 0.15 | 0.13 ± 0.02 | 0.11 ± 0.01 |
C20:1 n-7 * | 0.43 ± 0.08 | 0.06 ± 0.01 | 0.08 ± 0.02 | 0.24 ± 0.07 | 0.02 ± 0.00 | 0.03 ± 0.00 | 0.68 ± 0.22 | 0.22 ± 0.08 | 0.22 ± 0.07 | 0.50 ± 0.09 | 0.12 ± 0.02 | 0.04 ± 0.00 |
C20:1 n-9 | 2.72 ± 0.55 | 4.63 ± 0.48 | 0.70 ± 0.07 | 2.42 ± 0.54 | 0.35 ± 0.09 | 0.49 ± 0.03 | 3.61 ± 0.45 | 2.69 ± 0.63 | 0.25 ± 0.06 | 0.78 ± 0.10 | 0.25 ± 0.10 | 1.26 ± 0.10 |
C22:1 n-11 * | 1.65 ± 0.61 | 6.15 ± 0.95 | 0.27 ± 0.05 | 1.32 ± 0.33 | 0.04 ± 0.00 | 0.21 ± 0.01 | 10.89 ± 0.77 | 6.87 ± 1.09 | 0.02 ± 0.00 | 0.50 ± 0.06 | 0.07 ± 0.01 | 0.94 ± 0.08 |
C22:1 n-9 | 0.24 ± 0.02 | 0.37 ± 0.10 | 0.12 ± 0.03 | 0.52 ± 0.12 | 0.03 ± 0.00 | 0.11 ± 0.01 | 1.21 ± 0.27 | 0.96 ± 0.56 | 0.01 ± 0.00 | 0.13 ± 0.02 | 0.07 ± 0.01 | 0.19 ± 0.02 |
C24:1 n-9 | 0.50 ± 0.09 | 0.42 ± 0.15 | 0.33 ± 0.10 | 0.64 ± 0.21 | 0.14 ± 0.02 | 1.63 ± 0.52 | 1.11 ± 0.49 | 0.79 ± 0.32 | 0.04 ± 0.00 | 0.17 ± 0.03 | 0.51 ± 0.09 | 0.27 ± 0.04 |
∑ MUFA | 33.20 ± 1.77 AB | 56.71 ± 2.25B | 63.34 ± 4.11C | 28.72 ± 1.65A | 65.58 ± 2.67C | 18.91 ± 0.86A | 44.36 ± 2.11 AB | 37.08 ± 4.02 AB | 30.56 ± 1.62A | 34.73 ± 1.23 AB | 29.40 ± 0.33A | 35.01 ± 0.63 AB |
C16:2 n-4 * | 1.26 ± 0.31 | 0.28 ± 0.02 | 0.18 ± 0.05 | 0.68 ± 0.13 | 0.21 ± 0.02 | 0.44 ± 0.06 | 0.20 ± 0.02 | 0.09 ± 0.01 | 0.04 ± 0.00 | 0.31 ± 0.04 | 0.20 ± 0.02 | 2.17 ± 0.18 |
C16:3 n-4 * | 0.83 ± 0.25 | 0.07 ± 0.01 | 0.10 ± 0.02 | 0.36 ± 0.09 | 0.22 ± 0.03 | 0.03 ± 0.00 | 0.07 ± 0.01 | 0.33 ± 0.09 | 0.01 ± 0.00 | 0.34 ± 0.05 | 0.06 ± 0.01 | 0.03 ± 0.00 |
C16:4 n-4 * | 1.60 ± 0.44 | 0.11 ± 0.01 | 0.04 ± 0.01 | 0.08 ± 0.02 | 0.53 ± 0.19 | 0.18 ± 0.02 | 0.14 ± 0.01 | 0.13 ± 0.03 | 0.02 ± 0.00 | 0.19 ± 0.02 | 0.45 ± 0.06 | 0.05 ± 0.00 |
C18:2 n-6 | 1.11 ± 0.41 | 5.33 ± 0.91 | 3.83 ± 0.72 | 1.47 ± 0.40 | 5.71 ± 0.80 | 1.72 ± 0.33 | 2.13 ± 0.19 | 1.30 ± 0.58 | 50.85 ± 3.55 | 7.16 ± 0.83 | 1.27 ± 0.22 | 4.86 ± 0.29 |
C18:3 n-3 | 0.56 ± 0.11 | 1.30 ± 0.31 | 0.56 ± 0.26 | 0.81 ± 0.15 | 0.57 ± 0.10 | 0.33 ± 0.06 | 1.16 ± 0.15 | 1.22 ± 0.77 | 0.86 ± 0.13 | 0.86 ± 0.20 | 0.30 ± 0.07 | 0.42 ± 0.14 |
C18:4 n-3 * | 1.71 ± 0.22 | 2.94 ± 0.49 | 0.21 ± 0.10 | 0.96 ± 0.11 | 0.51 ± 0.13 | 0.31 ± 0.07 | 2.48 ± 0.33 | 2.07 ± 0.32 | 0.02 ± 0.00 | 0.43 ± 0.11 | 0.10 ± 0.01 | 0.31 ± 0.11 |
C20:2 n-6 | 0.13 ± 0.02 | 0.12 ± 0.02 | 0.08 ± 0.02 | 0.30 ± 0.03 | 0.02 ± 0.00 | 0.35 ± 0.10 | 0.50 ± 0.07 | 0.28 ± 0.08 | 0.02 ± 0.00 | 0.29 ± 0.03 | 0.26 ± 0.05 | 0.31 ± 0.10 |
C20:4 n-6 | 1.05 ± 0.30 | 0.24 ± 0.05 | 0.86 ± 0.22 | 2.27 ± 0.41 | 0.19 ± 0.02 | 1.20 ± 0.21 | 0.63 ± 0.13 | 0.46 ± 0.12 | 0.05 ± 0.01 | 2.62 ± 0.69 | 1.96 ± 0.34 | 1.60 ± 0.15 |
C20:4 n-3 * | 0.72 ± 0.19 | 0.64 ± 0.19 | 0.11 ± 0.03 | 0.51 ± 0.19 | 0.16 ± 0.02 | 0.17 ± 0.02 | 1.42 ± 0.22 | 1.37 ± 0.56 | 0.02 ± 0.00 | 0.43 ± 0.15 | 0.72 ± 0.12 | 0.20 ± 0.02 |
C20:5 n-3 | 12.08 ± 0.80 B | 3.03 ± 044 A | 1.63 ± 0.34 A | 5.81 ± 0.79 A | 3.48 ± 0.62 A | 3.96 ± 0.22 A | 6.59 ± 0.98 A | 7.23 ± 1.33 A | 0.07 ± 0.01 A | 4.86 ± 0.47 A | 4.35 ± 0.78 A | 9.70 ± 0.51 B |
C21:5 n-3 * | 0.66 ± 0.22 | 0.22 ± 0.05 | 0.20 ± 0.07 | 0.10 ± 0.02 | 0.14 ± 0.01 | 0.07 ± 0.01 | 0.37 ± 0.03 | 0.18 ± 0.04 | 0.29 ± 0.07 | 0.34 ± 0.07 | 0.05 ± 0.00 | 0.12 ± 0.01 |
C22:2 | 0.05 ± 0.01 | 0.02 ± 0.00 | 0.00 ± 0.00 | 0.04 ± 0.01 | 0.10 ± 0.01 | 0.04 ± 0.00 | 0.11 ± 0.01 | 0.04 ± 0.01 | 0.02 ± 0.00 | 0.01 ± 0.28 | 0.38 ± 0.09 | 0.92 ± 0.12 |
C22:5 n-6 * | 0.20 ± 0.03 | 0.20 ± 0.06 | 0.34 ± 0.15 | 0.98 ± 0.30 | 0.03 ± 0.00 | 0.73 ± 0.21 | 0.17 ± 0.02 | 0.15 ± 0.03 | 0.04 ± 0.00 | 0.25 ± 0.04 | 0.25 ± 0.07 | 0.16 ± 0.04 |
C22:5 n-3 * | 3.72 ± 0.67 | 0.56 ± 0.20 | 0.62 ± 0.21 | 2.08 ± 0.55 | 0.40 ± 0.13 | 0.55 ± 0.12 | 2.26 ± 0.34 | 1.81 ± 0.66 | 0.02 ± 0.00 | 0.70 ± 0.11 | 0.25 ± 0.05 | 0.81 ± 0.16 |
C22:6 n-3 | 6.48 ± 1.00 AB | 6.01 ± 1.55 AB | 5.34 ± 0.70 | 16.04 ± 1.88 | 1.35 ± 0.33 A | 25.09 ± 1.55 C | 11.41 ± 1.21 B | 16.39 ± 2.11 | 0.33 ± 0.10 A | 4.52 ± 0.63 AB | 4.07 ± 0.65 AB | 9.05 ± 0.39 AB |
∑ PUFA | 33.10 ± 1.51 AB | 21.46 ± 2.78 AB | 14.28 ± 1.87 A | 33.19 ± 2.02 B | 13.84 ± 0.66 A | 35.46 ± 2.10 B | 30.44 ± 2.56 AB | 33.62 ± 2.54B | 52.73 ± 2.88 C | 23.96 ± 1.59 AB | 15.16 ± 1.21 A | 31.08 ± 1.50 AB |
∑ n-3 | 26.01 ± 1.13 B | 14.83 ± 2.54 AB | 8.70 ± 1.33 AB | 26.46 ± 2.06 B | 6.62 ± 0.50 A | 30.57 ± 1.88 B | 25.92 ± 2.22 B | 30.44 ± 3.01 B | 1.62 ± 0.54 A | 12.15 ± 1.05 AB | 9.89 ± 0.92 AB | 20.69 ± 1.03 AB |
∑ n-6 | 2.73 ± 0.53 A | 6.04 ± 0.66 AB | 5.20 ± 1.04 AB | 5.35 ± 0.89 AB | 6.02 ± 0.76 AB | 4.07 ± 0.58 AB | 3.70 ± 0.24 AB | 2.39 ± 0.49 A | 50.99 ± 2.29 C | 10.52 ± 1.09 B | 3.85 ± 0.55AB | 7.02 ± 0.35 AB |
n-6/n-3 | 0.10 ± 0.01 A | 0.41 ± 0.21 A | 0.60 ± 0.17 A | 0.20 ± 0.03 A | 0.91 ± 0.20 A | 0.13 ± 0.02 A | 0.14 ± 0.01 A | 0.08 ± 0.02 A | 31.48 ± 2.01 B | 0.87 ± 0.22 A | 0.39 ± 0.10A | 0.34 ± 0.02 A |
Undefined | 2.41 ± 0.36 | 2.37 ± 0.50 | 3.13 ± 0.54 | 3.39 ± 0.38 | 2.66 ± 0.43 | 2.85 ± 0.75 | 2.43 ± 0.55 | 4.01 ± 0.98 | 3.16 ± 0.79 | 4.74 ± 1.26 | 4.96 ± 0.47 | 4.25 ± 0.19 |
PUFA/SFA | 1.06 ± 0.23 B | 1.10 ± 0.20 B | 0.74 ± 0.21 AB | 0.96 ± 0.15 B | 0.77 ± 0.15 AB | 0.83 ± 0.22 AB | 1.34 ± 0.41 B | 1.33 ± 0.40 B | 3.89 ± 0.87 C | 0.66 ± 0.16 AB | 0.30 ± 0.11A | 1.04 ± 0.27 B |
EPA+DHA | 18.56 ± 1.55 B | 9.04 ± 1.01 AB | 6.97 ± 1.05 AB | 21.85 ± 2.76 BC | 4.83 ± 0.87 A | 29.05 ± 2.56 C | 18.00 ± 1.49 B | 23.62 ± 3.22 BC | 0.40 ± 0.11 A | 9.38 ± 0.46 AB | 8.42 ± 0.89 AB | 18.75 ± 1.31 B |
DHA/EPA | 0.54 ± 0.04 A | 1.98 ± 0.09 AB | 3.28 ± 0.59 B | 2.76 ± 0.32 AB | 0.39 ± 0.02 A | 6.34 ± 0.25 C | 1.73 ± 0.08 AB | 2.27 ± 0.71 AB | 4.71 ± 0.11 B | 0.93 ± 0.05 A | 0.94 ± 0.06 A | 0.93 ± 0.05 A |
AI | 0.70 ± 0.15 AB | 0.34 ± 0.10 AB | 0.62 ± 0.12 AB | 0.21 ± 0.04A | 0.25 ± 0.06 AB | 0.81 ± 0.21B | 0.45 ± 0.09 AB | 0.46 ± 0.09 AB | 0.13 ± 0.03A | 0.49 ± 0.13 AB | 1.04 ± 0.28 B | 0.51 ± 0.03 AB |
TI | 0.28 ± 0.02 AB | 0.23 ± 0.03 AB | 0.29 ± 0.08 AB | 0.31 ± 0.05 AB | 0.30 ± 0.03 AB | 0.34 ± 0.02 AB | 0.19 ± 0.01 A | 0.19 ± 0.03 A | 0.28 ± 0.02 AB | 0.55 ± 0.02B | 0.89 ± 0.02 B | 0.31 ± 0.02 AB |
FLQ | 19.02 ± 0.79 B | 9.26 ± 1.07 AB | 7.20 ± 1.01 AB | 22.62 ± 1.55 B | 4.96 ± 0.38 AB | 29.90 ± 1.87 C | 18.45 ± 1.77 B | 24.61 ± 1.74 B | 0.41 ± 0.15 A | 9.84 ± 1.12 AB | 8.86 ± 1.16 AB | 19.58 ± 0.55 B |
Salmon | Mackerel | Sardine | Tuna | Shrimp | Crab | |
---|---|---|---|---|---|---|
∑ SFA (%) | 12.1 ± 0.8 (Salmo salar) [29] 19.0 ± 1.0–25.6 ± 2.9 (Salmo salar) [47] 13.6 ± 1.98–23.25 ± 1.93 (Salmo salar) [30] 19.2 [52] | 44.6 ± 1.9 (Scombers combrus) [29] 30.1 ± 1.9 (Pneumatophorus japonicus) 31.4 ± 1.2 (Scomberomorus maculatus) [32] 27.6 [52] | 54.2 ± 2.8 (Sardina pilchardus) [29] 50.8 [52] | 45.5 ± 1.8 (Thunnus thynnus) [29] 53.8 [52] | 33.2 ± 1.2 (Parapenaeus longirostris) [29] 25.6 ± 1.0 (Oratosquilla oratoria) 34.0 ± 1.2 (Penaeus vannamei) [32] | 16.0 (C. angulatus) 18.3 (C. japonicus) [33] 22.58 ± 0.5–23.49 ± 0.3 (C. mediterraneus) [53] |
∑ MUFA (%) | 67.1 ± 1.4 (Salmo salar) [29] 33.4 ± 7.9–53.7 ± 3.9 (Salmo salar) [47] 32.73 ± 3.22 -52.89 ± 1.76 (Salmo salar) [30] 46.4 [52] | 22.1 ± 3.0 Scombers combrus) [29] 29.6 ± 1.4 (Pneumatophorus japonicus) 33.3 ± 2.4 (Scomberomorus maculatus) [32] 29.8 [52] 26.13 ± 1.05 (Trahurus mediterraneus) [46] | 22.1 ± 1.1 (Sardina pilchardus) [29] 26.6 [52] | 30.5 ± 2.3 (Thunnus thynnus) [29] 20.6 [52] | 22.9 ± 0.9 (Parapenaeus longirostris) [29] 22.3 ± 1.2 (Penaeus vannamei) 25.9 ± 1.3 (Oratosquilla oratoria) [32] | 24.6 (C. opilio) 41.0 (C. angulatus) [33] 22.75 ± 0.5–24.01 ± 0.7 (C. mediterraneus) [53] |
∑ PUFA (%) | 27.3 ± 3.9–41.0 ± 5.8 (Salmo salar) [47] 29.93 ± 0.62–43.95 ± 2.77 (Salmo salar) [30] 29.9 [52] | 30.4 ± 1.8 (Pneumatophorus japonicus) 33.8 ± 2.0 (Scomberomorus maculatus) [32] 35.9 [52] 35.04 ± 1.55 (Trahurus mediterraneus) [46] | 23.7 [52] | 24.4 [52] | 38.8 ± 1.9 (Penaeus vannamei) 41.3 ± 1.3 Oratosquilla oratoria) [32] | 35.3 (C. angulatus) 56.0 (C. opilio) [33] 36.12 ± 0.9–37.33 ± 0.9 (C. mediterraneus) [53] |
PUFA/SFA | n.a. | 0.90 ± 0.07 (Trahurus mediterraneus) [46] | n.a. | n.a. | n.a. | n.a. |
EPA+DHA | 10.1 [52] | 28.3 [52] | 13.4 [52] | 5.8 [52] | n.a. | n.a. |
AI | 0.54 [52] | 1.20 [52] | 0.85 [52] | 1.86 [52] | n.a. | n.a. |
TI | 0.21 [52] | 0.17 [52] | 0.59 [52] | 0.74 [52] | n.a. | n.a. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nava, V.; Turco, V.L.; Licata, P.; Panayotova, V.; Peycheva, K.; Fazio, F.; Rando, R.; Di Bella, G.; Potortì, A.G. Determination of Fatty Acid Profile in Processed Fish and Shellfish Foods. Foods 2023, 12, 2631. https://doi.org/10.3390/foods12132631
Nava V, Turco VL, Licata P, Panayotova V, Peycheva K, Fazio F, Rando R, Di Bella G, Potortì AG. Determination of Fatty Acid Profile in Processed Fish and Shellfish Foods. Foods. 2023; 12(13):2631. https://doi.org/10.3390/foods12132631
Chicago/Turabian StyleNava, Vincenzo, Vincenzo Lo Turco, Patrizia Licata, Veselina Panayotova, Katya Peycheva, Francesco Fazio, Rossana Rando, Giuseppa Di Bella, and Angela Giorgia Potortì. 2023. "Determination of Fatty Acid Profile in Processed Fish and Shellfish Foods" Foods 12, no. 13: 2631. https://doi.org/10.3390/foods12132631
APA StyleNava, V., Turco, V. L., Licata, P., Panayotova, V., Peycheva, K., Fazio, F., Rando, R., Di Bella, G., & Potortì, A. G. (2023). Determination of Fatty Acid Profile in Processed Fish and Shellfish Foods. Foods, 12(13), 2631. https://doi.org/10.3390/foods12132631