Rapid Screening of Microalgae as Potential Sources of Natural Antioxidants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strain and Culture Conditions
2.2. Antioxidant Extracts Preparation
2.3. Determination of Total Carotenoids Content
2.4. Determination of Total Phenol Content
2.5. Antioxidant Activity Assay
2.5.1. ABTS (2,2-azino-bis 3-ethylbenzthiazoline-6-sulphonic Acid) Radical-Scavenging Ability
2.5.2. DPPH (2,2-Diphenyl-1-picrylhydrazyl) Radical Scavenging Ability
2.5.3. Ferric Reducing Antioxidant Power (FRAP)
2.6. Assessment of Overall Antioxidant Potential
2.7. Statistical Analysis
3. Results and Discussion
3.1. Carotenoid and Phenol Contents
3.2. Antioxidant Activities
3.3. Assessment of Overall Antioxidant Potential
3.4. Correlation Analysis between TCC, TPC, and Antioxidant Capacity of Microalgae Extracts
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- He, M.Y.; Wang, M.Y.; Xu, T.; Zhang, M.Y.; Dai, H.X.; Wang, C.; Ding, D.W.; Zhong, Z.Y. Reactive Oxygen Species-powered Cancer Immunotherapy: Current Status and Challenges. J. Control. Release 2023, 356, 623–648. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.Q.; Zhu, T. Effects of Endogenous and Exogenous Reductants in Lung Fluid on the Bioaccessible Metal Concentration and Oxidative Potential of Ultrafine Particles. Sci. Total Environ. 2023, 882, 163652. [Google Scholar] [CrossRef] [PubMed]
- Sansone, C.; Brunet, C. Promises and Challenges of Microalgal Antioxidant Production. Antioxidants 2019, 8, 199. [Google Scholar] [CrossRef] [PubMed]
- Feihrmann, A.C.; Coutinho, F.H.; dos Santos, I.C.; de Marins, A.R.; de Campos, T.A.F.; da Silva, N.M.; Duarte, V.A.; Matiucci, M.A.; de Souza, M.L.R.; Gomes, R.G. Effect of Replacing a Synthetic Antioxidant for Natural Extract of Yerba Mate (Ilex Paraguariensis) on the Physicochemical Characteristics, Sensory Properties, and Gastrointestinal Digestion in Vitro of Burgers. Food Chem. Adv. 2022, 1, 100130. [Google Scholar] [CrossRef]
- Adetunji, A.E.; Sershen; Varghese, B.; Pammenter, N. Effects of Exogenous Application of Five Antioxidants on Vigour, Viability, Oxidative Metabolism and Germination Enzymes in Aged Cabbage and Lettuce Seeds. S. Afr. J. Bot. 2021, 137, 85–97. [Google Scholar] [CrossRef]
- Wang, N.; Chen, Z.S.; Lv, J.T.; Li, T.; Wu, H.L.; Wu, J.Y.; Wu, H.B.; Xiang, W.Z. Characterization, Hypoglycemia and Antioxidant Activities of Polysaccharides from Rhodosorus sp. SCSIO-45730. Ind. Crop. Prod. 2023, 191, 115936. [Google Scholar] [CrossRef]
- Yang, N.; Zhang, Q.; Chen, J.; Wu, S.; Chen, R.; Yao, L.; Li, B.; Liu, X.; Zhang, R.; Zhang, Z. Study on Bioactive Compounds of Microalgae as Antioxidants in a Bibliometric Analysis and Visualization Perspective. Front. Plant Sci. 2023, 14, 1144326. [Google Scholar] [CrossRef]
- Vieira, I.R.S.; de Carvalho, A.P.A.D.; Conte-Junior, C.A. Recent Advances in Biobased and Biodegradable Polymer nanocomposites, Nanoparticles, and Natural Antioxidants for Antibacterial and Antioxidant Food Packaging Applications. Compr. Rev. Food Sci. Food Saf. 2022, 21, 3673–3716. [Google Scholar] [CrossRef]
- Ampofo, J.; Abbey, L. Microalgae: Bioactive Composition, Health Benefits, Safety and Prospects as Potential High-value Ingredients for the Functional Food Industry. Foods 2022, 11, 1744. [Google Scholar] [CrossRef]
- Ayna, A. Apoptotic Effects of Beta-Carotene, Alpha-Tocopherol and Ascorbic Acid on PC-3 Prostate Cancer Cells. Int. J. Biol. Chem. 2020, 48, 211–218. [Google Scholar] [CrossRef]
- Foo, S.C.; Khoo, K.S.; Ooi, C.W.; Show, P.L.; Khong, N.M.; Yusoff, F.M. Meeting Sustainable Development Goals: Alternative Extraction Processes for Fucoxanthin in Algae. Front. Bioeng. Biotechnol. 2021, 8, 546067. [Google Scholar] [CrossRef] [PubMed]
- Berde, C.V.; Berde, V.B.; Bramhachari, P.V. Bioprospection of Marine Microalgae for Novel Antioxidants in Human Health and Medicine. In Marine Antioxidants, 22nd ed.; Kim, S.-K., Ed.; Academic Press: Cambridge, MA, USA, 2023; Volume 22, pp. 295–310. [Google Scholar]
- Coulombier, N.; Jauffrais, T.; Lebouvier, N. Antioxidant Compounds from Microalgae: A Review. Mar. Drugs 2021, 19, 549. [Google Scholar] [CrossRef] [PubMed]
- Chiu, H.F.; Liao, J.Y.; Lu, Y.Y.; Han, Y.C.; Shen, Y.C.; Venkatakrishnan, K.; Golovinskaia, O.; Wang, C.K. Anti-proliferative, Anti-inflammatory and Pro-apoptotic Effects of Dunaliella salina on Human KB Oral Carcinoma Cells. J. Food Biochem. 2017, 41, e12349. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, Y.; Chen, L.; Cheng, W.T.; Liu, T.Z. Combined Production of Fucoxanthin and EPA from Two Diatom Strains Phaeodactylum tricornutum and Cylindrotheca fusiformis Cultures. Bioprocess Biosyst. Eng. 2018, 41, 1061–1071. [Google Scholar] [CrossRef] [PubMed]
- Hynstova, V.; Sterbova, D.; Klejdus, B.; Hedbavny, J.; Huska, D.; Adam, V. Separation, Identification and Quantification of Carotenoids and Chlorophylls in Dietary Supplements Containing Chlorella vulgaris and Spirulina platensis Using High Performance Thin Layer Chromatography. J. Pharmaceut. Biomed. 2018, 148, 108–118. [Google Scholar] [CrossRef] [PubMed]
- Guedes, A.C.; Amaro, H.M.; Malcata, F.X. Microalgae as Sources of Carotenoids. Mar. Drugs 2011, 9, 625–644. [Google Scholar] [CrossRef]
- Harvey, P.J.; Ben-Amotz, A. Towards a Sustainable Dunaliella salina Microalgal Biorefinery for 9-cis β-carotene Production. Algal Res. 2020, 50, 102002. [Google Scholar] [CrossRef]
- Bennett, L.L.; Rojas, S.; Seefeldt, T. Role of Antioxidants in the Prevention of Cancer. J. Exp. Clin. Med. 2012, 4, 215–222. [Google Scholar] [CrossRef]
- Vardanega, R.; Cerezal-Mezquita, P.; Veggi, P.C. Supercritical Fluid Extraction of Astaxanthin-rich Extracts from Haematococcus pluvialis: Economic Assessment. Bioresour. Technol. 2022, 361, 127706. [Google Scholar] [CrossRef]
- Khavari, F.; Asadi, F.; Nouri, F.; Taheri, M.; Mohammadi, F.; Mohammadi, M.; Habibi, P.; Asghari, B. Marine Antioxidants from Microalgae. In Marine Antioxidants, 10th ed.; Kim, S.-K., Ed.; Academic Press: Cambridge, MA, USA, 2023; Volume 10, pp. 141–160. [Google Scholar]
- Mondo, A.D.; Sansone, C.; Brunet, C. Insights into the Biosynthesis Pathway of Phenolic Compounds in Microalgae. Comput. Struct. Biotechnol. 2022, 20, 1901–1913. [Google Scholar] [CrossRef]
- Machu, L.; Misurcova, L.; Vavra Ambrozova, J.; Orsavova, J.; Mlcek, J.; Sochor, J.; Jurikova, T. Phenolic Content and Antioxidant Capacity in Algal Food Products. Molecules 2015, 20, 1118–1133. [Google Scholar] [CrossRef]
- Banskota, A.H.; Sperker, S.; Stefanova, R.; McGinn, P.J.; O’Leary, S.J. Antioxidant Properties and Lipid Composition of Selected Microalgae. J. Appl. Phycol. 2019, 31, 309–318. [Google Scholar] [CrossRef]
- León-Vaz, A.; León, R.; Vigara, J.; Funk, C. Exploring Nordic Microalgae as a Potential Novel Source of Antioxidant and Bioactive Compounds. New Biotechnol. 2023, 73, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Ge, S.; Pan, Y.; Qian, W.; Wang, S.; Zhang, J.; Zhuang, L.L. Screening of Microalgae Species and Evaluation of Algal-lipid Stimulation Strategies for Biodiesel Production. Sci. Total Environ. 2023, 857, 159281. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; He, L.; Ma, Y.; Huan, L.; Wang, Y.; Xia, B.; Wang, G. Economically Important Red Algae Resources along the Chinese Coast: History, Status, and Prospects for their Utilization. Algal Res. 2020, 46, 101817. [Google Scholar] [CrossRef]
- Smerilli, A.; Balzano, S.; Maselli, M.; Blasio, M.; Orefice, I.; Galasso, C.; Sansone, C.; Brunet, C. Antioxidant and Photoprotection Networking in the Coastal Diatom Skeletonema marinoi. Antioxidants 2019, 8, 154. [Google Scholar] [CrossRef]
- Soto-Sánchez, O.; Hidalgo, P.; González, A.; Oliveira, P.E.; Hernández Arias, A.J.; Dantagnan, P. Microalgae as Raw Materials for Aquafeeds: Growth Kinetics and Improvement Strategies of Polyunsaturated Fatty Acids Production. Aquac. Nutr. 2023, 2023, 5110282. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Ji, L.; Shi, Q.; Wu, H.; Fan, J. Advances in the Production of Bioactive Substances from Marine Unicellular Microalgae Porphyridium spp. Bioresour. Technol. 2019, 292, 122048. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Chen, F. Biology and Industrial Applications of Chlorella: Advances and Prospects. In Microalgae Biotechnology; Springer: Cham, Switzerland, 2016; pp. 1–35. [Google Scholar]
- Duan, J.; Cui, R.; Huang, Y.; Ai, X.; Hao, Y.; Shi, H.; Huang, A.; Xie, Z. Identification and Characterization of Four Microalgae Strains with Potential Application in the Treatment of Tail-water for Shrimp Cultivation. Algal Res. 2022, 66, 102790. [Google Scholar] [CrossRef]
- Chen, Z.; Li, T.; Yang, B.; Jin, X.; Wu, H.; Wu, J.; Lu, Y.; Xiang, W. Isolation of a Novel Strain of Cyanobacterium sp. with Good Adaptation to Extreme Alkalinity and High Polysaccharide Yield. J. Oceanol. Limnol. 2021, 39, 1131–1142. [Google Scholar] [CrossRef]
- Ardiles, P.; Cerezal-Mezquita, P.; Salinas-Fuentes, F.; Órdenes, D.; Renato, G.; Ruiz-Domínguez, M.C. Biochemical Composition and Phycoerythrin Extraction from Red Microalgae: A Comparative Study Using Green Extraction Technologies. Processes 2020, 8, 1628. [Google Scholar] [CrossRef]
- Goiris, K.; Muylaert, K.; Fraeye, I.; Foubert, I.; De Brabanter, J.; De Cooman, L. Antioxidant Potential of Microalgae in Relation to their Phenolic and Carotenoid Content. J. Appl. Phycol. 2012, 24, 1477–1486. [Google Scholar] [CrossRef]
- Gadkari, P.V.; Kadimi, U.S.; Balaraman, M. Catechin Concentrates of Garden Tea Leaves (Camellia sinensis L.): Extraction/Isolation and Evaluation of Chemical Composition. J. Sci. Food Agric. 2014, 94, 2921–2928. [Google Scholar] [CrossRef] [PubMed]
- Li, H.B.; Cheng, K.W.; Wong, C.C.; Fan, K.W.; Chen, F.; Jiang, Y. Evaluation of Antioxidant Capacity and Total Phenolic Content of Different Fractions of Selected Microalgae. Food Chem. 2007, 102, 771–776. [Google Scholar] [CrossRef]
- Wang, N.; Lv, J.T.; Yang, F.F.; Li, T.; Wu, H.L.; Li, C.L.; Pei, H.W.; Wu, H.B.; Xiang, W.Z. Effects of Seawater Acidification and Solar Ultraviolet Radiation on Photosynthetic Performances and Biochemical Compositions of Rhodosorus sp. SCSIO-45730. Front. Mar. Sci. 2022, 9, 2592. [Google Scholar] [CrossRef]
- Wang, N.; Dai, L.M.; Chen, Z.S.; Li, T.; Wu, J.Y.; Wu, H.B.; Wu, H.L.; Xiang, W.Z. Extraction Optimization, Physicochemical Characterization, and Antioxidant Activity of Polysaccharides from Rhodosorus sp. SCSIO-45730. J. Appl. Phycol. 2021, 34, 285–299. [Google Scholar] [CrossRef]
- Venkatesan, M.; Arumugam, V.; Pugalendi, R.; Ramachandran, K.; Sengodan, K.; Vijayan, S.; Sundaresan, U.; Ramachandran, S.; Pugazhendhi, A. Antioxidant, Anticoagulant and Mosquitocidal Properties of Water Soluble Polysaccharides (WSPs) from Indian Seaweeds. Process Biochem. 2019, 84, 196–204. [Google Scholar] [CrossRef]
- Foo, S.C.; Yusoff, F.M.; Ismail, M.; Basri, M.; Yau, S.K.; Khong, N.M.H.; Chan, K.W.; Ebrahimi, M. Antioxidant Capacities of Fucoxanthin-producing Algae as Influenced by their Carotenoid and Phenolic Contents. J. Biotechnol. 2017, 241, 175–183. [Google Scholar] [CrossRef]
- Dudonne, S.; Vitrac, X.; Coutiere, P.; Woillez, M.; Mérillon, J.M. Comparative Study of Antioxidant Properties and Total Phenolic Content of 30 Plant Extracts of Industrial Interest Using DPPH, ABTS, FRAP, SOD, and ORAC Assays. J. Agric. Food Chem. 2009, 57, 1768–1774. [Google Scholar] [CrossRef]
- Cezare-Gomes, E.A.; Mejia-da-Silva, L.D.C.; Pérez-Mora, L.S.; Matsudo, M.C.; Ferreira-Camargo, L.S.; Singh, A.K.; de Carvalho, J.C.M. Potential of Microalgae Carotenoids for Industrial Application. Appl. Biochem. Biotechnol. 2019, 188, 602–634. [Google Scholar] [CrossRef]
- Poojary, M.M.; Barba, F.J.; Aliakbarian, B.; Donsì, F.; Pataro, G.; Dias, D.A.; Juliano, P. Innovative Alternative Technologies to Extract Carotenoids from Microalgae and Seaweeds. Mar. Drugs 2016, 14, 214. [Google Scholar] [CrossRef]
- Kim, S.M.; Jung, Y.J.; Kwon, O.N.; Cha, K.H.; Um, B.H.; Chung, D.; Pan, C.H. A Potential Commercial Source of Fucoxanthin Extracted from the Microalga Phaeodactylum tricornutum. Appl. Biochem. Biotechnol. 2012, 166, 1843–1855. [Google Scholar] [CrossRef] [PubMed]
- Del Mondo, A.; Smerilli, A.; Ambrosino, L.; Albini, A.; Noonan, D.M.; Sansone, C.; Brunet, C. Insights into Phenolic Compounds from Microalgae: Structural Variety and Complex Beneficial Activities from Health to Nutraceutics. Crit. Rev. Biotechnol. 2021, 41, 155–171. [Google Scholar] [CrossRef]
- Albuquerque, B.R.; Heleno, S.A.; Oliveira, M.B.P.; Barros, L.; Ferreira, I.C. Phenolic Compounds: Current Industrial Applications, Limitations and Future Challenges. Food Funct. 2021, 12, 14–29. [Google Scholar] [CrossRef] [PubMed]
- Haoujar, I.; Cacciola, F.; Abrini, J.; Mangraviti, D.; Giuffrida, D.; Oulad El Majdoub, Y.; Kounnoun, A.; Miceli, N.; Taviano, M.F.; Mondello, L.; et al. The Contribution of Carotenoids, Phenolic Compounds, and Flavonoids to the Antioxidative Properties of Marine Microalgae Isolated from Mediterranean Morocco. Molecules 2019, 24, 4037. [Google Scholar] [CrossRef] [PubMed]
- Kapoor, S.; Singh, M.; Srivastava, A.; Chavali, M.; Chandrasekhar, K.; Verma, P. Extraction and Characterization of Microalgae-derived Phenolics for Pharmaceutical Applications: A Systematic Review. J. Basic Microbiol. 2022, 62, 1044–1063. [Google Scholar] [CrossRef]
- Sueishi, Y.; Nii, R.; Uda, C.; Takashima, A. Antioxidant Capacities in Various Animal Sera as Measured with Multiple Free-radical Scavenging Method. Bioorg. Med. Chem. Lett. 2019, 29, 2145–2149. [Google Scholar] [CrossRef]
- Gündüz, M.; Çiçek, S.K.; Topuz, S. Extraction and Optimization of Phenolic Compounds from Butterbur Plant (Petasites hybridus) by Ultrasound-Assisted Extraction and Determination of Antioxidant and Antimicrobial Activity of Butterbur Extracts. J. Appl. Res. Med. Aromat. Plants 2023, 35, 100491. [Google Scholar] [CrossRef]
- Mendonça, J.D.S.; Guimarães, R.D.C.A.; Zorgetto-Pinheiro, V.A.; Fernandes, C.D.P.; Marcelino, G.; Bogo, D.; Freitas, K.C.; Hiane, P.A.; de Padua Melo, E.S.; Vilela, M.L.B.; et al. Natural Antioxidant Evaluation: A Review of Detection Methods. Molecules 2022, 27, 3563. [Google Scholar] [CrossRef]
- Flieger, J.; Flieger, W.; Baj, J.; Maciejewski, R. Antioxidants: Classification, Natural Sources, Activity/Capacity Measurements, and Usefulness for the Synthesis of Nanoparticles. Materials 2021, 14, 4135. [Google Scholar] [CrossRef]
- Rumpf, J.; Burger, R.; Schulze, M. Statistical Evaluation of DPPH, ABTS, FRAP, and Folin-Ciocalteu Assays to Assess the Antioxidant Capacity of Lignins. Int. J. Biol. Macromol. 2023, 233, 123470. [Google Scholar] [CrossRef]
- Takatsuka, M.; Goto, S.; Kobayashi, K.; Otsuka, Y.; Shimada, Y. Evaluation of Pure Antioxidative Capacity of Antioxidants: ESR Spectroscopy of Stable Radicals by DPPH and ABTS Assays with Singular Value Decomposition. Food Biosci. 2022, 48, 101714. [Google Scholar] [CrossRef]
- Ferdous, U.T.; Nurdin, A.; Ismail, S.; Yusof, Z.N.B. Evaluation of the Antioxidant and Cytotoxic Activities of Crude Extracts from Marine Chlorella sp. Biocatal. Agric. Biotechnol. 2023, 47, 102551. [Google Scholar] [CrossRef]
- Gupta, S.P.; Gupta, V.K.; Minhas, U.; Kumar, R.; Sharma, B. Euglena Species: Bioactive Compounds and their Varied Applications. Curr. Top. Med. Chem. 2021, 21, 2620–2633. [Google Scholar] [CrossRef]
- Monteiro, M.; Santos, R.A.; Iglesias, P.; Couto, A.; Serra, C.R.; Gouvinhas, I.; Barros, A.; Oliva-Teles, A.; Enes, P.; Diaz-Rosales, P. Effect of Extraction Method and Solvent System on the Phenolic Content and Antioxidant Activity of Selected Macro and Microalgae Extracts. J. Appl. Phycol. 2020, 32, 349–362. [Google Scholar] [CrossRef]
- Foo, S.C.; Khong, N.M.; Yusoff, F.M. Physicochemical, Microstructure and Antioxidant Properties of Microalgae-derived Fucoxanthin Rich Microcapsules. Algal Res. 2020, 51, 102061. [Google Scholar] [CrossRef]
- Echegaray, N.; Pateiro, M.; Munekata, P.E.; Lorenzo, J.M.; Chabani, Z.; Farag, M.A.; Domínguez, R. Measurement of Antioxidant Capacity of Meat and Meat Products: Methods and Applications. Molecules 2021, 26, 3880. [Google Scholar] [CrossRef]
- Hajimahmoodi, M.; Faramarzi, M.A.; Mohammadi, N.; Soltani, N.; Oveisi, M.R.; Nafissi-Varcheh, N. Evaluation of Antioxidant Properties and Total Phenolic Contents of Some Strains of Microalgae. J. Appl. Phycol. 2010, 22, 43–50. [Google Scholar] [CrossRef]
- Esztella, T.N.; Hofmann, T.; Albert, L. Seasonal Changes of Natural Antioxidant Content in the Leaves of Hungarian Forest Trees. Ind. Crop. Prod. 2017, 98, 53–59. [Google Scholar]
- Kottuparambil, S.; Thankamony, R.L. Euglena as a Potential Natural Source of Value-added Metabolites. A Review. Algal Res. 2019, 37, 154–159. [Google Scholar] [CrossRef]
- Jiang, L.; Yu, S.; Chen, H.; Pei, H. Enhanced Phycocyanin Production from Spirulina subsalsa via Freshwater and Marine Cultivation with Optimized Light Source and Temperature. Bioresour. Technol. 2023, 378, 129009. [Google Scholar] [CrossRef] [PubMed]
- Katari, J.K.; Khan, M.R.; Trivedi, V.; Das, D. Extraction, Purification, Characterization and Bioactivity Evaluation of High Purity C-phycocyanin from Spirulina sp. NCIM 5143. Process Biochem. 2023, 130, 322–333. [Google Scholar] [CrossRef]
- Couto, D.; Conde, T.A.; Melo, T.; Neves, B.; Costa, M.; Cunha, P.; Guerra, I.; Correia, N.; Silva, J.T.; Pereira, H.; et al. Effects of Outdoor and Indoor Cultivation on the Polar Lipid Composition and Antioxidant Activity of Nannochloropsis oceanica and Nannochloropsis limnetica: A Lipidomics Perspective. Algal Res. 2022, 64, 102718. [Google Scholar] [CrossRef]
- Lima, S.; Lokesh, J.; Schulze, P.; Wijffels, R.H.; Kiron, V.; Scargiali, F.; Petters, S.; Bernstein, H.C.; Morales-Sanchez, D. Flashing Lights Affect the Photophysiology and Expression of Carotenoid and Lipid Synthesis Genes in Nannochloropsis gaditana. J. Biotechnol. 2022, 360, 171–181. [Google Scholar] [CrossRef] [PubMed]
- McClure, D.D.; Luiz, A.; Gerber, B.; Barton, G.W.; Kavanagh, J.M. An Investigation into the Effect of Culture Conditions on Fucoxanthin Production Using the Marine Microalgae Phaeodactylum tricornutum. Algal Res. 2018, 29, 41–48. [Google Scholar] [CrossRef]
- Hwang, J.H.; Kabra, A.N.; Ji, M.K.; Choi, J.; El-Dalatony, M.M.; Jeon, B.H. Enhancement of Continuous Fermentative Bioethanol Production Using Combined Treatment of Mixed Microalgal Biomass. Algal Res. 2016, 17, 14–20. [Google Scholar] [CrossRef]
- Hindák, F.; Pibil, S. Chemical Composition, Protein Digestibility and Heat of Combustion of Filamentous Green Algae. Biol. Plant. 1968, 10, 234–244. [Google Scholar] [CrossRef]
- Wei, H.L.; Wang, L.; Li, T.; Wang, N.; Wu, H.L.; Xiang, W.Z. Effects of Different Nitrogen Sources and Concentrations on the Growth and Biochemical Composition of Asterarcys sp. Accimated by Seawater. Biotechnol. Bull. 2021, 37, 11. [Google Scholar]
- Almendinger, M.; Saalfrank, F.; Rohn, S.; Kurth, E.; Springer, M.; Pleissner, D. Characterization of Selected Microalgae and Cyanobacteria as Sources of Compounds with Antioxidant Capacity. Algal Res. 2021, 53, 102168. [Google Scholar] [CrossRef]
- Horincar, V.B.; Parfene, G.; Bahrim, G. Evaluation of Bioactive Compounds in Extracts Obtained from Three Romanian Marine Algae Species. Rom. Biotechnol. Lett. 2011, 16, 71–78. [Google Scholar]
- Silva, M.E.T.D.; Martins, M.A.; Leite, M.D.O.; Milião, G.L.; Coimbra, J.S.D.R. Microalga Scenedesmus obliquus: Extraction of Bioactive Compounds and Antioxidant Activity. Rev. Ciênc. Agron. 2021, 52, e20196848. [Google Scholar] [CrossRef]
- Li, Q.; Li, L.; Zhang, Y.; Gao, H.; Zhao, Y.; Yu, X. Chemical Inducers Regulate ROS Signaling to Stimulate Astaxanthin Production in Haematococcus pluvialis under Environmental Stresses: A Review. Trends Food Sci. Technol. 2023, 136, 181–193. [Google Scholar] [CrossRef]
- Kobayashi, M. Astaxanthin Biosynthesis Enhanced by Reactive Oxygen Species in the Green Alga Haematococcus pluvialis. Biotechnol. Bioprocess Eng. 2003, 8, 322–330. [Google Scholar] [CrossRef]
- Gauthier, M.R.; Senhorinho, G.N.A.; Scott, J.A. Microalgae under Environmental Stress as a Source of Antioxidants. Algal Res. 2020, 52, 102104. [Google Scholar] [CrossRef]
- Varshney, P.; Mikulic, P.; Vonshak, A.; Beardall, J.; Wangikar, P.P. Extremophilic Micro-algae and their Potential Contribution in Biotechnology. Bioresour. Technol. 2015, 184, 363–372. [Google Scholar] [CrossRef]
- Aburai, N.; Nishida, A.; Abe, K. Aerial Microalgae Coccomyxa Simplex Isolated from a Low-temperature, Low-light Environment, and its Biofilm Growth and Lipid Accumulation. Algal Res. 2021, 60, 102522. [Google Scholar] [CrossRef]
- Barone, G.D.; Ferizović, D.; Biundo, A.; Lindblad, P. Hints at the Applicability of Microalgae and Cyanobacteria for the Biodegradation of Plastics. Sustainability 2020, 12, 10449. [Google Scholar] [CrossRef]
Species | ABTS | DPPH | FRAP | Total Score | Average Score | Rank |
---|---|---|---|---|---|---|
Chlorella sorokiniana | 0.44 | 0.29 | 0.17 | 0.90 | 0.92 | 6 |
SCSIO-46784 a | ||||||
Chlorella sorokiniana | 0.49 | 0.27 | 0.18 | 0.94 | ||
SCSIO-46784 b | ||||||
Euglena gracilis | 0.53 | 0.50 | 0.43 | 1.46 | 2.23 | 1 |
SCSIO-46781 a | ||||||
Euglena gracilis | 1.00 | 1.00 | 1.00 | 3.00 | ||
SCSIO-46781 b | ||||||
Eustigmatos sp. | 0.12 | 0.16 | 0.03 | 0.31 | 0.35 | 14 |
SCSIO-46716 a | ||||||
Eustigmatos sp. | 0.21 | 0.12 | 0.05 | 0.38 | ||
SCSIO-46716 b | ||||||
Nannochloropsis sp. | 0.16 | 0.16 | 0.12 | 0.44 | 0.60 | 10 |
SCSIO-45217 a | ||||||
Nannochloropsis sp. | 0.27 | 0.37 | 0.11 | 0.75 | ||
SCSIO-45217 b | ||||||
Nannochloropsis sp. | 0.33 | 0.23 | 0.10 | 0.66 | 0.95 | 5 |
SCSIO-45006 a | ||||||
Nannochloropsis sp. | 0.51 | 0.58 | 0.14 | 1.23 | ||
SCSIO-45006 b | ||||||
Nannochloropsis sp. | 0.51 | 0.42 | 0.23 | 1.16 | 1.22 | 3 |
SCSIO-45224 a | ||||||
Nannochloropsis sp. | 0.43 | 0.57 | 0.27 | 1.27 | ||
SCSIO-45224 b | ||||||
Phaeodactylum tricornutum | 0.40 | 0.54 | 0.34 | 1.28 | 1.09 | 4 |
SCSIO-45120 a | ||||||
Phaeodactylum tricornutum | 0.48 | 0.26 | 0.15 | 0.89 | ||
SCSIO-45120 b | ||||||
Porphyridium cruentum | 0.10 | 0.08 | 0.08 | 0.26 | 0.46 | 13 |
SCSIO-45949 a | ||||||
Porphyridium cruentum | 0.29 | 0.25 | 0.11 | 0.65 | ||
SCSIO-45949 b | ||||||
Rhodosorus sp. | 0.07 | 0.07 | 0.04 | 0.18 | 0.22 | 16 |
SCSIO-45707 a | ||||||
Rhodosorus sp. | 0.15 | 0.04 | 0.06 | 0.25 | ||
SCSIO-45707 b | ||||||
Asterarcys sp. | 0.31 | 0.30 | 0.21 | 0.82 | 0.66 | 9 |
SCSIO-46548 a | ||||||
Asterarcys sp. | 0.11 | 0.26 | 0.13 | 0.50 | ||
SCSIO-46548 b | ||||||
Asterarcys sp. | 0.36 | 0.30 | 0.27 | 0.93 | 0.74 | 8 |
SCSIO-45829 a | ||||||
Asterarcys sp. | 0.17 | 0.28 | 0.09 | 0.54 | ||
SCSIO-45829 b | ||||||
Scenedesmus sp. | 0.24 | 0.21 | 0.09 | 0.54 | 0.50 | 12 |
SCSIO-46585 a | ||||||
Scenedesmus sp. | 0.22 | 0.17 | 0.06 | 0.45 | ||
SCSIO-46585 b | ||||||
Scenedesmus sp. | 0.27 | 0.29 | 0.23 | 0.79 | 0.52 | 11 |
SCSIO-46579 a | ||||||
Scenedesmus sp. | 0.11 | 0.08 | 0.06 | 0.25 | ||
SCSIO-46579 b | ||||||
Scenedesmus sp. | 0.16 | 0.06 | 0.09 | 0.31 | 0.32 | 15 |
SCSIO-46591 a | ||||||
Scenedesmus sp. | 0.13 | 0.15 | 0.05 | 0.33 | ||
SCSIO-46591 b | ||||||
Arthrospira platensis | 0.37 | 0.59 | 0.13 | 1.09 | 1.44 | 2 |
SCSIO-44012 a | ||||||
Arthrospira platensis | 0.76 | 0.63 | 0.39 | 1.78 | ||
SCSIO-44012 b | ||||||
Uronema sp. | 0.44 | 0.37 | 0.15 | 0.96 | 0.87 | 7 |
SCSIO-46782 a | ||||||
Uronema sp. | 0.39 | 0.24 | 0.14 | 0.77 | ||
SCSIO-46782 b |
X-Variable | Y-Variable | Coefficients | Standard Error | R2 | t Stat | p-Value |
---|---|---|---|---|---|---|
carotenoid content | ABTS value | 2.66 | 1.10 | 0.67 | 2.41 | 1.99 × 10−2 |
phenols content | 3.33 | 0.98 | 3.41 | 1.33 × 10−3 | ||
carotenoid content | DPPH value | 2.03 | 0.64 | 0.72 | 3.18 | 2.59 × 10−3 |
phenols content | 1.93 | 0.56 | 3.42 | 1.30 × 10−3 | ||
carotenoid content | FRAP value | 4.50 | 1.21 | 0.89 | 3.72 | 5.29 × 10−4 |
phenols content | 8.56 | 1.07 | 8.01 | 2.14 × 10−10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, N.; Pei, H.; Xiang, W.; Li, T.; Lin, S.; Wu, J.; Chen, Z.; Wu, H.; Li, C.; Wu, H. Rapid Screening of Microalgae as Potential Sources of Natural Antioxidants. Foods 2023, 12, 2652. https://doi.org/10.3390/foods12142652
Wang N, Pei H, Xiang W, Li T, Lin S, Wu J, Chen Z, Wu H, Li C, Wu H. Rapid Screening of Microalgae as Potential Sources of Natural Antioxidants. Foods. 2023; 12(14):2652. https://doi.org/10.3390/foods12142652
Chicago/Turabian StyleWang, Na, Haiwei Pei, Wenzhou Xiang, Tao Li, Shengjie Lin, Jiayi Wu, Zishuo Chen, Houbo Wu, Chuanmao Li, and Hualian Wu. 2023. "Rapid Screening of Microalgae as Potential Sources of Natural Antioxidants" Foods 12, no. 14: 2652. https://doi.org/10.3390/foods12142652
APA StyleWang, N., Pei, H., Xiang, W., Li, T., Lin, S., Wu, J., Chen, Z., Wu, H., Li, C., & Wu, H. (2023). Rapid Screening of Microalgae as Potential Sources of Natural Antioxidants. Foods, 12(14), 2652. https://doi.org/10.3390/foods12142652