Uncultured Microorganisms and Their Functions in the Fermentation Systems of Traditional Chinese Fermented Foods
Abstract
:1. Introduction
2. Uncultured Microorganisms in the Natural Environment
3. The Reason Why There Are So Many Uncultured Microorganisms in Nature
3.1. Most Uncultured Microorganisms Exist in a Viable but Non-Culturable State
3.2. Inability of Laboratories to Simulate the Native Natural Environment for Microbial Growth
3.3. Low Abundance and Weak Competitiveness
3.4. Neglect of Microbial Interactions in the Environment
3.5. Inability to Adapt to Drastic Changes in Nutrient Environments
4. Uncultured Microorganisms in the Fermentation Systems of Traditional Chinese Fermented Foods
4.1. Traditional Chinese Fermented Foods and Their Microorganisms
4.2. Uncultured Microorganisms in Traditional Chinese Fermented Foods
5. Research Methods for Uncultured Microorganisms in the Fermentation Systems of Traditional Fermented Foods
5.1. Optimization of Cultivation Methods and Culture Media
5.1.1. Enrichment Cultivation
5.1.2. Improved Culture Media
5.2. Integration of High-Throughput Sequencing Technology and Pure Cultivation Methods
5.3. Metabolomics
5.4. Culturomics
5.5. Inducing the Resuscitation of VBNC Microorganisms
5.6. Extending the Cultivation Time
5.7. Co-Cultivation
5.8. Microfluidic Cultivation Techniques
5.9. Cultivation Techniques Based on Cell Sorting
6. Exploitation and Utilization of Uncultured Microorganisms in Traditional Fermented Foods’ Fermentation Systems
6.1. Screening of Microorganisms with Specific Functions for Development and Utilization
6.2. Artificial Construction of Core Microbial Consortia
7. Conclusions and Prospects
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wei, J.L.; Nie, Y.; Du, H.; Xu, Y. How trophic interactions drive the spontaneous construction of microbial community in traditional fermented foods: A review. Microbiol. China 2021, 48, 4412–4424. [Google Scholar]
- Ren, C.; Du, H.; Xu, Y. Advances in microbiome study of traditional Chinese fermented foods. Acta Microbiol. Sin. 2017, 57, 885–898. [Google Scholar]
- Chen, J.R.; Bian, X.; Yang, Y.; Xing, T.L.; Wang, Z.X.; Ren, L.K.; Hu, L.S.; He, L.Y.; Zhang, N. Research Progress on Microbial Diversity of Traditional Fermented Food in China. China Condiment 2022, 47, 205–210. [Google Scholar] [CrossRef]
- Zhu, H.H.; Huang, L.; Li, W.J.; Li, M. Uncultivated microorganisms: It is time to refocus and reflourish to the special issue “Uncultivated Microorganisms”. Acta Microbiol. Sin. 2021, 61, 777–780. [Google Scholar]
- Staley, J.-T.; Konopka, A. Measurement of in Situ Activities of Nonphotosynthetic Microorganisms in Aquatic and Terrestrial Habitats. Annu. Rev. Microbiol. 1985, 39, 321–346. [Google Scholar] [CrossRef]
- Locey, K.J.; Lennon, J.T. Scaling laws predict global microbialdiversity. Proc. Natl. Acad. Sci. USA 2016, 113, 5970–5975. [Google Scholar] [CrossRef]
- Solden, L.; Lloyd, K.; Wrighton, K. The bright side of microbial dark matter: Lessons learned from the uncultivated majority. Curr. Opin. Microbiol. 2016, 31, 217–226. [Google Scholar] [CrossRef] [Green Version]
- Ling, Y.; Li, W.; Tong, T.; Li, Z.; Li, Q.; Bai, Z.; Wang, G.; Chen, J.; Wang, Y. Assessing the Microbial Communities in Four Different Daqus by Using PCR-DGGE, PLFA, and Biolog Analyses. Pol. J. Microbiol. 2020, 69, 27–37. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.B.; Xu, M.Y.; Zhao, Z.J.; Wu, J.Y.; Wang, X.; Sun, X.Y.; Han, S.N.; Pan, C.M. Analysis on bacterial community structure of new and old fermented pit mud of Shedian Liquor. Biotechnol. Biotechnol. Equip. 2022, 36, 653–661. [Google Scholar] [CrossRef]
- Guo, M.Y.; Hou, C.J.; Bian, M.H.; Shen, C.H.; Zhang, S.Y.; Huo, D.Q.; Ma, Y. Characterization of microbial community profiles associated with quality of Chinese strong-aromatic liquor through metagenomics. J. Appl. Microbiol. 2019, 127, 750–762. [Google Scholar] [CrossRef]
- Xu, H.S.; Robert, N.; Singleton, F.L.; Attwell, R.W.; Grimes, D.J.; Colwell, R.R. Survival and viability nonculturable Escherichia coli and Vibriocholerae in the esturarine and marine environment. Microb. Ecol. 1982, 8, 313–323. [Google Scholar] [CrossRef]
- Liu, J.Y.; Deng, Y.; Li, L.; Li, B.; Li, Y.; Zhou, S.; Mark, E.; Xu, Z.B.; Brian, M.P. Discovery and control of culturable and viable but non-culturable cells of a distinctive Lactobacillus harbinensis strain from spoiled beer. Sci. Rep. 2018, 8, 11446. [Google Scholar] [CrossRef] [Green Version]
- Inglis, T.J.; Sagripanti, J.L. Environmental factors that affect the survival and persistence of Burkholderia pseudomallei. Appl. Environ. Microbiol. 2006, 72, 6865–6875. [Google Scholar] [CrossRef] [Green Version]
- Wasfi, R.; Abdellatif, G.R.; Elshishtawy, H.M.; Ashour, H.M. First-time characterization of viable but non-culturable Proteus mirabilis: Induction and resuscitation. J. Cell. Mol. Med. 2020, 24, 2791–2801. [Google Scholar] [CrossRef] [Green Version]
- Ayrapetyan, M.; Williams, T.; Oliver, J.D. Relationship between the Viable but Nonculturable State and Antibiotic Persister Cells. J. Bacteriol. 2018, 200, e00249-18. [Google Scholar] [CrossRef] [Green Version]
- Colwell, R.R. Viable but nonculturable bacteria: A survival strategy. J. Infect. Chemother. Off. J. Jpn. Soc. Chemother. 2000, 6, 121–125. [Google Scholar] [CrossRef]
- Rollins, D.M.; Colwell, R.R. Viable but nonculturable stage of Campylobacter jejuni and its role in survival in the natural aquatic environment. Appl. Environ. Microbiol. 1986, 52, 531–538. [Google Scholar] [CrossRef] [Green Version]
- Dong, K.; Pan, H.X.; Yang, D.; Rao, L.; Zhao, L.; Wang, Y.T.; Liao, X.J. Induction, detection, formation, and resuscitation of viable but non-culturable state microorganisms. Compr. Rev. Food Sci. Food Saf. 2020, 19, 149–183. [Google Scholar] [CrossRef] [Green Version]
- Xiong, Y.Y.; Mo, Z.N.; Qiu, S.Y.; Zeng, X.Y. Research progress on culture methods of uncultured environmental microorganisms. Microbiol. China 2021, 48, 1765–1779. (In Chinese) [Google Scholar]
- Chen, L.Y. Advanced in microbial technology on cultivation. J. Microbiol. 2013, 33, 93–95. (In Chinese) [Google Scholar]
- Vartoukian, S.R. Cultivation strategies for growth of uncultivated bacteria. J. Oral Biosci. 2016, 58, 142–149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faust, k.; Austk, K.; Rase, J. Microbial interactions: From networks to models. Nat. Rev. Microbiol. 2012, 10, 538–550. [Google Scholar] [CrossRef] [PubMed]
- Stams, A.J.M.; Plugge, C.M. Electron transfer in syntrophic communities of anaerobic bacteria and archaea. Nat. Rev. Microbiol. 2009, 7, 568–577. [Google Scholar] [CrossRef] [PubMed]
- Zengler, K.; Zaramela, L.S. The social network of microorganisms-how auxotrophies shape complex communities. Nat. Rev. Microbiol. 2018, 16, 383–390. [Google Scholar] [CrossRef] [PubMed]
- Sokolovskaya, O.M.; Shelton, A.N.; Taga, M.E. Sharing vitamins: Cobamides unveil microbial interactions. Science 2020, 369, eaba0165. [Google Scholar] [CrossRef]
- Ye, J.Y.; Luo, G.Y. Ecological interpretation and related strategies for low culturability of microorganisms. Acta Microbiol. Sin. 2005, 45, 478–482. (In Chinese) [Google Scholar]
- Li, B.B.; Wu, D.N.; Nie, G.X.; Zhou, Y.G.; Cai, M.; Li, W.J. Isolation and culture techniques of uncultured microorganisms: Challenges and opportunities. Microbiol. China 2023, 50, 832–844. [Google Scholar]
- Chen, J.; Wang, C.; Zhu, Q.; Zhang, J. Research status and application prospect of frontier technology of traditional fermented food in China. J. Food Sci. Technol. 2021, 39, 1–7. [Google Scholar]
- Zhai, L.; Yu, X.J.; Feng, H.J.; Zhang, C.W.; Zhou, L.G.; Qiu, S.Q.; Yao, S. Study on bacterial community structure in the brewing habitats of strong flavor Chinese Baijiu from Yibin region. Food Ferment. Ind. 2020, 46, 18–24. [Google Scholar]
- Deng, J.; Wei, C.H.; Bian, M.H.; Huang, Z.G. Archaeal Community Analysis of Pit Mud from Cellars of Different Ages for Luzhou-Flavor Liquor. Food Sci. 2017, 38, 37–42. [Google Scholar]
- Zhang, H.M.; Meng, Y.J.; Wang, Y.L.; Zhou, Q.W.; Li, A.J.; Liu, G.Y.; Li, J.X.; Xing, X.H. Prokaryotic communities in multidimensional bottom-pit-mud from old and young pits used for the production of Chinese Strong-Flavor Baijiu. Food Chem. 2020, 312, 126084. [Google Scholar] [CrossRef]
- Cai, W.C.; Xue, Y.A.; Tang, F.X.; Wang, Y.R.; Yang, S.Y.; Liu, W.H.; Hou, Q.C.; Yang, X.Q.; Guo, Z.; Shan, C.H. The Depth-Depended Fungal Diversity and Non-depth-Depended Aroma Profiles of Pit Mud for Strong-Flavor Baijiu. Front. Microbiol. 2022, 12, 789845. [Google Scholar] [CrossRef]
- Zhang, H.Z.; Xi, D.Z.; Wang, H.; Huang, Y.G.; You, X.L.; Hu, F.; Qiu, S.Y. Diversity of fungal community structure in different rounds fermented grains of stacking fermentation in mechanized brewing of Maotai-flavor Baijiu. China Brew. 2021, 40, 64–69. [Google Scholar]
- Liu, H.M.; Tan, G.X.; Chen, Q.T.; Dong, W.W.; Chen, P.; Cai, K.Y.; Hu, Y.L.; Zhang, W.Y.; Peng, N.; Liang, Y.X. Detection of viable and total fungal community in zaopei of Chinese strong-flavor baijiu using PMA combined with qPCR and HTS based on ITS2 region. BMC Microbiol. 2021, 21, 274. [Google Scholar] [CrossRef]
- Huang, X.N.; Fan, Y.; Lu, T.; Kang, J.M.; Pang, X.N.; Han, B.Z.; Chen, J.Y. Composition and Metabolic Functions of the Microbiome in Fermented Grain during Light-Flavor Baijiu Fermentation. Microorganisms 2020, 8, 1281. [Google Scholar] [CrossRef]
- Gan, S.H.; Yang, F.; Sahu, S.K.; Luo, R.Y.; Liao, S.L.; Wang, H.Y.; Jin, T.; Wang, L.; Zhang, P.F.; Liu, X.; et al. Deciphering the Composition and Functional Profile of the Microbial Communities in Chinese Moutai Liquor Starters. Front. Microbiol. 2019, 10, 1540. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Wang, S.T.; Lu, Z.M.; Zhang, X.J.; Chai, L.J.; Shen, C.H.; Shi, J.S.; Xu, Z.H. Metagenomics unveils microbial roles involved in metabolic network of flavor development in medium-temperature daqu starter. Food Res. Int. 2021, 140, 110037. [Google Scholar] [CrossRef]
- Cai, W.C.; Wang, Y.R.; Ni, H.; Liu, Z.J.; Liu, J.M.; Zhong, J.A.; Hou, Q.C.; Shan, C.H.; Yang, X.Q.; Guo, Z. Diversity of microbiota, microbial functions, and flavor in different types of low-temperature Daqu. Food Res. Int. 2021, 150 Pt A, 110734. [Google Scholar] [CrossRef]
- Fan, G.S.; Sun, B.G.; Fu, Z.L.; Xia, Y.Q.; Huang, M.Q.; Xu, C.Y.; Li, X.T. Analysis of Physicochemical Indices, Volatile Flavor Components, and Microbial Community of a Light-Flavor Daqu. J. Am. Soc. Brew. Chem. 2018, 76, 209–218. [Google Scholar] [CrossRef]
- Wang, C.X.; Tang, J.D.; Qiu, S.Y. Profiling of Fungal Diversity and Fermentative Yeasts in Traditional Chinese Xiaoqu. Front. Microbiol. 2020, 11, 2103. [Google Scholar] [CrossRef]
- Zhao, C.; Su, W.; Mu, Y.; Mu, Y.; Jiang, L. Integrative Metagenomics-Metabolomics for Analyzing the Relationship Between Microorganisms and Non-volatile Profiles of Traditional Xiaoqu. Front. Microbiol. 2021, 11, 617030. [Google Scholar] [CrossRef]
- Zhu, D.; Kang, S.S.; Wang, H.X.; Chen, X.F.; Xu, N. Dynamic changes of microorganism and flavor substances of Shanxi aged vinegar during Yapei post-ripening process. China Brew. 2022, 41, 48–54. [Google Scholar]
- Deng, Y.J. Study on Correlation between Microbial Community Structure Change of Vinegar Brewing and Oxygen Content. Master’s Thesis, Jiangnan University, Wuxi, China, 2020. [Google Scholar]
- Zhang, K.; Zhang, Y.; Li, S.; Li, Y.; Li, B.; Guo, Z.; Xiao, S. Fungal Diversity in Xinjiang Traditional Cheese and its Correlation with Moisture Content. Indian J. Microbiol. 2022, 62, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Zeng, C.; Yang, S.; Hou, Z.; Wang, Y.; Hu, X.; Senoo, K.; Wei, W. Diversity and specificity of the bacterial community in Chinese horse milk cheese. MicrobiologyOpen 2020, 9, e1066. [Google Scholar] [CrossRef] [PubMed]
- Mairiyangu, Y. Reliminary Study on Microbial Diversity and Probiotic Characteristics of Lactic Acid Bacteria in Traditional Fermented Raw Cheese (Suzme) from Northern Xinjiang. Master’s Thesis, Xinjiang Normal University, Urumchi, China, 2021. [Google Scholar]
- Tan, G.; Hu, M.; Li, X.; Pan, Z.; Li, M.; Li, L.; Yang, M. High-Throughput Sequencing and Metabolomics Reveal Differences in Bacterial Diversity and Metabolites Between Red and White Sufu. Front. Microbiol. 2020, 11, 758. [Google Scholar] [CrossRef] [Green Version]
- Tao, K.; Wu, L.W.; Jin, X.F.; Ren, K.; Yu, Z.X.; Liu, T.; Liu, M.W.; Wang, S.X. Analysis of Microbial Diversity in Sufu Using High-throughput Sequencing. Food Sci. 2021, 42, 143–149. [Google Scholar]
- Wei, W.L.; Miyao, S.; Wu, Z.Y.; Zhang, W.X. Analysis of active microbial community structure changes in industrial cowpea pickle fermentation based on meta-transcriptomics technology. Food Ferment. Ind. 2020, 46, 60–65. [Google Scholar]
- Liang, H.; He, Z.; Wang, X.; Song, G.; Chen, H.; Lin, X.; Ji, C.; Zhang, S. Bacterial profiles and volatile flavor compounds in commercial Suancai with varying salt concentration from Northeastern China. Food Res. Int. 2020, 137, 109384. [Google Scholar] [CrossRef]
- Guan, Q.; Zheng, W.; Huang, T.; Xiao, Y.; Liu, Z.; Peng, Z.; Gong, D.; Xie, M.; Xiong, T. Comparison of microbial communities and physiochemical characteristics of two traditionally fermented vegetables. Food Res. Int. 2020, 128, 108755. [Google Scholar] [CrossRef]
- Wen, R.; Li, X.A.; Han, G.; Chen, Q.; Kong, B. Fungal community succession and volatile compound dynamics in Harbin dry sausage during fermentation. Food Microbiol. 2021, 99, 103764. [Google Scholar] [CrossRef]
- Yang, P.; Zhong, G.; Yang, J.; Zhao, L.; Sun, D.; Tian, Y.; Li, R.; Rong, L. Metagenomic and metabolomic profiling reveals the correlation between the microbiota and flavor compounds and nutrients in fermented sausages. Food Chem. 2022, 375, 131645. [Google Scholar] [CrossRef]
- Liu, Z.; Li, J.; Zhou, X.; Wei, B.; Xie, S.; Du, T.; Zhao, X.; Jiang, L.; Xiong, T. The lactic acid bacteria and yeast community of home-made sauerkraut from three provinces in Southwest China. Arch. Microbiol. 2021, 203, 3171–3182. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Qian, M.; Shen, Y.; Qin, X.; Huang, H.; Yang, H.; He, Y.; Bai, W. An high-throughput sequencing approach to the preliminary analysis of bacterial communities associated with changes in amino acid nitrogen, organic acid and reducing sugar contents during soy sauce fermentation. Food Chem. 2021, 349, 129131. [Google Scholar] [CrossRef]
- Jia, Y.; Niu, C.T.; Lu, Z.M.; Zhang, X.J.; Chai, L.J.; Shi, J.S.; Xu, Z.H.; Li, Q. A Bottom-Up Approach to Develop a Synthetic Microbial Community Model: Application for Efficient Reduced-Salt Broad Bean Paste Fermentation. Appl. Environ. Microbiol. 2020, 86, e00306–e00320. [Google Scholar] [CrossRef]
- Sun, Z.B.; Guo, L.Y.; Yan, Y.; Zhang, X.P.; Wang, J.X.; Liu, B.; Xu, J.L.; Ren, Q. Sporosarcina beigongshangi sp. nov., isolated from pit mud of Baijiu. Arch. Microbiol. 2021, 204, 10. [Google Scholar] [CrossRef]
- Wei, Z.; Ma, S.; Chen, R.; Wu, W.; Fan, H.; Dai, L.; Deng, Y. Aminipila luticellarii sp. nov., an anaerobic bacterium isolated from the pit mud of strong aromatic Chinese liquor, and emended description of the genus Aminipila. Int. J. Syst. Evol. Microbiol. 2021, 71, 004710. [Google Scholar] [CrossRef]
- Zhang, X.F.; Wang, H.H.; Sun, X.Y.; Pan, C.M. Lysobacter zhanggongensis sp. nov. Isolated from a Pit Mud. Curr. Microbiol. 2017, 74, 1389–1393. [Google Scholar] [CrossRef] [PubMed]
- Ma, K.; Chen, X.; Guo, X.; Wang, Y.; Wang, H.; Zhou, S.; Song, J.; Kong, D.; Zhu, J.; Dong, W. Bacillus vini sp. nov. isolated from alcohol fermentation pit mud. Arch. Microbiol. 2016, 198, 559–564. [Google Scholar] [CrossRef]
- Sun, Z.B.; Dai, F.; Yan, Y.; Guo, L.Y.; Gu, H.Y.; Xu, J.L.; Ren, Q. Pseudoxanthomonas beigongshangi sp. nov., a novel bacteria with predicted nitrite and nitrate reduce ability isolated from pit mud of Baijiu. Antonie Van Leeuwenhoek 2021, 114, 1307–1314. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Huang, D.; Liu, L.; Zhang, J.; Deng, Y.; Chen, L.; Zhang, W.; Wu, Z.; Fan, A.; Lai, D. Clostridium swellfunianum sp. nov., a novel anaerobic bacterium isolated from the pit mud of Chinese Luzhou-flavor liquor production. Antonie Van Leeuwenhoek 2014, 106, 817–825. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.F.; Yang, Y.; Chai, L.J.; Lu, Z.M.; Zhang, L.Q.; Qin, H.; Yang, P.; Xu, Z.H.; Shen, C.H. Blautia liquoris sp. nov., isolated from the mud in a fermentation cellar used for the production of Chinese strong-flavour liquor. Int. J. Syst. Evol. Microbiol. 2021, 71, 005041. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.R.; Shao, C.B.; Wang, Y.W.; He, M.X.; Ma, K.D.; Wang, H.M.; Kong, D.L.; Guo, X.; Zhou, Y.Q.; Ruan, Z.Y. Paenibacillus vini sp. nov., isolated from alcohol fermentation pit mud in Sichuan Province, China. Antonie Van Leeuwenhoek 2015, 107, 1429–1436. [Google Scholar] [CrossRef]
- Chai, L.J.; Fang, G.Y.; Xu, P.X.; Zhang, X.J.; Lu, Z.M.; Zhang, S.Y.; Wang, S.T.; Shen, C.H.; Shi, J.S.; Xu, Z.H. Novisyntrophococcus fermenticellae gen. nov., sp. nov., isolated from an anaerobic fermentation cellar of Chinese strong-flavour baijiu. Int. J. Syst. Evol. Microbiol. 2021, 71, 004991. [Google Scholar]
- Xu, P.X.; Chai, L.J.; Qiu, T.; Zhang, X.J.; Lu, Z.M.; Xiao, C.; Wang, S.T.; Shen, C.H.; Shi, J.S.; Xu, Z.H. Clostridium fermenticellae sp. nov., isolated from the mud in a fermentation cellar for the production of the Chinese liquor, baijiu. Int. J. Syst. Evol. Microbiol. 2019, 69, 859–865. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Xing, X.; Sun, Z.; Li, J.; Hao, S.; Xu, J. Brevibacterium renqingii sp. nov., isolated from the Daqu of Baijiu. Arch. Microbiol. 2021, 203, 2291–2296. [Google Scholar] [CrossRef]
- Li, D.N.; Huang, W.; Qiu, S.Y. Thermoflavimicrobium daqui sp. nov., a thermophilic microbe isolated from Moutai-flavour Daqu. Int. J. Syst. Evol. Microbiol. 2019, 69, 2709–2716. [Google Scholar] [CrossRef]
- Gao, Z.; Su, C.; Yang, X.; Sun, D.; Zeng, C.; Chen, M.; Hu, W.; Zhang, C. Franconibacter daqui sp. nov., a facultatively alkaliphilic species isolated from a Daqu sample. Int. J. Syst. Evol. Microbiol. 2017, 67, 4962–4966. [Google Scholar] [CrossRef]
- Yao, S.; Zhai, L.; Xin, C.; Liu, Y.; Xu, L.; Zhang, X.; Zhao, T.; Zhang, L.; Cheng, C. Scopulibacillus daqui sp. nov., a thermophilic bacterium isolated from high temperature daqu. Int. J. Syst. Evol. Microbiol. 2016, 66, 4723–4728. [Google Scholar] [CrossRef]
- Zhao, W.; Gu, C.T. Lactobacillus hulanensis sp. nov., isolated from suancai, a traditional Chinese pickle. Int. J. Syst. Evol. Microbiol. 2019, 69, 2147–2152. [Google Scholar] [CrossRef]
- Li, Y.Q.; Gu, C.T. Enterococcus pingfangensis sp. nov., Enterococcus dongliensis sp. nov., Enterococcus hulanensis sp. nov., Enterococcus nangangensis sp. nov. and Enterococcus songbeiensis sp. nov., isolated from Chinese traditional pickle juice. Int. J. Syst. Evol. Microbiol. 2019, 69, 3191–3201. [Google Scholar] [CrossRef]
- Liu, K.F.; Li, X.H.; Hui, F.L. Yarrowia brassicae f.a., sp. nov., a new yeast species from traditional Chinese sauerkraut. Int. J. Syst. Evol. Microbiol. 2018, 68, 2024–2027. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.Q.; Tian, W.L.; Gu, C.T. Weissella sagaensis sp. nov., isolated from traditional Chinese yogurt. Int. J. Syst. Evol. Microbiol. 2020, 70, 2485–2492. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.X.; Gu, C.T. Lactobacillus yilanensis sp. nov., Lactobacillus bayanensis sp. nov., Lactobacillus keshanensis sp. nov., Lactobacillus kedongensis sp. nov., Lactobacillus baiquanensis sp. nov., Lactobacillus jidongensis sp. nov., Lactobacillus hulinensis sp. nov., Lactobacillus mishanensis sp. nov. and Lactobacillus zhongbaensis sp. nov., isolated from Chinese traditional pickle and yogurt. Int. J. Syst. Evol. Microbiol. 2019, 69, 3178–3190. [Google Scholar]
- Ren, X.; Li, M.; Guo, D. Enterococcus Xinjiangensis sp. nov., Isolated from Yogurt of Xinjiang, China. Curr. Microbiol. 2016, 73, 374–378. [Google Scholar] [CrossRef]
- Wu, Y.; Gu, C.T. Leuconostoc falkenbergense sp. nov., isolated from a lactic culture, fermentating string beans and traditional yogurt. Int. J. Syst. Evol. Microbiol. 2021, 71, 004602. [Google Scholar] [CrossRef]
- Niu, L.; Xiong, M.; Tang, T.; Song, L.; Hu, X.; Zhao, M.; Zhang, K. Aeromicrobium camelliae sp. nov., isolated from Pu’er tea. Int. J. Syst. Evol. Microbiol. 2015, 65, 4369–4373. [Google Scholar] [CrossRef]
- Niu, L.; Xiong, M.; Zhu, D.; Song, L.; Tang, T.; Li, W. Pullulanibacillus camelliae sp. nov., isolated from Pu’er tea. Int. J. Syst. Evol. Microbiol. 2016, 66, 4760–4765. [Google Scholar] [CrossRef]
- Niu, L.; Tang, T.; Ma, Z.; Song, L.; Zhang, K.; Chen, Y.; Hua, Z.; Hu, X.; Zhao, M. Paenibacillus yunnanensis sp. nov., isolated from Pu’er tea. Int. J. Syst. Evol. Microbiol. 2015, 65, 3806–3811. [Google Scholar] [CrossRef]
- Wang, D.; Xiang, Y.; Jiang, C.; Zhang, J.; Hua, Z.; Niu, L.; Luo, L. Pueribacillus theae gen. nov., sp. nov., isolated from Pu’er tea. Int. J. Syst. Evol. Microbiol. 2018, 68, 2878–2882. [Google Scholar] [CrossRef]
- Niu, L.; Xiong, M.; Zhang, J.; Xiang, Y.; Song, L.; Hua, Z.; Li, W. Bacillus camelliae sp. nov., isolated from Pu’er tea. Int. J. Syst. Evol. Microbiol. 2018, 68, 564–569. [Google Scholar] [CrossRef]
- Zhi, Y.; Wu, Q.; Xu, Y. Genome and transcriptome analysis of surfactin biosynthesis in Bacillus amyloliquefaciens MT45. Sci. Rep. 2017, 7, 40976. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.L.; Huang, D.; Zhang, W.X. Combining culture-dependent and culture-independent molecular methods for the isolation and purification of a potentially novel anaerobic species from pit mud in a Chinese liquor distillery. J. Inst. Brew. 2016, 122, 754–762. [Google Scholar] [CrossRef]
- Mu, D.S.; Liang, Q.Y.; Wang, X.M.; Lu, D.C.; Shi, M.J.; Chen, G.J.; Du, Z.J. Metatranscriptomic and comparative genomic insights into resuscitation mechanisms during enrichment culturing. Microbiome 2018, 6, 230. [Google Scholar] [CrossRef]
- Gao, J.J.; Liu, G.Y.; Li, A.J.; Liang, C.C.; Ren, C.; Xu, Y. Domination of pit mud microbes in the formation of diverse flavour compounds during Chinese strong aroma-type Baijiu fermentation. LWT-Food Sci. Technol. 2021, 137, 110442. [Google Scholar] [CrossRef]
- Lu, M.M. Cultivating Uncultured Anaerobes from Pit Mud of Chinese Strong-Aroma Type Liquor. Master’s Thesis, Jiangnan University, Wuxi, China, 2020. [Google Scholar]
- Dusséaux, S.; Croux, C.; Soucaille, P.; Meynial-Salles, I. Metabolic engineering of Clostridium acetobutylicum ATCC 824 for the high-yield production of a biofuel composed of an isopropanol/butanol/ethanol mixture. Metab. Eng. 2013, 18, 1–8. [Google Scholar] [CrossRef]
- Han, Y. Purification and Molecular Identification of Anaerobic Bacteria in Gujing Tribute Pit Mud. Master’ Thesis, Harbin Institute of Technology, Harbin, China, 2017. [Google Scholar]
- Gao, F. Mechanism and Application of Nitrite Enzymatic Degradation by Microorganisms in Saukraut in Northeast China. Master’s Thesis, Jiangsu University, Zhenjiang, China, 2019. [Google Scholar]
- Liu, W.R. Studies on the Isolation, Identification and Characteristics of Spoilage Lactic Acid Bacteria in Storage of Chinese Rice Wine. Master’s Thesis, Jiangnan University, Wuxi, China, 2017. [Google Scholar]
- He, G.Q.; Liu, T.J.; Sadiq, F.A.; Gu, J.S.; Zhang, G.H. Insights into the microbial diversity and community dynamics of Chinese traditional fermented foods from using high-throughput sequencing approaches. J. Zhejiang Univ. Sci. B 2017, 18, 289–302. [Google Scholar] [CrossRef] [Green Version]
- Fan, Y.; Huang, X.; Chen, J.; Han, B. Formation of a Mixed-Species Biofilm Is a Survival Strategy for Unculturable Lactic Acid Bacteria and Saccharomyces cerevisiae in Daqu, a Chinese Traditional Fermentation Starter. Front. Microbiol. 2020, 11, 138. [Google Scholar] [CrossRef]
- Rizo, J.; Guillén, D.; Farrés, A.; Díaz-Ruiz, G.; Sánchez, S.; Wacher, C.; Rodríguez-Sanoja, R. Omics in traditional vegetable fermented foods and beverages. Crit. Rev. Food Sci. Nutr. 2020, 60, 791–809. [Google Scholar] [CrossRef]
- Gao, Y.X.; Hou, L.Z.; Gao, J.; Li, D.F.; Tian, Z.L.; Fan, B.; Wang, F.Z.; Li, S.Y. Metabolomics Approaches for the Comprehensive Evaluation of Fermented Foods: A Review. Foods 2021, 10, 2294. [Google Scholar] [CrossRef]
- Lagier, J.C.; Dubourg, G.; Million, M.; Cadoret, F.; Bilen, M.; Fenollar, F.; Levasseur, A.; Rolain, J.M.; Fournier, P.E.; Raoult, D. Culturing the human microbiota and culturomics. Nat. Rev. Microbiol. 2018, 16, 540–550. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.L.; Sun, L.P.; Xing, X.; Sun, Z.B.; Gu, H.Y.; Lu, X.; Li, Z.; Ren, Q. Culturing Bacteria from Fermentation Pit Muds of Baijiu With Culturomics and Amplicon-Based Metagenomic Approaches. Front. Microbiol. 2020, 11, 1223. [Google Scholar] [CrossRef]
- Du, R.B.; Liu, J.; Jiang, J.; Wang, Y.; Ji, X.; Yang, N.; Wu, Q.; Xu, Y. Construction of a synthetic microbial community for the biosynthesis of volatile sulfur compound by multi-module division of labor. Food Chem. 2021, 347, 129036. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.X.; Hou, F.Y.; Pan, Z.Y.; Huang, Z.Y.; Han, N.; Bin, L.; Deng, H.M.; Li, Z.C.; Ding, L.; Gao, H. Optimization of Culturomics Strategy in Human Fecal Samples. Front. Microbiol. 2019, 10, 2891. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hou, F.Y.; Chang, Y.X.; Huang, Z.Y.; Han, N.; Bin, L.; Deng, H.M.; Li, Z.C.; Pan, Z.Y.; Ding, L.; Gao, H. Application of LpxC enzyme inhibitor to inhibit some fast-growing bacteria in human gut bacterial culturomics. BMC Microbiol. 2019, 19, 308. [Google Scholar] [CrossRef] [Green Version]
- Mukamolova, G.V.; Kaprelyants, A.S.; Young, D.I.; Young, M.; Kell, D.B. A bacterial cytokine. Proc. Natl. Acad. Sci. USA 1998, 95, 8916–8921. [Google Scholar] [CrossRef]
- Mukamolova, G.V.; Kormer, S.S.; Kell, D.B.; Kaprelyants, A.S. Stimulation of the multiplication of Micrococcus luteus by an autocrine growth factor. Arch. Microbiol. 1999, 172, 9–14. [Google Scholar] [CrossRef]
- Telkov, M.V.; Demina, G.R.; Voloshin, S.A.; Salina, E.G.; Dudik, T.V.; Stekhanova, T.N.; Mukamolova, G.V.; Kazaryan, K.A.; Goncharenko, A.V.; Young, M.; et al. Proteins of the Rpf (resuscitation promoting factor) family are peptidoglycan hydrolases. Biochem. Biokhimiia 2006, 71, 414–422. [Google Scholar] [CrossRef]
- Sexton, D.L.; Herlihey, F.A.; Brott, A.S.; Crisante, D.A.; Shepherdson, E.; Clarke, A.J.; Elliot, M.A. Roles of LysM and LytM domains in resuscitation-promoting factor (Rpf) activity and Rpf-mediated peptidoglycan cleavage and dormant spore reactivation. J. Biol. Chem. 2020, 295, 9171–9182. [Google Scholar] [CrossRef]
- Zhao, X.; Zhong, J.; Wei, C.; Lin, C.W.; Ding, T. Current perspectives on viable but non-culturable state in foodborne pathogens. Front. Microbiol. 2017, 8, 580. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.X. Preparation of Rpf Protein from New Species of Brewing Microorganism and Its Resuscitation Effect on VBNC Microorganisms in Pit Mud. Master’s Thesis, Beijing Technology and Business University, Beijing, China, 2023. [Google Scholar]
- Pulschen, A.A.; Bendia, A.G.; Fricker, A.D.; Pellizari, V.H.; Galante, D.; Rodrigues, F. Isolation of uncultured bacteria from Antarctica using long incubation periods and low nutritional media. Front. Microbiol. 2017, 8, 1346. [Google Scholar] [CrossRef] [Green Version]
- Choi, E.J.; Beatty, D.S.; Paul, L.A.; Fenical, W.; Jensen, P.R. Mooreia alkaloidigena gen. nov., sp. nov. and Catalinimonas alkaloidigena gen. nov., sp. nov., alkaloid-producing marine bacteria in the proposed families Mooreiaceae fam. nov. and Catalimonadaceae fam. nov. in the phylum Bacteroidetes. Int. J. Syst. Evol. Microbiol. 2013, 63, 1219–1228. [Google Scholar] [CrossRef] [Green Version]
- He, R.H. Bacterial Diversity Analysis of Arctic and Antarctic Environmental Samples, Screening of Pathogen-Antagonistic Bacteria and Identification of Novel Species. Master’s Thesis, Shandong University, Jinan, China, 2019. (In Chinese). [Google Scholar]
- Sun, L.W.; Toyonaga, M.; Ohashi, A.; Matsuura, N.; Tourlousse, D.N.; Meng, X.Y.; Tamaki, H.; Hanada, S.; Cruz, R.; Yamaguchi, T. Isolation and characterization of Flexilinea floccule gen. nov., sp. nov., a filamentous, anaerobic bacterium belonging to the class Anaerolineae in the phylum Chloroflexi. Int. J. Syst. Evol. Microbiol. 2016, 66, 988–996. [Google Scholar] [CrossRef] [PubMed]
- Alain, K.; Querellou, J. Cultivating the uncultured: Limits, advances and future challenges. Extremophiles 2009, 13, 583–594. [Google Scholar] [CrossRef] [PubMed]
- Nichols, D.; Lewis, K.; Orjala, J.; Mo, S.; Ortenberg, R.; O’Connor, P.; Zhao, C.; Vouros, P.; Kaeberlein, T.; Epstein, S.S. Short peptide induces an “uncultivable” microorganism to grow in vitro. Appl. Environ. Microbiol. 2008, 74, 4889–4897. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.F. Research of Marine Microbial Community Characteristics and High-Throughput Cultivating Based on Microencapsulation. Master’s Thesis, Graduate School of Chinese Academy of Sciences, Beijing, China, 2014. (In Chinese). [Google Scholar]
- Xian, W.D.; Salam, N.; Li, M.M.; Zhou, E.M.; Yin, Y.R.; Liu, Z.T.; Ming, Y.Z.; Zhang, X.T.; Wu, G.; Liu, L.; et al. Network-directed efficient isolation of previously uncultivated Chloroflexi and related bacteria in hot spring microbial mats. NPJ Biofilms Microbiomes 2020, 6, 20. [Google Scholar] [CrossRef]
- Fan, N.S.; Qi, R.; Yang, M. Current technical progresses in the cultivation for uncultured microorganism. Chin. J. Appl. Environ. Biol. 2016, 22, 524–530. (In Chinese) [Google Scholar]
- Jiang, C.Y.; Dong, L.B.; Zhao, J.K.; Hu, X.F.; Shen, C.H.; Qiao, Y.X.; Zhang, X.Y.; Wang, Y.P.; Ismagilov, R.F.; Liu, S.J.; et al. High-throughput single-cell cultivation on microfluidic streak plates. Appl. Environ. Microbiol. 2016, 82, 2210–2218. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.T.; Hun, T.T.; Zhan, Y.W.; Fan, T.W.; Zhao, F.; Chao, Y.P.; Sun, Y. Single cell capture and culture of fungi based on microfluidic. Microbiol. China 2019, 46, 522–530. (In Chinese) [Google Scholar]
- Zhang, S.Q.; Wang, J.; Lan, Y.; Yun, J.L.; Chen, J.; He, X.W.; Du, W.B. Isolating and screening for antimicrobial Actinobacteria in interfacial micropipetting-based droplets. Microbiol. China 2021, 48, 325–335. (In Chinese) [Google Scholar]
- Irie, K.; Fujitani, H.; Tsuneda, S. Physical enrichment of uncultured Accumulibacter and Nitrospira from activated sludge by unlabeled cell sorting technique. J. Biosci. Bioeng. 2016, 122, 475–481. [Google Scholar] [CrossRef]
- Abe, T.; Ushiki, N.; Fujitani, H.; Tsuneda, S. A rapid collection of yet unknown ammonia oxidizers in pure culture from activated sludge. Water Res. 2017, 108, 169–178. [Google Scholar] [CrossRef] [PubMed]
- Cross, K.L.; Campbell, J.H.; Balachandran, M.; Campbell, A.G.; Cooper, C.J.; Griffen, A.; Heaton, M.; Joshi, S.; Klingeman, D.; Leys, E.; et al. Targeted isolation and cultivation of uncultivated bacteria by reverse genomics. Nat. Biotechnol. 2019, 37, 1314–1321. [Google Scholar] [CrossRef]
- Fujitani, H.; Ushiki, N.; Tsuneda, S.; Aoi, Y. Isolation of sublineage I Nitrospira by a novel cultivation strategy. Environ. Microbiol. 2014, 16, 3030–3040. [Google Scholar] [CrossRef]
- Xu, J.L.; Sun, L.P.; Sun, Z.B.; Xing, X.; Li, J.; Lu, X.; Huang, Y.; Ren, Q. Pontibacter beigongshangensis sp. nov., Isolated from the Mash of Wine. Curr. Microbiol. 2019, 76, 1525–1530. [Google Scholar] [CrossRef]
- Hao, S.Y.; Ren, Q. Study on bacteriocin production of Pediococus pentosaceus induced by Pontibacter beigongshangensis and reduction the biogenic amines content in Huangjiu. J. Food Sci. Technol. 2021, 39, 88–95. [Google Scholar]
- Li, Y.H.; Ren, Q.; Xu, J.L.; Li, H.; Wang, P.Y.; Wu, W.W.; Chen, Z.X.; Ren, H. Extraction and Stability of the Pontibacter Beigongshangensis Pigment. Food Sci. Technol. 2021, 46, 7–13. [Google Scholar]
- Li, K.; Sang, X.; Zhu, Y.; Zhang, G.; Bi, J.; Hao, H.; Hou, H.; Qian, F. Lentibacillus panjinensis sp. nov., Isolated from Shrimp Paste, a Traditional Chinese Fermented Seafood. Curr. Microbiol. 2020, 77, 1997–2001. [Google Scholar] [CrossRef]
- Tao, Y.; Hu, X.; Zhu, X.; Jin, H.; Xu, Z.; Tang, Q.; Li, X. Production of Butyrate from Lactate by a Newly Isolated Clostridium sp. BPY5. Appl. Biochem. Biotechnol. 2016, 179, 361–374. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Zhou, Y.; Wang, Y.; Wu, T.; Li, X.; Li, D.; Tao, Y. Production of high-concentration n-caproic acid from lactate through fermentation using a newly isolated Ruminococcaceae bacterium CPB6. Biotechnol. Biofuels 2017, 10, 102. [Google Scholar] [CrossRef] [Green Version]
- Li, P.; Tian, W.; Jiang, Z.; Liang, Z.; Wu, X.; Du, B. Genomic Characterization and Probiotic Potency of Bacillus sp. DU-106, a Highly Effective Producer of L-Lactic Acid Isolated from Fermented Yogurt. Front. Microbiol. 2018, 9, 2216. [Google Scholar] [CrossRef]
- Yu, P.; Huang, X.; Ren, Q.; Wang, X. Purification and characterization of a H2O2-tolerant alkaline protease from Bacillus sp. ZJ1502, a newly isolated strain from fermented bean curd. Food Chem. 2019, 274, 510–517. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Yang, Z.; Cheng, F.; Wijffels, R.H.; Xu, Y. Can we control microbiota in spontaneous food fermentation? -Chinese liquor as a case example. Trends Food Sci. Technol. 2021, 110, 321–331. [Google Scholar] [CrossRef]
- Yu, Y.; Li, X.; Zhang, J.; Chai, L.J.; Lu, Z.M.; Xu, Z.H. Lactobacillus jinshani sp. nov., isolated from solid-state vinegar culture of Zhenjiang aromatic vinegar. Antonie Van Leeuwenhoek 2020, 113, 43–54. [Google Scholar] [CrossRef]
- Sun, J. Comparative Genome Analysis of Acetilactobacillus jinshanensis and Its Function in Vinegar Fermentation. Master’s Thesis, Jiangnan University, Wuxi, China, 2021. [Google Scholar]
Traditional Chinese Fermented Foods | Fermentation Systems | Predominant Microorganisms | References | |
---|---|---|---|---|
Fungi | Bacteria | |||
Baijiu | Cellar mud | Saccharomycopsis, Candida, Penicillium, Aspergillus, Pichia, Mortierella, Pseudeurotium, Byssochlamys, Scedosporium | Clostridium, Bacillus, Lysinibacillus, Hydrogenispora, Paenibacillus, Acinetobacter, Petrimonas, Pediococcus, Syntrophomonas, Ruminococcus, Sporosarcina, Sedimentibacter | [31,32,33,34] |
Fermented grains | Saccharomyces, Pichia, Saccharomycopsis, Thermoascus, Candida, Aspergillus, Rhizomucor, Monascus, Byssochlamys | Lactobacillus, Kroppenstedtia, Bacillus, Lactococcus, Weissella, Acetobacter, Thermoleophilum | [33,34,35] | |
Daqu | Aspergillus, Candida, Rhizopus, Rhizomucor, Saccharomycopsis, Monascus | Lactobacillus, Weissella, Bacillus, Lentibacillus, Thermoactinomyces, Kroppenstedtia, Saccharopolyspora | [36,37,38,39] | |
Xiaoqu | Rhizopus, Aspergillus, Candida, Wallemia, Monascus, Xeromyces, Saccharomyces | Staphylococcus, Weissella, Lactobacillus, Bacillus, Enterobacter, Acinetobacter, Corynebacterium | [40,41] | |
Aged vinegar | Cupei | Fusarium, Alternaria, Epicoccum, Aspergillus, Saccharomyces, Eurotium | Lactobacillus, Acetobacter, Bacillus, Acaryochloris, Acetilactobacillus, Agrobacterium, Sphingomonas, Weissella, Gluconacetobacter | [42,43] |
Cheese | Geotrichum, Candida, Pichia, Saccharomyces, Rhodotorula | Streptococcus, Lactobacillus, Lactococcus, Acinetobacter, Enterococcus | [44,45,46] | |
Fermented tofu | Aspergillus, Rhizopus, Mucor, Pichia, Candida, Guehomyces, Schizosaccharomyces | Lactococcus, Acinetobacter, Tetragenococcus, Lactobacillus, Enterococcus, Pseudomonas | [47,48] | |
Sauerkraut | Candida, Pichia, Saccharomyces, Fusarium | Lactobacillus, Pediococcus, Weissella, Lactococcus, Enterobacter | [49,50,51] | |
Sausages | Aspergillus, Candida, Debaryomyces, Lachancea, Millerozyma, Schwanniomyces | Lactobacillus, Acinetobacter, Lactococcus, Macrococcus, Serratia, Weissella | [52,53] |
Traditional Chinese Fermented Food Fermentation System | Genus of New Species | References |
---|---|---|
Cellar mud | Sporosarcina, Aminipila, Lysobacter, Bacillus, Pseudoxanthomonas, Clostridium, Blautia, Paenibacillus, Novisyntrophococcus | [57,58,59,60,61,62,63,64,65,66] |
Daqu | Brevibacterium, Thermoflavimicrobium, Franconibacter, Scopulibacillus | [67,68,69,70] |
Sauerkraut | Lactobacillus, Enterococcus, Yarrowia | [71,72,73] |
Yogurt | Weissella, Lactobacillus, Enterococcus, Leuconostoc | [74,75,76,77] |
Fermented tea | Aeromicrobium, Pullulanibacillus, Paenibacillus, Pueribacillus, Bacillus | [78,79,80,81,82] |
Traditional Chinese Fermented Foods’ Fermentation System | Strains | Functions | References |
---|---|---|---|
Wheat Qu | Pontibacter beigongshangensis | Produce pigment, induce Pediococcus to produce bacteriostatic substance and reduce the content of biogenic amine in Huangjiu | [123,124,125] |
Shrimp paste | Lentibacillus panjinensis | Halophilic, tolerant to 25% salt concentration | [126] |
Cellar mud | Clostridium sp. BPY5 | Produce lactic acid from butyric acid | [127] |
Cellar mud | Ruminococcaceae bacterium CPB6 | High yield of caproic acid from lactic acid | [128] |
Fermented yogurt | Bacillus sp. DU-106 | Produce L-lactic acid, with potential probiotic properties | [129] |
Fermented tofu | Bacillus sp. ZJ1502 | An alkaline protease capable of producing hydrogen peroxide resistance | [130] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Hao, S.; Ren, Q. Uncultured Microorganisms and Their Functions in the Fermentation Systems of Traditional Chinese Fermented Foods. Foods 2023, 12, 2691. https://doi.org/10.3390/foods12142691
Wang J, Hao S, Ren Q. Uncultured Microorganisms and Their Functions in the Fermentation Systems of Traditional Chinese Fermented Foods. Foods. 2023; 12(14):2691. https://doi.org/10.3390/foods12142691
Chicago/Turabian StyleWang, Jiaxuan, Shuyue Hao, and Qing Ren. 2023. "Uncultured Microorganisms and Their Functions in the Fermentation Systems of Traditional Chinese Fermented Foods" Foods 12, no. 14: 2691. https://doi.org/10.3390/foods12142691
APA StyleWang, J., Hao, S., & Ren, Q. (2023). Uncultured Microorganisms and Their Functions in the Fermentation Systems of Traditional Chinese Fermented Foods. Foods, 12(14), 2691. https://doi.org/10.3390/foods12142691