Arsenic Contents, Speciation and Toxicity in Germinated Rice Alleviated by Selenium
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical and Standards
2.2. Sample Collection and Preparation
2.3. Total Arsenic Analysis
2.4. As Speciation Analysis
2.5. Effect of Selenium Application on Arsenic Uptake in Germinated Rice
- (1)
- Control: 3 mg/L arsenite without selenium addition;
- (2)
- Se0.3: 3 mg/L arsenite with addition of selenium at 0.3 mg/kg;
- (3)
- Se0.6: 3 mg/L arsenite with addition of selenium at 0.6 mg/kg;
- (4)
- Se1.2: 3 mg/L arsenite with addition of selenium at 1.2 mg/kg;
- (5)
- Se2.4: 3 mg/L arsenite with addition of selenium at 2.4 mg/kg.
3. Results and Discussion
3.1. Total Arsenic Content in Different Parts of Rice Grain
3.2. Determination of Arsenic Species in Different Parts of Rice Grain
3.3. Total Arsenic and Speciation in Co-Exposure As and Se in Germinated Rice
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Boffetta, P. Carcinogenicity of trace elements with reference to evaluations made by the International Agency for Research on Cancer. Scand. J. Work Environ. Health 1993, 19, 67–70. [Google Scholar]
- Monrad, M.; Ersbøll, A.K.; Sørensen, M.; Baastrup, R.; Hansen, B.; Gammelmark, A.; Tjønneland, A.; Overvad, K.; Raaschou-Nielsen, O. Low-level arsenic in drinking water and risk of incident myocardial infarction: A cohort study. Environ. Res. 2017, 154, 318–324. [Google Scholar] [CrossRef]
- Hsu, L.-I.; Hsieh, F.-I.; Wang, Y.-H.; Lai, T.-S.; Wu, M.-M.; Chen, C.-J.; Chiou, H.-Y.; Hsu, K.-H. Arsenic Exposure From Drinking Water and the Incidence of CKD in Low to Moderate Exposed Areas of Taiwan: A 14-Year Prospective Study. Am. J. Kidney Dis. 2017, 70, 787–797. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.-J.; McGrath, S.P.; Meharg, A.A. Arsenic as a Food Chain Contaminant: Mechanisms of Plant Uptake and Metabolism and Mitigation Strategies. Annu. Rev. Plant Biol. 2010, 61, 535–559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Syu, C.-H.; Huang, C.-C.; Jiang, P.-Y.; Lee, C.-H.; Lee, D.-Y. Arsenic accumulation and speciation in rice grains influenced by arsenic phytotoxicity and rice genotypes grown in arsenic-elevated paddy soils. J. Hazard. Mater. 2015, 286, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.-Y.; Zeng, J.-Y.; Ding, S.; Li, J.; Liu, X.; Guan, D.-X.; Ma, L.Q. Arsenic contents, speciation and bioaccessibility in rice grains from China: Regional and variety differences. J. Hazard. Mater. 2022, 437, 129431. [Google Scholar] [CrossRef]
- Tenni, D.; Martin, M.; Barberis, E.; Beone, G.M.; Miniotti, E.; Sodano, M.; Zanzo, E.; Fontanella, M.C.; Romani, M. Total As and As Speciation in Italian Rice as Related to Producing Areas and Paddy Soils Properties. J. Agric. Food Chem. 2017, 65, 3443–3452. [Google Scholar] [CrossRef]
- Carey, M.; Meharg, C.; Williams, P.; Marwa, E.; Jiujin, X.; Farias, J.G.; De Silva, P.M.C.S.; Signes-Pastor, A.; Lu, Y.; Nicoloso, F.T.; et al. Global Sourcing of Low-Inorganic Arsenic Rice Grain. Expo. Health 2020, 12, 711–719. [Google Scholar] [CrossRef] [Green Version]
- EU. COMMISSION REGULATION (EU) 2023/465 of 3 March 2023 Amending Regulation (EC) No 1881/2006 as Regards Maximum Levels of Arsenic in Certain Foods. Off. J. Eur. Union 2023, 68, 51–54. [Google Scholar]
- Kumarathilaka, P.; Seneweera, S.; Meharg, A.; Bundschuh, J. Arsenic accumulation in rice (Oryza sativa L.) is influenced by environment and genetic factors. Sci. Total Environ. 2018, 642, 485–496. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, A.K.; Srivastava, S.; Mishra, S.; D’Souza, S.F.; Suprasanna, P. Identification of redox-regulated components of arsenate (AsV) tolerance through thiourea supplementation in rice. Metallomics 2014, 6, 1718–1730. [Google Scholar] [CrossRef] [Green Version]
- Moore, K.L.; Schröder, M.; Lombi, E.; Zhao, F.-J.; McGrath, S.P.; Hawkesford, M.J.; Shewry, P.R.; Grovenor, C.R.M. NanoSIMS analysis of arsenic and selenium in cereal grain. New Phytol. 2010, 185, 434–445. [Google Scholar] [CrossRef]
- Bhadwal, S.; Sharma, S. Selenium alleviates physiological traits, nutrient uptake and nitrogen metabolism in rice under arsenate stress. Environ. Sci. Pollut. Res. 2022, 29, 70862–70881. [Google Scholar] [CrossRef] [PubMed]
- Paniz, F.P.; Pedron, T.; Procópio, V.A.; Lange, C.N.; Freire, B.M.; Batista, B.L. Selenium Biofortification Enhanced Grain Yield and Alleviated the Risk of Arsenic and Cadmium Toxicity in Rice for Human Consumption. Toxics 2023, 11, 362. [Google Scholar] [CrossRef] [PubMed]
- Kaur, S.; Singh, D.; Singh, K. Effect of selenium application on arsenic uptake in rice (Oryza sativa L.). Environ. Monit. Assess. 2017, 189, 430. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, F.; Liu, D.; Chen, K.; Du, B.; Qiu, X.; Xu, J.; Xing, D. Distribution characteristics of selenium, cadmium and arsenic in rice grains and their genetic dissection by genome-wide association study. Front. Genet. 2022, 13, 1007896. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.-K.; Xu, X.; Tang, Z.; Tang, Z.; Huang, X.-Y.; Wirtz, M.; Hell, R.; Zhao, F.-J. A molecular switch in sulfur metabolism to reduce arsenic and enrich selenium in rice grain. Nat. Commun. 2021, 12, 1392. [Google Scholar] [CrossRef]
- Li, P.; Pan, Y.; Fang, Y.; Du, M.; Pei, F.; Shen, F.; Xu, B.; Hu, Q. Concentrations and health risks of inorganic arsenic and methylmercury in shellfish from typical coastal cities in China: A simultaneous analytical method study. Food Chem. 2019, 278, 587–592. [Google Scholar] [CrossRef]
- Moulick, D.; Ghosh, D.; Chandra Santra, S. Evaluation of effectiveness of seed priming with selenium in rice during germination under arsenic stress. Plant Physiol. Biochem. 2016, 109, 571–578. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA); Arcella, D.; Cascio, C.; Gómez Ruiz, J.Á. Chronic dietary exposure to inorganic arsenic. EFSA J. 2021, 19, e06380. [Google Scholar]
- Upadhyay, M.K.; Shukla, A.; Yadav, P.; Srivastava, S. A review of arsenic in crops, vegetables, animals and food products. Food Chem. 2019, 276, 608–618. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Tang, Z.; Wang, P.; Zhao, F.-J. Geographical variations of cadmium and arsenic concentrations and arsenic speciation in Chinese rice. Environ. Pollut. 2018, 238, 482–490. [Google Scholar] [CrossRef]
- Nookabkaew, S.; Rangkadilok, N.; Mahidol, C.; Promsuk, G.; Satayavivad, J. Determination of Arsenic Species in Rice from Thailand and Other Asian Countries Using Simple Extraction and HPLC-ICP-MS Analysis. J. Agric. Food Chem. 2013, 61, 6991–6998. [Google Scholar] [CrossRef]
- Liang, F.; Li, Y.; Zhang, G.; Tan, M.; Lin, J.; Liu, W.; Li, Y.; Lu, W. Total and speciated arsenic levels in rice from China. Food Addit. Contam. Part A 2010, 27, 810–816. [Google Scholar] [CrossRef] [PubMed]
- Bissen, M.; Frimmel, F.H. Speciation of As(III), As(V), MMA and DMA in contaminated soil extracts by HPLC-ICP/MS. Fresenius J. Anal. Chem. 2000, 367, 51–55. [Google Scholar] [CrossRef] [PubMed]
- Llorente-Mirandes, T.; Calderón, J.; López-Sánchez, J.F.; Centrich, F.; Rubio, R. A fully validated method for the determination of arsenic species in rice and infant cereal products. Pure Appl. Chem. 2012, 84, 225–238. [Google Scholar] [CrossRef] [Green Version]
- Spanu, A.; Langasco, I.; Barracu, F.; Deroma, M.A.; López-Sánchez, J.F.; Mara, A.; Meloni, P.; Pilo, M.I.; Estrugo, À.S.; Spano, N.; et al. Influence of irrigation methods on arsenic speciation in rice grain. J. Environ. Manag. 2022, 321, 115984. [Google Scholar] [CrossRef]
- Lombi, E.; Scheckel, K.G.; Pallon, J.; Carey, A.M.; Zhu, Y.G.; Meharg, A.A. Speciation and distribution of arsenic and localization of nutrients in rice grains. New Phytol. 2009, 184, 193–201. [Google Scholar] [CrossRef]
- Meharg, A.A.; Williams, P.N.; Adomako, E.; Lawgali, Y.Y.; Deacon, C.; Villada, A.; Cambell, R.C.J.; Sun, G.; Zhu, Y.-G.; Feldmann, J.; et al. Geographical Variation in Total and Inorganic Arsenic Content of Polished (White) Rice. Environ. Sci. Technol. 2009, 43, 1612–1617. [Google Scholar] [CrossRef]
- Akter, K.F.; Owens, G.; Davey, D.E.; Naidu, R. Arsenic Speciation and Toxicity in Biological Systems. In Reviews of Environmental Contamination and Toxicology; Ware, G.W., Albert, L.A., Crosby, D.G., de Voogt, P., Hutzinger, O., Knaak, J.B., Mayer, F.L., Morgan, D.P., Park, D.L., Tjeerdema, R.S., et al., Eds.; Springer: New York, NY, USA, 2005; pp. 97–149. [Google Scholar]
- Dias, F.F.; Allen, H.E.; Guimarães, J.R.; Taddei, M.H.T.; Nascimento, M.R.; Guilherme, L.R.G. Environmental behavior of arsenic(III) and (V) in soils. J. Environ. Monit. 2009, 11, 1412–1420. [Google Scholar] [CrossRef]
- Weber, A.M.; Baxter, B.A.; McClung, A.; Lamb, M.M.; Becker-Dreps, S.; Vilchez, S.; Koita, O.; Wieringa, F.; Ryan, E.P. Arsenic speciation in rice bran: Agronomic practices, postharvest fermentation, and human health risk assessment across the lifespan. Environ. Pollut. 2021, 290, 117962. [Google Scholar] [CrossRef] [PubMed]
- Ruangwises, S.; Saipan, P.; Tengjaroenkul, B.; Ruangwises, N. Total and Inorganic Arsenic in Rice and Rice Bran Purchased in Thailand. J. Food Prot. 2012, 75, 771–774. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, R.; Awasthi, S.; Tripathi, P.; Mishra, S.; Dwivedi, S.; Niranjan, A.; Mallick, S.; Tripathi, P.; Pande, V.; Tripathi, R.D. Selenite modulates the level of phenolics and nutrient element to alleviate the toxicity of arsenite in rice (Oryza sativa L.). Ecotoxicol. Environ. Saf. 2017, 138, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Dixit, G.; Singh, A.P.; Dwivedi, S.; Srivastava, S.; Mishra, K.; Tripathi, R.D. Selenate mitigates arsenite toxicity in rice (Oryza sativa L.) by reducing arsenic uptake and ameliorates amino acid content and thiol metabolism. Ecotoxicol. Environ. Saf. 2016, 133, 350–359. [Google Scholar] [CrossRef]
- Pokhrel, G.R.; Wang, K.T.; Zhuang, H.; Wu, Y.; Chen, W.; Lan, Y.; Zhu, X.; Li, Z.; Fu, F.; Yang, G. Effect of selenium in soil on the toxicity and uptake of arsenic in rice plant. Chemosphere 2020, 239, 124712. [Google Scholar] [CrossRef]
- Singh, R.; Upadhyay, A.K.; Singh, D.P. Regulation of oxidative stress and mineral nutrient status by selenium in arsenic treated crop plant Oryza sativa. Ecotoxicol. Environ. Saf. 2018, 148, 105–113. [Google Scholar] [CrossRef]
- Neppolian, B.; Doronila, A.; Ashokkumar, M. Sonochemical oxidation of arsenic(III) to arsenic(V) using potassium peroxydisulfate as an oxidizing agent. Water Res. 2010, 44, 3687–3695. [Google Scholar] [CrossRef]
- Li, W.-Y.; Chen, B.-X.; Chen, Z.-J.; Gao, Y.-T.; Chen, Z.; Liu, J. Reactive Oxygen Species Generated by NADPH Oxidases Promote Radicle Protrusion and Root Elongation during Rice Seed Germination. Int. J. Mol. Sci. 2017, 18, 110. [Google Scholar] [CrossRef]
- Müller, K.; Linkies, A.; Vreeburg, R.A.; Fry, S.C.; Krieger-Liszkay, A.; Leubner-Metzger, G. In vivo cell wall loosening by hydroxyl radicals during cress seed germination and elongation growth. Plant Physiol. 2009, 150, 1855–1865. [Google Scholar] [CrossRef] [Green Version]
Step | Power (W) | Temperature (°C) | Ramp Time (min) | Hold Time (min) |
---|---|---|---|---|
1 | 1600 | 130 | 10 | 5 |
2 | 1600 | 160 | 5 | 5 |
3 | 1600 | 185 | 5 | 5 |
Instrument Conditions | Parameters | |
---|---|---|
HPLC | Chromatographic Column | Hamilton PRPX-100 (250 mm × 4 mm) |
Flow Rate | 1.0 mL/min | |
Injection Volume | 50 μL | |
Mobile Phase | 12.5 mmol/L sodium dihydrogen phosphate buffer, pH = 8.0 | |
ICP-MS | Radio-Frequency Power | 1550 W |
Collision Gas Flow Rate | He, 4.0 mL/min | |
Carrier Gas Flow Rate | 0.85 L/min | |
Plasma Gas Flow Rate | 15 L/min | |
Sampling Depth | 8 mm | |
Sampling/Skimmer Cone | Nickel, 1.0 mm/0.4 mm | |
Scanning Mode | Peak-hopping | |
Acquisition Mode | Time-resolved data acquisition | |
Dwell Mode | 300 ms | |
Integration Mode | Peak area | |
Isotope Monitored | 75 As |
Rice Varieties | Sample Number | Rice Hull (mg/kg) | Rice Bran (mg/kg) | Brown Rice (mg/kg) | Polished Rice (mg/kg) |
---|---|---|---|---|---|
1–15 | 19 | 0.82 (0.46~1.54) | 1.58 (1.00~2.53) | 0.40 (0.33~0.63) | 0.28 (0.21~0.37) |
16–26 | 19 | 0.68 (0.54~0.89) | 0.90 (0.58~1.25) | 0.27 (0.23~0.31) | 0.21 (0.03~0.28) |
Rice Varieties | Arsenic Species | Rice Hull (mg/kg) | Rice Bran (mg/kg) | Brown Rice (mg/kg) | Polished Rice (mg/kg) |
---|---|---|---|---|---|
1–15 | As(III) | 0.53 (0.39~0.91) | 0.65 (0.39~1.22) | 0.19 (0.13~0.28) | 0.12 (0.086~0.16) |
As(V) | 0.11 (0.011~0.022) | 0.44 (0.28~0.76) | 0.082 (0.037~0.11) | 0.070 (0.036~0.11) | |
DMA | 0.19 (0.055~0.43) | 0.50 (0.33~0.88) | 0.13 (0.083~0.24) | 0.10 (0.071~0.13) | |
MMA | - | - | - | - | |
16–26 | As(III) | 0.40 (0.33~0.51) | 0.38 (0.26~0.51) | 0.12 (0.11~0.15) | 0.099 (0.012~0.13) |
As(V) | 0.12 (0.043~0.17) | 0.21 (0.10~0.41) | 0.057 (0.03~0.077) | 0.045 (0.0085~0.068) | |
DMA | 0.16 (0.067~0.28) | 0.32 (0.21~0.44) | 0.091 (0.062~0.126) | 0.067 (0.0096~0.099) | |
MMA | - | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, X.; Hong, J.; Zhang, J.; Gao, Y.; Li, P.; Yuan, J.; Li, G.; Xing, C. Arsenic Contents, Speciation and Toxicity in Germinated Rice Alleviated by Selenium. Foods 2023, 12, 2712. https://doi.org/10.3390/foods12142712
Zheng X, Hong J, Zhang J, Gao Y, Li P, Yuan J, Li G, Xing C. Arsenic Contents, Speciation and Toxicity in Germinated Rice Alleviated by Selenium. Foods. 2023; 12(14):2712. https://doi.org/10.3390/foods12142712
Chicago/Turabian StyleZheng, Xin, Jing Hong, Jingyi Zhang, Yulong Gao, Peng Li, Jian Yuan, Guanglei Li, and Changrui Xing. 2023. "Arsenic Contents, Speciation and Toxicity in Germinated Rice Alleviated by Selenium" Foods 12, no. 14: 2712. https://doi.org/10.3390/foods12142712
APA StyleZheng, X., Hong, J., Zhang, J., Gao, Y., Li, P., Yuan, J., Li, G., & Xing, C. (2023). Arsenic Contents, Speciation and Toxicity in Germinated Rice Alleviated by Selenium. Foods, 12(14), 2712. https://doi.org/10.3390/foods12142712