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Abstract: Foodborne illness is exacerbated by novel and emerging pathotypes, persistent contamina-
tion, antimicrobial resistance, an ever-changing environment, and the complexity of food production
systems. Sporadic and outbreak events of common foodborne pathogens like Shiga toxigenic E. coli
(STEC), Salmonella, Campylobacter, and Listeria monocytogenes are increasingly identified. Methods
of controlling human infections linked with food products are essential to improve food safety and
public health and to avoid economic losses associated with contaminated food product recalls and
litigations. Bacteriophages (phages) are an attractive additional weapon in the ongoing search for
preventative measures to improve food safety and public health. However, like all other antimicrobial
interventions that are being employed in food production systems, phages are not a panacea to all
food safety challenges. Therefore, while phage-based biocontrol can be promising in combating
foodborne pathogens, their antibacterial spectrum is generally narrower than most antibiotics. The
emergence of phage-insensitive single-cell variants and the formulation of effective cocktails are
some of the challenges faced by phage-based biocontrol methods. This review examines phage-based
applications at critical control points in food production systems with an emphasis on when and
where they can be successfully applied at production and processing levels. Shortcomings associated
with phage-based control measures are outlined together with strategies that can be applied to
improve phage utility for current and future applications in food safety.

Keywords: food production system; food safety; foodborne disease; bacteriophage; single-cell variants

1. Introduction

The number of foodborne infections is ever-increasing despite legislative and microbio-
logical prevention strategies to ensure food safety and public health. Emerging pathotypes,
sanitizer-resistant microbes, and interconnections along the supply chain, such as pro-
duction environment, contaminated processing equipment/surfaces, and asymptomatic
food handlers, are considered major challenges contributing to an increase in foodborne
infections [1]. Food-producing animals (cattle, swine, and chickens), leafy greens, soil, and
water are the main bacterial sources of foodborne infections. The risks of transmission
of foodborne diseases are influenced by environmental conditions such as temperature,
moisture, and various agricultural and industrial practices (Figure 1).

Shiga toxigenic E. coli (STEC), Salmonella, Campylobacter, and Listeria monocytogenes
are recognized as the most urgent threats in food-producing systems and are frequently
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associated with foodborne disease outbreaks. Recent examples include a Listeria outbreak
in South Africa which recorded 728 patients and 193 mortalities [2]. The case–control and
trace-back analysis suggested that polony, a ready-to-eat processed meat, was the source of
infection [2]. In Canada, an E. coli O157 outbreak linked to romaine lettuce was reported
and traced to the Yuma growing region in the United States [3]. This outbreak recorded
eight cases of illnesses with no deaths. In China, a Salmonella outbreak was reported
in Changzhi County [4]. Salmonella recovered from this outbreak was associated with a
multidrug-resistant strain, resulting in 11 cases of illness but no deaths. In England, a
Campylobacter outbreak was linked to the consumption of raw milk in 2016 [5], affecting
sixty-nine individuals with no mortalities.
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Various decontamination strategies such as the use of chemical sanitizers (sodium
dichloroisocyanurate, quaternary ammonium compounds, chlorine, peracetic acid, and
lactic acid), heat treatment (pasteurization), washing (water), and chilling are commonly
used during food processing to reduce the risk of pathogens entering the food chain [6,7].
Bacteriophage-based interventions are being implemented as an additional hurdle or
in synergy with these current interventions. For example, ListShield™ is a cocktail of
bacteriophages that targets L. monocytogenes and is the first purified phage food additive
used commercially to control this pathogen in ready-to-eat meat and poultry products and
in food processing environments [8]. SalmoFreshTM, specific for Salmonella, can be used
directly on poultry, fish and shellfish, and fresh and processed fruits and vegetables [9]. A
comprehensive list of commercial bacteriophage (phage) products used for the biocontrol
of foodborne pathogens in various foods has been reviewed [10]. These commercial phages
are “customized combinations” that are of a narrow spectrum, given the vast genetic
diversity of foodborne pathogens in different environments and food types. Regardless,
the application of phages as biocontrol agents is promising in the food production system.

In this article, we review factors impacting cross-contamination, such as occurrence,
prevalence levels, infective dose and persistence associated with foodborne pathogens, and
the critical control points within the food production system where the risk of contamination
is likely highest, with a focus on where and how bacteriophages can be successfully applied
at the food production and processing levels.

2. Factors Impacting Cross-Contamination of Pathogens Occurrence, Virulence,
and Pathogenicity

Shiga-toxigenic E. coli O157 (STEC) super-shedding incidents, where some cattle
within a herd can shed >104 CFU/g in feces [11], can contribute to a high prevalence of
the pathogen in production farms and subsequently in processing facilities. Compounded
by a low infective dose (10–100 cells), STEC infections can cause life-threatening diseases
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such as hemolytic uremic syndrome (HUS), which can lead to kidney failure, especially in
pregnant women, children, the elderly, and the immunocompromised [12]. STEC strains
can survive harsh food processing conditions and serve as hot spots for persistent cross-
contamination events in food processing environments. Although STEC O157:H7 has
been the predominant serogroup associated with HUS worldwide, cases with non-O157
serogroups such as O26, O111, O103, O121, O45, and O145 have also been increasingly
associated with foodborne illness, accounting for about 83% of all STEC infections in
humans from 2000 to 2010 in the United States [13]. STEC strains can grow over a pH
range of 4.4–10.0 [14] and temperatures ranging from 6 to 40 ◦C [15]. Some strains are
heat-tolerant [16], whereas others have demonstrated strong biofilm-forming abilities on
food processing surfaces like stainless steel [17,18] and polystyrene [19]. Thus, STEC O157
and a variety of non-O157 STEC strains are pathogens of priority, for which there is an
urgent need to develop control strategies to reduce or completely prevent their adulteration
of the food chain.

Listeria monocytogenes, the causative agent of human listeriosis, is associated with
bacteremia, endocarditis, and infection of the central nervous system [20]. L. monocytogenes
is a ubiquitous pathogen that thrives in diverse environments such as soil, water, various
food products, and in the digestive tract of humans and animals [21,22]. It can survive and
grow over a wide range of temperatures (2–45 ◦C) and pH (4.6–9.5) and in the presence
of high salt concentrations [23,24]. Because of its ubiquitous distribution and robustness,
there is a high chance that naturally persistent strains can be introduced into the food
processing system through cross-contamination. Additionally, the ability of L. monocytogenes
to form biofilms enables them to survive and persist on food processing surfaces [25].
The infectious dose of L. monocytogenes is not known but is likely lower in susceptible
individuals like immunocompromised patients, the elderly, infants, and pregnant women
than in healthy individuals [26]. In addition, L. monocytogenes may be a transient resident
in the gastrointestinal tract of humans, with about 2–10% of human carriers lacking clinical
symptoms [27]. These assertions are in line with L. monocytogenes outbreaks, during
which the immunocompromised, neonates, and pregnant women are most likely to be
infected [2,23,28].

Campylobacter jejuni is one of the causative agents of human campylobacteriosis char-
acterized by mild diarrhea to serious conditions like bloody diarrhea, myocarditis, celiac
disease, acute cholecystitis, and colorectal cancer [29]. Poultry meat contaminated with
C. jejuni is the main route of infection in humans [30,31]. Unlike L. monocytogenes, which
is stress resistant, C. jejuni is very susceptible to environmental stressors such as cold
temperatures and acidic (pH of <4.9) conditions [31]. While these susceptibilities could
be helpful in limiting the survival of C. jejuni and thus reducing the chances of cross-
contamination, it has a high prevalence in poultry. C. jejuni is part of the normal microflora
in the gastrointestinal tract of poultry, where prevalence can be 100% in broiler chick-
ens at slaughter [32,33]. Furthermore, C. jejuni numbers are high (105–108 CFU/mL) in
slaughterhouse carcass water [31], suggesting that cross-contamination of carcasses is in-
evitable. Additionally, C. jejuni may be well protected from harsh environmental conditions
in biofilms [34]. The infectious dose of C. jejuni ranges from 400 to 106 cells in healthy
young individuals and is strain-specific [35]. However, the infectious dose may be lower
in susceptible/immunocompromised individuals with underlying conditions. Therefore,
measures to reduce C. jejuni in processing plants are imperative to prevent human disease.

Salmonella Typhimurium, the causative agent of salmonellosis, is characterized by
various clinical diseases such as gastroenteritis, enteric fever (typhoid fever), and bac-
teremia [36]. S. Typhimurium is a microorganism that thrives at a neutral pH. However,
S. Typhimurium is capable of tolerating acidic (pH 3.3) conditions [37]. S. Typhimurium is
widespread in nature and associated with cross-contamination in diverse food sources such
as poultry [38], pork [39], beef [40], and fruits and vegetables [41]. The association with mul-
tiple food sources may enable it to circulate between different hosts, the environment, and
humans through close contact or poor hygienic conditions during food handling. Salmonella
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can survive in low-moisture foods such as powdered milk, chocolate, peanut butter, infant
foods, cereal, and bakery products over extended periods of time [42]. Salmonella is known
to form biofilms on glass slides [43] and stainless steel [44,45]. The ability to form biofilms
enhances the ability of Salmonella to survive in food-processing plants. The infectious dose
of Salmonella is estimated to be 100 cells or higher [46] and can vary depending on the
susceptibility of individuals.

Overall, it appears that high microbial load, persistence, infectious dose, and risk
groups (susceptible individuals in the population) associated with the different pathogens
directly correspond to cross-contamination events in the food production system. Although
phenotypic variations such as the occurrence of persister cells within biofilms can impede
control measures at any stage from production through to the processing plant, it is
important to examine the random phenotypic diversity within a homogeneous single-
cell population [47–49]. Phenotypic heterogeneity in a single-cell clonal population is
known to confer resistance to antibiotics [50,51] as a result of the occurrence of two distinct
subpopulations, a condition referred to as bi-stability [52]. These two subpopulations help
ensure the survival of the population during environmental changes, a condition known
as bet-hedging [53]. Therefore, to reduce the number of bacterial pathogens in the food
production and processing environment, the possibility of single-cell phenotypic variants
throughout the processing environment must be considered.

3. Bacteriophages

Bacteriophages (phages) are viruses that infect and kill bacteria. Some phages are host-
specific, whereas others can infect multiple species or bacterial genera [54]. The host range
of a phage determines the phage–host interaction events such as attachment, infection, and
lysis, traits which are important in their application against target pathogen(s). For example,
a narrow-spectrum phage is preferred for the control of a target pathogen in a live animal
to avoid affecting commensal beneficial bacteria. In contrast, in food processing plants, a
phage with a broad host range is preferred to efficiently reduce or eliminate the diversity
of strains within a pathogenic species. It has been shown that under suitable conditions,
a broad-spectrum phage can revert to a narrow state and vice versa [55]. Therefore, a
cautious approach is required to delineate the phage host range [56], as well as employing
phages with a broad or narrow host range for specific biocontrol applications.

Phages are ubiquitous in nature, have been isolated from food products like yogurt
and cheese [57], and are naturally found in the human gut [58]. This suggests that humans
encounter phages either directly or indirectly in daily life. Moreover, oral administration
of phages is not known to cause disease in animals [59,60]. Also, because phages are
ubiquitously distributed, they can provide an important diverse repertoire of control agents
which can be exploited for control of pathogens in environments that possess differing
selective pressures like temperature, salinity, pH, and UV radiation.

Lysogenic phages infect bacterial hosts, can integrate into the host genome, and alter
the genotypic and phenotypic characteristics of the host. For example, the spread of Shiga
toxin by E. coli O157:H7 is associated with a lambdoid bacteriophage [61], in which the
toxin is only expressed when the lysogen becomes lytic during a stress response [49,62].
Lysogenic phages (lambdoid phage) are also being explored for phage-based DNA vaccine
delivery in humans [63,64].

Lytic phages infect and kill their bacterial host through lysis. There is an ever-growing
interest in lytic phages as control agents against targeted foodborne pathogens, including,
Listeria, Salmonella, Campylobacter, and STEC [65–68]. The increasing interest in lytic phages
as biocontrol agents follows the growing concerns with antibiotic-resistant bacteria [69,70]
and an increased number of studies that are demonstrating the efficacy of phage therapy.
Some of these are reflected in the recent increase in the number of phage clinical stud-
ies [71,72], along with the increased sequence-based characterization of phages through
comparative genomics and proteomics [73–75].
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Other than the biological traits of the phage, such as lysogenic or lytic capacity, various
environmental factors may affect phage efficacy and viability. For example, external
environmental conditions such as UV radiation, pH, temperature, and salt concentration
can affect phage activity [76–81]. The level of inactivation depends on the intensity of
these factors and may differ for different phages. For example, Iriarte, Balogh, Momol,
Smith, Wilson, and Jones [76] found that phage populations associated with the surface
of tomato leaves plummeted during the months when levels of UV radiation were the
highest. Also, the activity of a lambdoid phage (λ-gt11) was reduced at extreme pHs of
11.8 or 2.0 but remained active after 24 h of exposure to pHs of 3–11 [82]. In contrast, the
activity of a myovirus, JD007, was completely lost at a pH of 4 after 2 h of exposure at room
temperature [83]. Some phages can survive temperature shifts; ≥75% of phages isolated
from hot springs in California remained viable at 0 ◦C, whereas 18 to 30% remained intact
at 105 ◦C [84]. Variations in phage viability are likely driven by the high genetic diversity
among phages [81], geographic location, and experimental conditions. Therefore, getting a
phage with the desired stable characteristic for target interventions requires both in vitro
and field testing. Nevertheless, tailed phages such as T4 and T7 may be preferred, as
shown by Ackermann et al. [85], as they remain stable over long periods (10–32 years) of
refrigerated storage.

Phage–host exposure can result in phage-insensitive isolates [86]. However, it is pos-
sible that phage-insensitive strains are endemic within target pathogen populations as a
result of previous exposure to environmental selective pressures. Phenotype-associated
subpopulations, referred to as the phenotypic switch, have been reported in L. monocyto-
genes exposed to hostile environmental conditions [87]. The presence of phage-insensitive
strains within a population is an important consideration for the development of targeted
interventions in the phage arms race against foodborne pathogens.

4. Food-Production Animals, Leafy Green Produce, and Foodborne Pathogens

Food-production animals and plants are adapting to ever-changing environmental
conditions like temperature, moisture, and availability of nutrients. The same applies to
foodborne pathogens in the broader environment and in the gut of animals. Temperature,
moisture, and availability of nutrients can facilitate pathogen growth, adaptation, and trans-
mission to food-production animals through the food they eat or by wind, contaminated
water, or when manure is used as a fertilizer to produce leafy greens. Unlike broad-
spectrum antibiotics, which can be administered empirically [88,89] to control pathogens,
no single phage preparation can control the entire range of pathogens that can potentially
adulterate food. The formulation of phage cocktails has been proposed to be one possible
solution to overcoming the limitation of a narrow host range [90]. However, developing a
phage cocktail with consideration of the different mechanisms that can influence receptor
binding to targeted cells requires an in-depth knowledge of phage diversity [91], as an-
tagonistic interference can impact cocktail efficacy. Also, the phage latent period, the time
required for a phage to induce host cell lysis [92], is important for cocktail concoction as a
differential infection cycle of phages within a cocktail may select for the progeny of phages
with the shortest latent period in the presence of a target pathogen defying the goal of the
cocktail. As a result, even though phages offer the potential to control foodborne pathogens,
optimizing phages for empiric application in livestock and food processing environments
can be difficult and may require substantial research and development efforts. Therefore,
target control of a pathogen would be highly preferred, with formulated cocktails possibly
reducing the emergence of phage-resistant bacterial mutants as a result of their ability to
target multiple receptors in pathogens [90].

4.1. Application of Phages for Target Control of Foodborne Pathogens in Food-Production Animals

The prevalence and persistence of foodborne pathogens on the hide and within the
gut of food-producing animals on farms (pre-harvest) is the primary source of cross-
contamination in the food chain. On-farm phage-based control strategies can successfully



Foods 2023, 12, 2734 6 of 24

reduce target pathogen populations on and within livestock before slaughter [93,94]. In-
cidence and persistence of a target pathogen can vary among various animals, animals
within a herd, or in different sites in the same animal. For example, C. jejuni is known
to be prevalent in broiler chickens at slaughter, with all birds being carriers on some
farms [32,33]. In cattle herds, up to 20% of the animals have been identified as E. coli
O157 super-shedders [11,95]. Differentiating super-shedding cattle within a herd from
transient shedders can be challenging and may require substantial sampling events over
a long period [96] before treatment with phages. Various environments within the cattle
gut, such as the rumen, cecum, colon, and rectum, may be colonized by a target pathogen,
with the site within the digestive tract influencing the efficacy of phage-based interven-
tions. Rumen physiological conditions such as pH can inactivate phages [97], whereas
pathogen colonization and biofilm formation at the rectum may shelter targeted cells from
phages [98]. Even though phage encapsulation has been shown to protect phages at a
pH of 3.0 for 20 min of exposure [99], an in-depth understanding of the factors that affect
phage stability from storage to delivery is required [100]. Individual phages or cocktails
need to be optimized to infect targeted pathogens across various environments and in
biofilms. Also, phenotypic variants which may arise within the target microbial population
due to responses to environmental pressures in food-producing animals (Figure 2) can
further compromise phage-based control strategies. Some subpopulations within the target
population may survive phage treatment (Figure 3). The use of comparative genomics
can differentiate, track, and provide valuable insight into plausible cell variants within a
targeted pathogen population before phage application. This approach can also be used to
select phages or concoct a phage cocktail with a broad host range to include phenotypic
variants as part of the targeted pathogen population.
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Several studies (n = 15) have explored the potential of phages to control E. coli O157:H7,
Campylobacter, and Salmonella in food animals on farms (Table 1). In most studies, a single
phage or a cocktail of phages was orally administered to the animal. In finisher broiler
chickens, a ≥2 log reduction in Campylobacter or Salmonella at different phage dosages
(106–1012 PFU/mL) was obtained (Table 1), which can contribute to a lower microbial load
entering the processing stage. Except for the studies of Kittler et al. [101], Clavijo et al. [102],
and Arthur et al. [103] that were performed in commercial farms and lairage targeting
C. jejuni, Salmonella, and E. coli O157:H7, respectively, other studies (n = 12) concentrated
on germ-free small-scaled in vivo controlled experiments. For example, the prevalence
of bacteria among individuals in the natural environment is due to the level of natural
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exposure to the pathogen. In contrast, germ-free small-scaled controlled experiments
deliver an equal dose to individuals at a preselected site within the digestive tract. Even
though a challenge dose can be used to establish a baseline of phage-mediated pathogen
reduction [104], differential pathogen colonization amongst individuals, differences in
immune responses, nutrient availability, and the composition of the intestinal microbiome
should be considered [105]. Second, a mid-log short-term culture (≥18 h) grown under
optimal growth temperature (37 ◦C) on nutrient broth (Luria-Bertani or tryptic soy broth)
administered in germ-free small-scaled controlled settings are likely to have traits that differ
from environmental strains. Third, mid-log cultures from controlled settings may lack cell
variants compared to environmental strains that are exposed to fluctuations in temperature
and moisture. In this context, the efficacy of phage therapy is likely to be overestimated in
controlled settings as mid-log growing cultures are known to be susceptible to phages [106]
as compared to natural settings where cell variants may compromise phage efficacy.
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Figure 3. (A) Phage interaction with phenotypic variants of a pathogen within food-production
animal/produce; (B) phage treatment of a pathogen population in a processing environment; and
(C) combining pathogen populations on animals/crops with that in food processing environments
after phage treatment may result in phage-insensitive strains.

Phage applications in either human therapeutic or agricultural sectors require a better
comprehension of phage stability, viability, and survivability in diverse and hostile envi-
ronments [81]. Except for three of the phages used in the experimental studies (Table 1),
all were members of the Myoviridae (n = 9) or Siphoviridae (n = 3) of the order Caudovirales.
Most phages were isolated from the target animal, and although their selection may be
biased due to their ease of isolation and lytic potential, they have been shown to be stable
and remain infective within the target animal during treatment. Some phages from the
abovementioned families are known to be highly resistant to adverse environments, such as
in desert surface sand exposed to high and low temperatures [107]. Extreme environments
such as this may be a rich source of phages for the biocontrol of pathogens under a variety
of food processing conditions.

Most studies that have used phages to control L. monocytogenes in food animals have
focused on ready-to-eat beef, pork, and poultry. These foods typically undergo a period of
cold storage which can enrich L. monocytogenes if it is present [20]. Moreover, a case–control
study by Nightingale et al. [108] showed that L. monocytogenes can also proliferate in cattle,
as levels were much higher in feces than in feed or the farm environment. Silage has been
shown to be a common source of L. monocytogenes and targeting this source with phages
may be an effective means of preventing on-farm transmission. Targeting feed can be
more cost-effective as opposed to the direct control of L. monocytogenes in the host animal.
However, the phage/cocktail should be selected with respect to its ability to withstand a
wide range of temperatures and pH for a maximum efficacy that encompasses both the
conditions in silage and those in the intestinal tract of the host animal.
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Table 1. A summary of studies of bacteriophages used to control foodborne pathogens in/on food animals.

Target Animal Target Bacteria Phage/Family Phage/Mixture Phage Dose Phage Delivery
Route Settings Efficacy Reference

24-day-old broiler
chicken C. jejuni CP20 and

CP30A/Myoviridae Cocktail 107 PFU/mL Oral In vivo controlled
A reduction of up to

2.4 log10 CFU/g 2 days
post-treatment

[94]

9-day-old broiler
chicken C. jejuni

NCTC12673,
12674, 12678, and

12672/Nd1
Single and cocktail 107 PFU/mL Oral In vivo controlled

A 2.8 log10 CFU/g
reduction 21 days

post-treatment
[109]

36-day-old
commercial broiler

chicken
C. jejuni

NCTC12672,
12673, 12674, and
12678/Myoviridae

Cocktail 7.2 and 7.9
PFU/mL Oral Commercial farm A 3.2 log10 CFU/g

reduction at slaughter [101]

25-day-old broiler
chicken C. jejuni CP220/Myoviridae Single 107 and 109

PFU/mL
Oral In vivo controlled

A 2.0 log10 CFU/g
reduction 2 days
post-treatment

[110]

Sheep E. coli O157:H7 CEV1 and
CEV2/Siphoviridae Single and cocktail 1011 PFU/mL Oral In vivo controlled

Cocktail had 99.9%
reduction compared to

99% in single 2 days post
inoculation

[111]

One-day-old Ross
broiler chicks C. coli and C. jejuni

phiCcoIBB35,
phiCcoIBB37 and

phiC-
coIBB12/Myoviridae

Cocktail 106 or 107

PFU/mL
Oral Commercial farm

A 2.0 log10 CFU/g
reduction 2 days
post-treatment

[112]

16-month- and
8–9-year-old cattle E. coli O157:H7 e11/2 and

e4/1c/Myoviridae Cocktail 1011 PFU/mL Oral In vivo controlled
No significant difference

compared to control
2 days post inoculation

[113]

≥1-year-old cattle
(steer) E. coli O157:H7 rV5, wV7, wV8,

and wV11/Nd1 Cocktail
1010 PFU/bolus

and 1011

PFU/feed

Oral bolus or
phage mixed in

cattle feed
In vivo controlled

The duration of shedding
was reduced by 14 days in

bolus-fed steers as
compared with control

steers, but phage did not
reduce E. coli O157:H7

shedding overall

[99]
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Table 1. Cont.

Target Animal Target Bacteria Phage/Family Phage/Mixture Phage Dose Phage Delivery
Route Settings Efficacy Reference

Cattle before
passing through

the lairage
E. coli O157:H7 Finalyse®/Nd1 Cocktail 1010 PFU/gallon

of water
Sprayed on hide Commercial farm

No significant reduction
after 3 days of application

compared to control
[103]

Cattle E. coli O157:H7
rV5, wV7, wV8,

and
wV11/Myoviridae

Cocktail 1011 PFU/mL Oral and rectal In vivo controlled
No significant difference
compared to control over
83 days post inoculation

[114]

Six-month-old
Holstein steers E. coli O157:H7 KH1 and

SH1/Nd1 Cocktail 1011 PFU/mL
Recto-anal

junction In vivo controlled

Reduction in the average
number of E. coli O157:H7

among phage-treated
steers compared to

control steers

[115]

38-day-old broiler
chicken

S. enterica
serotypes

Enteritidis,
Typhimurium, and

Hadar

φ151/Myoviridae,
φ10, and

φ25/Siphoviridae
Single 109 or 1011

PFU/mL
Oral In vivo controlled

Phage φ151 had a
4.2 log10 CFU/g
reduction 1 day

post-treatment for both S.
Enteritidis and

Typhimurium. Phage φ10,
a 2.19 log10 CFU/g

reduction for S.
Typhimurium.

No reduction by φ25 on
Hadar

[116]

18-day-old
commercial broiler

chicken
Salmonella

SalmoFREE® (ϕ
San15, ϕ San23, ϕ

San24, and ϕ
San25)/Myoviridae

Cocktail 108 PFU/mL Oral In vivo controlled
100% reduction on day

33 post-treatment
compared to control

[102]

One-day-old
broiler chicken S. Typhimurium Φst1/Siphoviridae Single 1010 or 1012

PFU/mL
Intracloacal In vivo controlled

100% reduction after
1 day post-treatment
compared to control

[117]

4-day-old broiler
chicken

S. enterica serotype
Enteritidis

CNPSA1,
CNPSA3, and
CNPSA4/Nd1

Single 1011 PFU/mL Oral In vivo controlled
A reduction of 3.5 orders
of magnitude of CFU/g

5 days post treatment
[118]

Nd1 = not determined in the studies analyzed.
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4.2. Application of Phages for Controlling Foodborne Pathogens in Leafy Green Vegetables at
Pre-Harvest Level

Vegetables are the main sources of plant fiber, minerals, and vitamins necessary for a
nutritious and healthy diet. Like food-producing animals, leafy green vegetables (LGVs)
such as spinach, lettuce, cabbage, and Swiss chard are potential vehicles of foodborne
pathogens. Most LGVs are consumed fresh, hence increasing the risk that they may be
a transmission source of pathogens involved in foodborne outbreaks [119]. STEC O157,
Salmonella, Campylobacter, and L. monocytogenes are often associated with foodborne disease
outbreaks through LGVs [120–125]. Contaminated farmland, manure, and irrigation water
contaminated with feces from livestock and wildlife are the primary sources of LGV contam-
ination at the farm [126,127]. Phage-based control targeting these sources of contamination
has the potential to reduce the risk of LGVs being contaminated with pathogens.

To our knowledge, there is no evidence of a commercial field-scale experiment using
phages for the pre-harvest control of STEC O157, Salmonella, Campylobacter, or L. monocyto-
genes in LGVs. LGVs are usually grown in large areas and are prone to various plausible
sources of contamination, like contaminated farmland, irrigation water, and animal feces
through runoff waters. Also, identifying a contaminated area of the farm and pathogen
location on or in the LGVs can be challenging for localized and target application of
phages [128]. Finally, spraying the entire farm with phages using irrigation water as a
carrier is presently economically infeasible due to the large quantities of phages that would
be required.

5. Food-Processing Environment

According to Rosenquist et al. [129], the incidence of Campylobacter-related illnesses
linked with the consumption of contaminated food could be reduced 30 times if the number
of pathogens on food-animal carcasses was decreased by 2 log during processing. In addi-
tion to the potential contamination of meat and LVGs during harvest, pathogens can also
originate from the food processing environment, poor food handling, and contaminated
food contact surfaces. Using phage/cocktails to kill pathogens in the food processing envi-
ronment and on food contact surfaces before and after food processing could substantially
reduce the risk of food contamination.

Several studies have used phages to control STEC O157 and non-O157, Salmonella,
Campylobacter, and L. monocytogenes in food processing environments. Reinhard et al. [130]
used a Listeria-specific phage to successfully reduce Listeria populations in a processing
plant (Table 2). To our knowledge, data using this approach to control resident environmen-
tal foodborne pathogens are limited. It is possible that resident foodborne pathogens in
the processing plant on non-food contact surfaces can contaminate food products through
the generation of aerosols [131]. Control measures that target resident pathogen strains
are necessary because they can lower the pathogen heterogeneity at the processing level
and subsequent contaminations. Although controlling foodborne pathogens on non-food
contact surfaces can be promising, it can be laborious and challenging as to where and
how the phage/cocktail can be applied. This is because the applied phage/cocktail needs
to encounter all surfaces within the processing plant. Also, differential colonization and
growth state of pathogens within the plant may require different concentrations of phages
or a cocktail for effective control. For example, it is known that actively growing bacterial
cells in small numbers are eliminated by phages, whereas larger colonies survive and retain
a mixture of sensitive and resistant variants [106]. Likewise, a better understanding of the
host density and the extent of host–phage interaction that influences the degree of post-
treatment phage proliferation is required. A chemotactic-based, target-specific engineered
phage could be a means of overcoming conditions where phage efficacy is dependent on
random bacteria–phage contact.

Experimentally contaminated food/food surface studies indicate that foodborne
pathogens can form mono-species biofilms on food contact surfaces and that a popu-
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lation reduction of 1–5.4 log10 CFU/cm2 at varied temperature conditions is achievable
using a single phage type or cocktails (Table 2). These findings indicate the potential
of using phage/cocktails to reduce mono-species biofilm cells on food contact surfaces.
However, biofilm formation in an experimentally controlled setting may not necessarily
reflect that in processing plants. Also, incompletely eradicated biofilm cells can regrow after
treatment [132], resulting in downstream contamination. Multiple bacterial species [133],
nutrient availability [134], and temperature [135] are factors that can affect biofilm forma-
tion and vary between experimentally controlled studies and the natural environment.
Therefore, their role in biofilm formation by a foodborne pathogen on food surfaces in
processing plants needs to be clearly understood before phage control measures are em-
ployed. Also, a biofilm architecture consisting of an exopolysaccharide matrix and multiple
bacterial layers can confer resistance [136] by affecting phage diffusion within the biofilms.
This is contrary to the expectation that because phages are non-motile, they will be more
efficient killers of localized than dispersed bacteria cells, as phage progeny can easily infect
nearby cells. One way that phages can gain access to cells within biofilms is through the pro-
duction of depolymerases [137,138] that can degrade the biofilm matrix. Another challenge
to phage efficacy in biofilms is that persister cells, which are metabolically inactive within
biofilms, lack the resources like amino acids, ATP, polymerases, and ribosomes that phages
require for replication [139]. In this context, phages can infect these non-growing cells
but cannot produce progeny for further infection of additional target cells. In a scenario
where non-growing cells are infected by phages, it can be dubbed ‘held at gunpoint’, as the
reactivation of cell growth is on approach to triggering phage activity [140]. Though phage-
based application is a potential method for controlling foodborne pathogens, identifying
and optimizing phages for target eradication of biofilms may call for substantial research
and development efforts. Genetically engineered phages that are specifically developed
to combat biofilms may be integral to the success of phage therapy in food production
environments [141].
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Table 2. Summarized studies on bacteriophages used to control foodborne pathogens in food processing environments and on food contact surfaces.

Environment or Surface Type Target Bacteria Phage/Family Phage/Mixture Phage Dose Bacteria Dose Mode of
Application

Temperature
Condition Efficacy Reference

Ready-to-eat food
manufacturing area (door

frames/seals, floors/curbing,
wheels/casters,

walls/windows/curbing,
drains, catch pan, water pipe,
freezer doors/door seals, etc.)

L. monocytogenes PhageGuard
Listex™ Cocktail 107 and

108 PFU/mL
Not indicated Spraying 4 and 20 ◦C

Moderate application of 107

resulted in a 66% reduction
in listeria prevalence at both

4 and 20 ◦C, whereas at
concentration 108, a

reduction of 43 and 32% was
obtained at 4 and 20 ◦C,

respectively.

[130]

Glass C. jejuni (NCTC
11168 and PT14) CP8 and CP30 Single 106 or

109 PFU/mL

105 CFU/mL
(initial cells for

biofilm
formation)

Spot inoculation 37 ◦C

A 1 to 3 log10 CFU/cm2

reduction 24 h after phage
treatment compared with

control.

[142]

Stainless steel and
polyurethane thermoplastic

belting

Cocktail of L.
monocytogenes and

L. innocua
P100 Cocktail 107 and

108 PFU/cm2
104–105

CFU/cm2 Spot inoculation 4 and 20 ◦C

Overall, a reduction of
1.27–3.33 and

1.17–2.76 log10 CFU/cm2 on
stainless steel and

polyurethane thermoplastic
belting, respectively, with a
higher reduction at a high

phage dilution of 108.

[143]

Spinach harvester blade Cocktail of E. coli
O157:H7

Phages not
specified Cocktail 108 PFU/mL 105–106

CFU/mL
Spraying 22 ◦C

Reduction in biofilm
populations by 4.5 log10 CFU
on blades after 2 h of phage

treatment.

[144]

Stainless steel
L. monocytogenes
(19CO9, 19DO3

and 19EO3)

LiMN4L,
LiMN4p, and

LiMN17

Single or
cocktail 109 PFU/mL 108 CFU/mL Immersion 15 ◦C

Single phages reduced
biofilm cells by 3–4.5 log

units and cocktail by 3.8–5.4
and log10 CFU/cm2.

[65]

Stainless steel, rubber, and
MBEC biofilm devices

S. Enteritidis
(ATCC13076) and
S. Typhimurium

(ATCC14028)

BP 1369 and BP
1370/Myoviri-

dae and
Podoviridae,

respectively.

Single 108 PFU/mL
Initial inoculum
of 105 CFU/mL Immersion 10 and 30 ◦C

A reduction in biofilm cells
by 3.0, 2.0, and 3.0 log

CFU/cm2 on stainless steel,
rubber, and an MBEC device.

[145]
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Table 2. Cont.

Environment or Surface Type Target Bacteria Phage/Family Phage/Mixture Phage Dose Bacteria Dose Mode of
Application

Temperature
Condition Efficacy Reference

Stainless steel chips, ceramic
tile chips, and high-density

polyethylene chips

Cocktail of
O157:H7 (EK27,

ATCC 43895, and
472)

BEC8 Cocktail 106 PFU/mL 106, 105, and 104

CFU/chip
Spot inoculation 4, 12, 23, and

37 ◦C

No biofilm survivors were
detected (detection limit 10

CFU/chip) after 1 h of
treatment at 12, 23, and

37 ◦C.

[146]

Polystyrene and stainless steel S. Enteritidis PVP-SE Single MOIs (0.1, 1,
and 10) 104 CFU/mL Immersion 4 and 22 ◦C

A 2–5 log10 CFU/cm2

reduction with a higher
killing efficiency at room

temperature.

[147]

Stainless steel E. coli O113:H21
and O154:H10 SA21RB Single 1013 PFU/mL

106 and 105

CFU/mL,
respectively

Immersion 22 ◦C

A reduction in biofilm cells
by 2.5 and 2.1 log10

CFU/cm2 for O113:H21 and
O154:H10, respectively, for

24 h biofilm after 3 h of
phage treatment.

[68]

Polystyrene microplate S. Enteritidis CW1, CW11,
M4, and M10 Cocktail Not indicated

102 CFU/mL for
developing

biofilm. Mature
biofilm (48 h)
number not

indicated

Immersion 37 ◦C

A reduction in cells in the
developing biofilm and

mature biofilm by 0.79 and
0.4 log10 CFU/cm2,

respectively.

[148]
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Food product types, available nutrients, moisture content, and temperature abuse
during food processing can promote pathogen proliferation, increasing the risk of further
pathogen presence in ready-to-eat (RTE) foods. Control interventions on food products can
reduce colonization and the downstream flow of foodborne pathogens. Chlorine is com-
monly used to reduce pathogens during the wash stage in food processing plants. However,
there are concerns that chlorine can inactivate phages [143]. In contrast, Ding et al. [149]
found that residual chlorine on lettuce leaves did not reduce the lytic potential of E. coli
O157:H7 phages. This may suggest that the effect of residual chlorine on phages needs to
be evaluated before both approaches are employed within food processing environments.
The isolation and identification of sanitizer-resistant phages could facilitate the synergistic
application of chlorine and phages. Also, the application of phages on food/food contact
surfaces before the wash step is important for the desired outcome [130].

A number of experimental studies have used phages to control STEC O157 and non-
O157, Salmonella, Campylobacter, and L. monocytogenes in food products and leafy green
vegetables (Table 3). These results from both commercial and non-commercial phages are
promising, with log reduction (0.39–4.54) after phage applications at different temperatures
(−20 to 30 ◦C), dosages (107–1010 PFU/mL), bacterial densities (low level 102–104 CFU/mL,
and high level 105–107 CFU/mL), time points, application method, and duration of phage
exposure (5 min to 7 days). These are important factors for consideration during phage
treatment. For example, phage-resistant mutant strains can develop after a longer exposure
time [150], whereas phage effectiveness can also be affected by shorter exposure times
if it has a long infection cycle. Spraying phages on food is generally less effective than
if the food is immersed in a phage solution [151]. This response has been attributed
to increased Brownian motion with immersion than spraying. Second, phage efficacy
is influenced by the host–concentration [106] and is also temperature-dependent [152],
with a greater reduction in the numbers of target bacteria when they are present at lower
concentrations and at 21 ◦C than at 4 ◦C. However, phage activity has been reported to be
active against Salmonella associated with chicken meat at −20 ◦C within the first 24 h of
storage [153]. This suggests that phages need to be isolated and characterized for use at
a specific temperature to optimize their efficacy against targeted pathogens. Additional
factors, including experimental design, food type, bacterial host, and phage type, may
influence the efficacy of the phage, requiring a full understanding of these factors in relation
to the targeted pathogen.
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Table 3. Summarized studies on bacteriophages used to control foodborne pathogens in food products and on leafy green vegetables.

Food Type Target Bacteria Phage/Family Phage/Mixture Phage Dose Bacteria Dose Mode of
Application

Temperature
Condition Efficacy Reference

Beef E. coli O157 EP75 and EP335 Cocktail 107 or
108 PFU/cm2 105 CFU/cm2 Spot inoculation 4 ◦C

Reductions of 0.8–1.1 log10
CFU/cm2 and 0.9–1.3 log10

CFU/cm2, respectively.
[154]

Raw meatball E. coli O157:H7 M8AEC16 Single 1010 PFU/mL 102, 104 and
106 CFU/g

Immersion 4 ◦C A reduction of 0.69–2.09 log10
CFU/g after 5 h of application. [155]

Beef and lettuce E. coli O157:H7 EcoShield™ Cocktail 109 PFU/mL 103 CFU/g Spray 4 ◦C

Reduced the level of bacteria by
≥94% and 87% after 5 min

contact time in meet and lettuce,
respectively.

[156]

Beef E. coli O157:H7 PS5/Myoviridae Single 1010 PFU/mL 107 CFU/mL Spot inoculation 4 and 24 ◦C

A 2.4 log10 CFU/piece after 24 h
post application at 4 ◦C, whereas

a 3.5 log10 CFU/piece after 6 h
post application at 24 ◦C.

[157]

Chicken S. Typhimurium PS5/Myoviridae Single 1010 PFU/mL 107 CFU/mL Spot inoculation 4 and 24 ◦C

A 1.2 log10 CFU/piece after 24 h
post application at 4 ◦C and a
1.6 log10 CFU/piece after 6 h

post application at 24 ◦C.

[157]

Beef (coarse and
fine ground)

S. enterica (ATCC
51741), S.

Heidelberg (ATCC
8326), S. Newport

(ATCC 27869), and S.
Enteritidis C (Se 13)

Salmonelex™ (S16
and the

FO1a)/Myoviridae
Cocktail 108 and 109 104 CFU/g Spot inoculation 5 ◦C

Overall, a reduction of 1.6 log10
CFU/g was observed after the

application of 109 phage.
[158]

Ground red meat
trim and poultry

S. Infantis (ATCC
51741), S.

Heidelberg (ATCC
8326), S. Newport

(ATCC 27869), and S.
Enteritidis (SE13)

Salmonelex™ (S16
and the

FO1a)/Myoviridae
Cocktail 107 and 108 107 CFU/g Tumbling 4 ◦C

Overall, phage application on
trim reduced 0.8 and 1 log10

CFU/g of Salmonella in ground
pork and beef, respectively,

whereas a reduction of 0.9 and
1.1 log10 CFU/g occurred in
ground turkey and chicken,

respectively.

[66]

Chicken skin

Cocktail of S.
Typhimurium, S.

Heidelberg, and S.
Enteritidis

SalmoFresh™ Cocktail 109 PFU/mL 103 CFU/g

Immersion in
water followed by
spot inoculation

and in chlorine (30
ppm) followed by
phage treatment

4 ◦C

A reduction of 0.9–1 log10
CFU/cm2 with phage only.

Whereas a greater reduction of
1.6 and 1.8 log10 CFU/cm2 after

2 and 24 h. after chlorine and
phage treatment.

[159]
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Table 3. Cont.

Food Type Target Bacteria Phage/Family Phage/Mixture Phage Dose Bacteria Dose Mode of
Application

Temperature
Condition Efficacy Reference

Chicken
S. Typhimurium, S.
Newport, S., and

Thompson
Salmonelex™ Cocktail 107 PFU/cm2 104 CFU/cm2

Spread in sterile
filtered water or
sterile tap water

4 ◦C

A reduction of 0.39 log10
CFU/cm2 and 0.67 log10

CFU/cm2 after 30 min and 8 h
post-inoculation, respectively.

[104]

Meat L. monocytogenes Halal-certified
List-shield 109 PFU/mL

Concentration
not indicated Spot inoculation 4 ◦C

A reduction of 2.3 log10 was
recorded in phage-treated beef

samples during the storage
period of 15 days.

[160]

Fresh salmon meat L. monocytogenes SH3-3/Myoviridae Single 108 CFU/mL 105 CFU/g Spot inoculation 4 ◦C
A reduction of 2.67, 4.14, and

4.54 log10 after 24, 48, and 72 h of
phage addition, respectively.

[161]

Chicken

Cocktail of L.
monocytogenes

strains ATCC 19113,
ATCC19115, and

ATCC 13932

ListShield Cocktail 108 log CFU/g 104 CFU/g Spraying 4 ◦C

A mean reduction of 0.56, 0.84,
0.46, and 0.10 log cycles in viable
counts was observed at 0, 24, 48,
and 72 h after phage treatment,

respectively.

[162]

Cooked turkey
and roast beef

A cocktail of L.
monocytogenes

(serotypes; 1/2a,
1/2b, and 4b)

LISTEX™P100 Cocktail 107 PFU/cm2 103 CFU/cm2 Smearing 4 and 10 ◦C

An initial reduction of 2.1 and
1.7 log10 CFU/cm2, respectively,
for cooked turkey and roast beef
at 4 ◦C, while an initial reduction
of 1.5 and 1.7 log10 CFU/cm2, at

10 ◦C.

[163]

Raw chicken and
pork meat

C. jejuni (NCTC
11168) and C. coli

(NCTC 12668)

NCTC group II
phage 12684 or

CP81
Single MOI of 10 or 100 106 CFU/mL Spot inoculation 4 and 37 ◦C No reduction at 4 ◦C after 7 days

of inoculation. [164]

Raw and cooked
beef C. jejuni Cj6/Myoviridae Single MOI of 10 or

10,000

Low cell density
of <100/cm2 or
high cell density
of 104 CFU/cm2

Spot inoculation 5 and 24 ◦C

No reduction at 5 ◦C compared
to control with low MOI.

However, a 2 log10 CFU/cm2

reduction on raw and cooked
meat at high host density and a

high MOI of 10,000.

[165]

Chicken
C. jejuni

(NCTC12662 or
RM1221)

F356 and F357 Cocktail 107 PFU 104 CFU/cm2 Spot inoculation 5 ◦C A 0.73 log10 reduction at 5 ◦C
after 24 h post-treatment. [67]

Chicken liver C. jejuni (HPC5 and
81–176)

Phages φ3 or
φ15/Myoviridae Single 108 PFU/g 103 or 105

CFU/g

Phage added to
liver stomachates

containing C.
jejuni

4 ◦C A 0.2 to 0.7 log10 CFU/g
reduction 48 h post-treatment. [166]
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Table 3. Cont.

Food Type Target Bacteria Phage/Family Phage/Mixture Phage Dose Bacteria Dose Mode of
Application

Temperature
Condition Efficacy Reference

Lettuce

Salmonella ser.
Enteritidis

(ATCC13076) and
Salmonella ser.
Typhimurium
(ATCC14028)

BP 1369 and BP
1370/Myoviridae
and Podoviridae,

respectively

Single 108 PFU/mL 106 CFU/mL Immersion 10, 20, and 30 ◦C
A reduction of >1.0 log10

CFU/cm2 after 2 h of
post-treatment.

[145]

Romaine lettuce

Individual strains of
STEC (EDL933;

O157:H7, SN061;
O26: H11, SN576;

O111:NM and
SN608; and
O103:H2)

VE04, VE05, and
VE07 Single 108 PFU/mL 107 CFU/mL

Spot inoculation
and spreading

with pipet
10 ◦C

A reduction of 2.6–6 log10
CFU/cm2 after 3 days of storage

at a temperature of 10 ◦C.
[167]

Romaine lettuce,
mung bean

sprouts, and seeds

Cocktail of
Salmonella strains

(Newport,
Braenderup,

Typhimurium,
Kentucky, and

Heidelberg

SalmoFresh™/Myoviridae Cocktail 108 PFU/mL 105 CFU/mL
Spraying or
immersion 2, 10, and 25 ◦C

Overall reduction by spraying
SalmoFresh™ onto lettuce and
sprouts reduced Salmonella by

0.76 and 0.83 log10 CFU/g,
respectively, whereas a reduction
of 2.43 and 2.16 log10 CFU/g by

immersion was observed on
lettuce and sprouts, respectively.

[168]

Romaine and
iceberg lettuce E. coli O157:H7

AYO26, AXO111,
AXO121,

AYO145A/Myoviridae,
AXO103,

AKFV33/Siphoviridae,
and AXO45B

Cocktail >108 PFU/mL
High (105

CFU/g) and low
(103 CFU/g)

Immersion 2 ◦C
A reduction of 2.6–3.2 and

1.7–2.3 log10 CFU/g for low and
high contamination, respectively.

[149]
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6. Future Perspective and Conclusions

For a successful and sustainable strategy, phages should be used for customized
treatments, as suggested by Torres-Barceló [169]. Here we propose the ‘niche-specific’ use
of phages in the food processing system for effective control of pathogens, bearing in mind
that a phage/cocktail against a target pathogen across the food chain may not be suitable
in different niches such as the animal, plant, or food processing environments. With the
knowledge of the targeted pathogen and the nature of its variants in specific environments,
niche-specific phages or cocktails could be formulated for spraying or immersion and oral
or topical application. More commercial field-scale studies are required, even though they
are more difficult and costly than in vivo laboratory experiments, to affirm the efficacy
of phages in more real-world food production systems. Such a strategy could pave the
way for effective target-specific phage formulation as an additional processing aid to the
ongoing efforts to further improve food safety.
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