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Abstract: (1) Background: Formation of biofilms on food-contact surfaces by Shiga-toxigenic Es-
cherichia coli (STEC) can pose a significant challenge to the food industry, making conventional control
methods insufficient. Targeted use of bacteriophages to disrupt these biofilms could reduce this
problem. Previously isolated and characterized bacteriophages (n = 52) were evaluated against STEC
biofilms in vitro and on food-contact surfaces. (2) Methods: Phage treatments (9 logs PFU/mL) in
phosphate-buffered saline were used individually or as cocktails. Biofilms of STEC (O157, O26, O45,
O103, O111, O121, and O145) were formed in 96-well micro-titer plates (7 logs CFU/mL; 24 h) or on
stainless steel (SS) and high-density polyethylene (HDPE) coupons (9 logs CFU/cm2; 7 h), followed
by phage treatment. Biofilm disruption was measured in vitro at 0, 3, and 6 h as a change in optical
density (A595). Coupons were treated with STEC serotype-specific phage-cocktails or a 21-phage
cocktail (3 phages/serotype) for 0, 3, 6, and 16 h, and surviving STEC populations were enumerated.
(3) Results: Of the 52 phages, 77% showed STEC biofilm disruption in vitro. Serotype-specific phage
treatments reduced pathogen population within the biofilms by 1.9–4.1 and 2.3–5.6 logs CFU/cm2,
while the 21-phage cocktail reduced it by 4.0 and 4.8 logs CFU/cm2 on SS and HDPE, respectively.
(4) Conclusions: Bacteriophages can be used to reduce STEC and their biofilms.

Keywords: bacteriophages; Shiga-toxigenic E. coli; biocontrol; biofilms; food-contact surfaces

1. Introduction

Shiga-toxigenic Escherichia coli (STEC) are human pathogens responsible for multiple
foodborne disease outbreaks. Their infections can range from mild to severe bloody
diarrhea and hemorrhagic colitis (HC), leading to life-threatening complications, such as
hemolytic-uremic syndrome (HUS) and thrombotic thrombocytopenic purpura [1]. While
the STEC serotype, O157:H7, is frequently associated with HC and HUS, other non-O157
serotypes, reported to cause similar infections, have also emerged. These include the top six
serotypes, O26, O45, O103, O111, O121, and O145, that have been responsible for multiple
outbreaks and infections in the last two decades [2–4]. According to the Centers for Disease
Control and Prevention (CDC) estimates, STEC O157 and non-O157 together cause more
than 265,000 illnesses each year in the United States [5]. These infections could be due to
the consumption of contaminated fresh produce, undercooked meat, unpasteurized milk,
or drinking water [6]. Other factors include person to person contact, livestock handling
and contact with their environment on the farm, and livestock events or petting zoos [7].

These pathogens can also adapt to adverse environmental conditions by forming
biofilms on a wide variety of food-contact surfaces, as well as on fresh produce and meat
products [8–10]. Biofilms consist of a network of adhesive carbohydrates, exopolysac-
charides (EPS), that are difficult to penetrate and can protect the bacteria from stressful
conditions and antimicrobials [11,12]. It has been reported that STEC biofilms have an
increased tolerance to common sanitizers such as chlorine and quaternary ammonium
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compounds [10,13–15]. This could be due to a combination of bacterial resistance mecha-
nisms such as diffusional resistance of the EPS matrix, chemical and enzymatic inactivation
of sanitizers and disinfectants, physiological changes in the cell, and induction of stress
responses in the cell [16]. The ability of these pathogens to form strong biofilms poses a
significant threat of cross-contamination to the food-processing industry. It is therefore
critical to develop effective strategies to prevent, remove, or control biofilms in the food
industry for improved food safety.

Bacteriophages are viruses that infect and kill bacteria and have garnered significant
attention as antibacterial agents, primarily due to their target-specificity towards the host
bacteria [17–19]. They are present as commensal microflora in the gastrointestinal tract of
animals and have also been isolated from various food and water sources [20,21]. The host
specificity and ubiquitous nature of lytic bacteriophages makes them highly desirable as
antibacterial agents [18]. Under in vitro conditions, virulent bacteriophages have shown the
potential for selective elimination of foodborne pathogens [22,23]. Attention has also been
given to the use of bacteriophages for removal of biofilms formed by foodborne pathogens
on various food-contact surfaces [24–27]. Viazis et al. [27] tested a phage cocktail against E.
coli O157:H7 biofilms on stainless steel (SS), ceramic tile, and high-density polyethylene
(HDPE) coupons. The phage cocktail effectively reduced pathogen populations in biofilms
on all three surfaces within an hour of the treatment. In another study, phage treatment on
spinach-harvesting blades reduced E. coli O157:H7 in biofilms by 4.5 logs CFU/blade [25].
The majority of these studies have been limited to evaluating bacteriophage potential
against E. coli O157:H7 and its biofilms. Very little is known about the effectiveness
and applicability of phages against non-O157 STEC and their biofilms. The objective of
the present study was to evaluate the efficacy of previously isolated and characterized
bacteriophages [28,29] against O157 and non-O157 STEC biofilms in vitro and on food-
contact surfaces.

2. Materials and Methods
2.1. Bacterial Cultures and Phages

The STEC isolates used in the study included E. coli O157:H7 (ATCC 43895, wild type
(WT): LF4, KF10), O26 (CDC 2003–3014, WT: QF6, BF8), O45 (CDC 2000–3039, WT: EF2,
AF1), O103 (CDC 2006–3008, WT: GF6, AF10), O111 (CDC 2010C-3114, ATCC: 2440, 2180),
O121 (CDC 2002–3211, ATCC: 2219, 2203), and O145 (CDC 99–3311, ATCC: 2208, 1652).
The WT isolates were retrieved from the Jaroni laboratory culture collection, originally
isolated from bovine feces or cattle farm environment [30]. Biofilm-forming capability of
these isolates was previously tested in vitro [31].

For in vitro studies, overnight cultures of individual STEC isolates were prepared in
Luria Broth (LB; MP Biomedicals, CA) and incubated while shaking (180 rpm; V.390 W,
Fisher Scientific, NJ) at 37 ◦C for 16 h. For phage propagation and food-contact surface
studies, overnight cultures of individual STEC isolates were prepared in tryptic soy broth
(TSB; Bacto™, Difco, BD, Sparks, MD, USA) and incubated statically at 37 ◦C for 18 h.
Where needed, bacterial cocktail suspensions (109 CFU/mL) were prepared from overnight
cultures of strains of the same serotypes (Tables 1–3) by mixing equal volumes (1:1) and
vortexing. Previously isolated and characterized phages (n = 52) were used individually
or in cocktails to test their efficacy against their host STEC biofilms [28,29]. All the phages
were identified as lytic phages belonging to the Myoviridae, Siphoviridae, or Tectiviridae
family [28,29].
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Table 1. Bacteriophages and STEC isolates used in in vitro Experiments I and II.

STEC Bacterial Cocktail Phage Cocktail Treatment (CT)

O157 ATCC 43895, WT: LF4, KF10 CT1-O157 P1, P2, P4, P6
CT2-O157 P1, P2, P5, P7
CT3-O157 P3, P5, P7
CT4-O157 P2, P3, P4, P7

O26 CDC 2003-3014, WT: BF8, QF6 CT5-O26 P10, P11, P12, P13
O45 CDC 2000-3039, WT: AF1, EF2 CT6-O45 P9, J12, J13, J15
O103 CDC 2006-3008, WT: AF10, GF6 CT7-O103 P19, P20, P21
O111 CDC 2010-3114, ATCC: 2440, 2180 CT8-O111 P14, P15, P16, P17

O121 CDC 2002-3211, ATCC 2219, 2203 CT9-O121 P8, J1, J4, J7
CT10-O121 P8, J3, J6, J9

O145 CDC 99-3311, ATCC 1652, 2208 CT11-O145 J21, J24, J26, J27
CT12-O145 J25, J28, J29, J30

Table 2. Multi-serotype bacterial (14 strains) and phage (21 serotype-specific phages) cocktails used
in in vitro Experiment III and in food-contact surface Experiment II.

STEC Bacterial Cocktail Phage Cocktail

O157 ATCC 43895, WT LF4 P2, P6, P7
O26 CDC 2003-3014, WT QF6 P11, P12, P13
O45 CDC 2000-3039, WT AF1 P9, J12, J15
O103 CDC 2006-3008, WT AF10 P19, P20, P21
O111 CDC 2010-3114, ATCC 2180 P14, P15, P17
O121 CDC 2002-3211, ATCC 2219 P8, J3, J7
O145 CDC 99-3311, ATCC 1652 J18, J21, J29

Table 3. Selected phage cocktails used in the food-contact surface study in Experiment I.

STEC Bacterial Cocktail Phage Cocktail

O157 ATCC 43895, WT: LF4, KF10 P3, P5, P7
O26 CDC 2003-3014, WT: BF8, QF6 P10, P11, P12, P13
O45 CDC 2000-3039, WT: AF1, EF2 P9, J12, J13, J15
O103 CDC 2006-3008, WT: AF10, GF6 P19, P20, P21
O111 CDC 2010-3114, ATCC: 2440, 2180 P14, P15, P16, P17
O121 CDC 2002-3211, ATCC: 2219, 2203 P8, J3, J6, J9
O145 CDC 99-3311, ATCC: 2208, 1652 J21, J24, J26, J27

2.2. Phage Preparation

Phages were propagated by suspending 100 µL of overnight culture of host bac-
terium in molten (0.75%) NZCYM NZ Amine Casamino Acids Yeast Extract MgSO4, NaCl
(NZCYM) agar (RPI Corp, Mt. Prospect, IL, USA; Fisher Scientific, Waltham, MA, USA)
and plating via the double-layer agar method [28]. Phage working-stock solutions were
prepared as previously described [28] and stored at 4 ◦C until further use. Prior to an
experiment, phage titers were determined as plaque-forming units per ml (PFU/mL) by
serially diluting the phage working stock in phosphate-buffered saline (PBS: pH 7.4: NaCl,
KCl, NaH2PO4 and KH2PO4, Sigma-Aldrich, St. Louis, MO, USA) and performing a plaque
assay [28]. All phage treatments were prepared at a population of 109 PFU/mL.

2.3. STEC Biofilm Disruption
2.3.1. In Vitro Biofilm Disruption

In vitro STEC biofilm disruption was determined, as previously described [32], in the
following three experiments (I, II, III). In Experiment I, previously isolated and character-
ized phages (n = 52) were used individually to test their efficacy against their host STEC
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biofilms [28,29]. Phages were isolated from cattle farm environment (water and bovine
feces) and were specific to STEC O157:H7, O26, O45, O103, O111, O121, or O145 [28,29].
Based on the results from Experiment I, phages were selected to prepare host-specific cock-
tails, which were then tested in Experiment II (Table 1). In Experiment III, a multi-phage
cocktail, containing 21 phages (3 phages per STEC serotype), was tested against biofilms of
multi-serotype STEC cocktail (Table 2).

Overnight pathogen cultures were diluted (1:100) in M9 medium (MP Biomedicals,
Irvine, CA), supplemented with 0.4% (wt/vol) glucose (Fisher Scientific, NJ) and minerals
(1.16 mM MgSO4, 2 µM FeCl3, 8 µM CaCl2, and 16 µM MnCl2; Fisher Scientific, Waltham,
MA, USA), and incubated with shaking (180 rpm) for 24 h at 37 ◦C. Following incubation,
bacterial cultures were further diluted (1:100) in M9 medium (containing glucose and
minerals) and allowed to form biofilms in 96-well micro-titer plates (Thermo Scientific,
Waltham, MA, USA) by aliquoting 150 µL in each well (in triplicates) and incubating the
plates at 37 ◦C for 24 h. Wells filled with sterile M9 were used as the negative control. After
incubation, the liquid culture was carefully removed using a micropipette, and the wells
were washed three times with PBS (150 µL) without disturbing any biofilm formed at the
bottom of the wells. Plates were dried at 37 ◦C for 15 min, and 150 µL of the respective
bacteriophage treatment (individual or cocktail) or PBS (positive control) was added to
the wells. Plates were incubated further at 37 ◦C for 0, 3, and 6 h. After each incubation
period, the treatment solution was removed and the wells were washed with PBS, as
described above. After drying at 37 ◦C for 15 min, biofilms were stained by placing crystal
violet (CV; Fisher Scientific, NJ) solution (0.1% in distilled water; wt/vol) in the wells for
2 min, washing 3 times with PBS, and drying (37 ◦C for 15 min). The stain was released
with 150 µL of ethanol:acetone solution (80:20; vol/vol; Fisher Scientific, NJ), and biofilm
disruption was quantified by measuring the optical density (OD) at 595 nm (SpectroMax
M3; Molecular Devices LLC., San Jose, CA). Wells filled with ethanol:acetone solution were
used as the blank.

2.3.2. STEC Biofilm Disruption on Food-Contact Surfaces

The efficacy of bacteriophages to disrupt STEC biofilms on food-contact surfaces was
studied in two experiments (I and II). In Experiment I, a cocktail of each STEC serotype (de-
scribed in 2.1) was used to form biofilms on stainless steel (SS) and high-density polyethy-
lene (HDPE) coupons and treated with their respective phage cocktail for 16 h (Table 3).

In Experiment II, a 21-phage cocktail was evaluated against biofilms formed by a
cocktail of 14 STEC isolates (2 isolates per serotype) on SS and HDPE coupons for 0, 3, 6
and 16 h (Table 2).

Preparation of Coupons

Stainless steel (304 finish, type 4; Stillwater Steels, Stillwater, OK, USA) and HDPE
(1/8” × 24” × 48”; Polymersan, Hialeah, FL, USA) coupons (2 × 5 cm2) were used for
the study and prepared as described by Hood and Zottola [33]. Coupons were cleaned
by soaking in acetone (30 min), followed by distilled water rinse (5 min), soaking (1 h) in
1 N NaOH (Fisher Scientific, Waltham, MA, USA) and sonicating (40 KHz; Branson, CT,
USA) in distilled water (1 h). Following sonication, coupons were rinsed in distilled water,
air-dried, and sterilized prior to use.

Phage Treatment of STEC Biofilms

For each STEC serotype, three coupons were inoculated, where one coupon was
designated as the inoculated, untreated control, one was treated with the respective phage
cocktail, and one treated with PBS (control). In each experiment (I and II), coupons were
first immersed in 30 mL suspension of bacterial cocktail (109 CFU/mL) in a 50 mL centrifuge
tube (Fisher Scientific, GA) and incubated at 25 ◦C for 2.5 h to facilitate bacterial attachment
to the surface. Coupons were gently removed from the suspension using sterile forceps
and placed in a sterile 50 mL tube for 5 h in a biosafety hood, allowing further bacterial
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attachment and biofilm formation. After incubation, coupons were rinsed in 30 mL of sterile
distilled water to remove unattached bacterial cells from the surface. One coupon of each
surface material (SS or HDPE) was sampled to determine the initial pathogen population
within the biofilm (inoculated, untreated control). The remaining inoculated coupons were
then suspended in 30 mL of bacteriophage (109 PFU/mL) treatment (Table 3) or PBS at
37 ◦C for 16 h in Experiment I, and 0, 3, 6, and 16 h in Experiment II. After incubation,
coupons were sonicated for 5 min at 40 KHz to dislodge bacterial cells from the coupon
surface. Immediately following, 3 g of glass beads (4 mm; Genlantis Diagnostics, CA) were
added to the tube and agitated for 1 min using a vortex (Fisher Scientific, NJ) to remove
any remaining attached cells from the coupon [26]. Surviving pathogen populations in the
solution were enumerated (CFU/cm2) on tryptic soy agar (TSA, Fisher Scientific, NJ) or
STEC CHROM agar (CHROMagar, Paris, France). Any injured cells were recovered by
24 h enrichment in TSB and plating on TSA at 37 ◦C.

2.4. Statistical Analysis

All the experiments were repeated three times. Surviving STEC populations, recovered
after treatments, were converted to log10 CFU/cm2, and the mean values of the three
replicates were obtained. Data were analyzed using the General Linear Model (SAS v.9.3
software; SAS Inst., Cary, NC, USA) to determine analysis of variance (ANOVA) for phage
treatment effects. Significant differences between the treatment means were separated by
the least significant difference (LSD) at p < 0.05.

3. Results and Discussion
3.1. STEC Biofilm Disruption

Effectiveness of individual phages and cocktails of phages to disrupt biofilms of seven
STEC serotypes, in vitro and on food-contact surfaces (SS and HDPE), was determined.
Results demonstrated that the phages were more effective in reducing biofilms on food-
contact surfaces than in vitro.

In Vitro STEC Biofilm Disruption

Biofilm disruption by individual serotype-specific bacteriophages was determined
in vitro by measuring OD (595 nm) at 0, 3, and 6 h. Among the phages tested (n = 52),
77% showed significant (p < 0.05) reductions in biofilm formation by their respective host
bacteria at 3 and 6 h (Figure 1A–D). STEC biofilm disruption was observed, with a reduction
in OD from 2.262 nm (0 h) to 0.808 nm (6 h) in these phage-treated wells.
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Figure 1. (A). In vitro biofilm disruption by individual bacteriophages specific to E. coli O157:H7, O26,
and O45 after treatment for 0, 3, and 6 h. (B). In vitro biofilm disruption by individual bacteriophages
specific to E. coli O103 and O111 after treatment for 0, 3, and 6 h. (C). In vitro biofilm disruption by
individual bacteriophages specific to E. coli O121 after treatment for 0, 3, and 6 h. (D). In vitro biofilm
disruption by individual bacteriophages specific to E. coli O145 after treatment for 0, 3, and 6 h.
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In Experiment I, where individual phages were tested against their host pathogens,
varying results were obtained. All the O157 phages (P1-O157 to P7-O157) showed a
reduction in pathogen biofilms at 0 h (A595 = 0.472–0.696), 3 h (A595 = 0.284–0.441), and 6 h
(A595 = 0.202–0.321), except phages P3, P5, and P7, where an increase in absorbance was
observed at 6 h (Figure 1A). At 3 and 6 h, phage P4-O157 showed the highest reduction
compared to the rest of the phages. Non-O157 STEC biofilms, treated with phages, also
showed significant (p < 0.05) reductions at 0 h (A595 =1.034–3.853), 3 h (A595 = 0.506–2.631),
and 6 h (A595 = 0.202–3.577) (Figure 1A–D). However, STEC O45-specific phages were
more effective after 3 h than after 6 h treatment. For some STEC strains, a higher reduction
was observed with control treatments, which could be due to the natural phenomenon of
decreased growth rate or bacterial cell death after 3 or 6 h in PBS treatment. A list of the
most effective serotype-specific phages is provided in Table 4.

Table 4. Most effective serotype-specific individual phages and phage cocktail treatments in vitro.

STEC Individual Phage Treatment Phage Cocktail Treatment (CT)

O157 P4 CT-2, CT-3
O26 P11 CT-5
O45 P9 CT-6
O103 P21 CT-7
O111 P15 CT-8
O121 J3 CT-10
O145 J29 CT-12

Based on the results from Experiment I, selected phage cocktails were tested against
their respective STEC serotype biofilms (Experiment II). A list of the most effective serotype-
specific phage cocktails is provided in Table 4. Results revealed that all O157-phage cocktails
(CT-1 to CT-4) were able to disrupt E. coli O157:H7 biofilms, reducing OD from 1.990–2.329
at 0 h to 0.576–0.636 at 6 h (Figure 2A). The CT-3 cocktail showed the highest reduction,
from 2.250 at 0 h to 0.748 at 3 h, and CT-2 showed the highest reduction at 6 h, from 2.319
to 0.576. Among the STEC non-O157 phage cocktails, CT5-O26, CT7-O103, and CT12-O145
performed the best by continuing to reduce biofilms at 6 h (Figure 2B,C). Phages from
Experiment II were selected to make a 21-phage cocktail (3 phages per serotype) to treat
multi-serotype STEC biofilms (2 bacterial isolates per serotype). Results showed that the
21-phage cocktail reduced biofilm after 3 h of treatment, where OD decreased from 2.561
at 0 h to 1.321 at 3 h (Figure 2D). However, a slight increase in absorbance (2.186) was
recorded after 6 h of the phage-cocktail treatment (Figure 2D).
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In the current study, a slight increase in OD was observed with some phages and
phage cocktails at 6 h of treatment. These results are in agreement with other studies
assessing phage treatment effects on bacterial biofilms [34,35]. Chan et al. [34] observed an
increase in E. coli biofilms treated with T4 phage on day 4 after an initial decrease (30%) on
day 3. Similarly, Hughes et al. [36] obtained a maximum reduction in biofilm within 2 h or
5 h, depending on the biofilm studied. Factors such as bacterial appendages used by the
bacteria for biofilm attachment could decrease the efficacy of phages in the biofilm [36,37].
Additionally, changes in bacterial biofilm profile over time, such as inconsistent expression
and accumulation of protein through biofilm development stages, could affect phage
efficacy [38,39]. Higher protein production at later stages of biofilm formation could impair
phage movement within the medium and interfere with phage efficacy against bacterial
biofilm [34,40]. Furthermore, static biofilms are known to produce higher polysaccharide
and protein content, which could interfere with phage infection efficacies [41]. Vogeleer
et al. [32] showed variation in biofilm matrices of individual non-O157 STEC serotypes
under static and dynamic conditions. This variation in biofilm matrix could minimize
phage effectiveness against biofilm due to the highly specific nature of its depolymerase
enzyme [24,36]. This enzyme is highly specific to EPS produced by host bacteria, and even
a minor change in the EPS composition could prohibit its activity, leading to reduced phage
activity against biofilm.

Loss in phage effectiveness after 6 h could also be due to generation of phage-resistant
mutants [42]. Incubation of biofilms at optimum temperatures (30–37 ◦C) could trigger
the rapid growth of bacteria in the biofilm, including phage-resistant bacteria, resulting
in decreased efficacy of the phage treatment [37,43]. It has also been shown that STEC
serotypes, grown together to form biofilms, could generate an abundance of morphological
variants, which could exhibit varying susceptibility to treatments [32,44]. Some newly
generated mutants could lose the receptor responsible for bacteriophage susceptibility and
become resistant to phages. The use of more diverse phages with the ability to bind to
different bacterial receptors could help in controlling the emergence of bacterial mutants
by exerting selective pressure on bacterial populations in the biofilm and increasing the
effectiveness of phage cocktail treatment [45]. At the same time, phage resistance has
been shown to be transient in bacterial cells, and they could revert to a phage-susceptible
state [46]. Additionally, this decrease in phage effectiveness can be overcome by application
of a cocktail of multiple phages [46,47]. Multi-phage cocktails were therefore evaluated in
the current study for their effectiveness against STEC biofilms.

3.2. STEC Biofilm Disruption on Food-Contact Surfaces

Based on the in vitro experiments, the most effective phage cocktails were selected
to conduct application studies on SS and HDPE coupons. In Experiment I, where STEC
serotype-specific cocktails were used to form biofilms on SS and HDPE coupons, phage
cocktails significantly (p < 0.05) reduced bacterial population in the biofilm when compared
to the control (Figure 3). Populations of E. coli O45, O111, O121, and O145 on SS were
reduced to undetectable levels after treatment with respective phage cocktails (Figure 3).
A reduction of 3.1 and 3.7 logs was observed in E. coli O26 and O103 populations on SS
coupons treated with phages compared to the control (Figure 4). On the HDPE surface, E.
coli O121 population was reduced to undetectable levels after respective phage cocktail
treatment (Figure 3). A reduction between 2.3 and 5.3 logs was observed in E. coli O26, O45,
O103, O111, and O145 populations on HDPE coupons treated with respective phage cock-
tails compared to the control (Figure 4). No injured cells were recovered from enrichment
in TSB and plating on TSA. Phage cocktails for specific STEC serotypes were very effective
in reducing pathogen populations on both SS (1.9–4.1 logs CFU/cm2 reduction) and HDPE
(2.3–5.6 logs CFU/cm2 reduction) surfaces. These cocktails were more effective on SS than
on HDPE, with the phage cocktails for E. coli O45, O145, O111, and O121 reducing pathogen
populations to undetectable levels. These differences could be due to the surface type or
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difference in the biofilm composition, where different types of EPS were produced, which
could provide increased resistance to bacteria against phages [47–49].
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In Experiment II, biofilms of a cocktail of 14 STEC isolates (2 isolates per serotype) on SS
and HDPE coupons were treated with a 21-phage cocktail (3 phages per serotype). The cock-
tail showed an immediate (0 h) reduction in STEC populations on HDPE
(1.5 logs CFU/cm2) and SS (1.0 log CFU/cm2) (Figure 4). At 3, 6, and 16 h, the 21-phage
cocktail showed significant reductions (p < 0.05) in STEC populations on both the surfaces
when compared to the control (Figure 4). At 3 h, pathogen populations were reduced by
2.8 and 1.7 logs CFU/cm2 on SS and HDPE, respectively. At 6 h, pathogen populations
were reduced to undetectable levels on SS and by 1.7 logs CFU/cm2 on HDPE. At 16 h,
STEC populations were reduced to undetectable levels on both surfaces. These results
suggest that the tested bacteriophage treatments effectively reduced STEC populations in
the biofilms on SS and HDPE surfaces.

Studies have previously shown that bacteriophages can effectively reduce pathogens
attached to hard surfaces found in food processing environments [26,50,51]. Reductions
between 3.5 and 5.4 logs CFU in attached Listeria monocytogenes population were observed
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on SS after 24 h of phage P100 treatment [52]. In a study by Sharma et al. [26], lytic
bacteriophages reduced E. coli O157:H7 populations by 1.2 logs CFU on SS coupons. In
the current study, phage treatments reduced E. coli O157:H7 by 1.9 logs CFU/cm2 and
non-O157 STEC by 3.1–4.1 logs CFU/cm2 on SS surfaces. Studies have shown that phages
can diffuse through the biofilm formed by bacteria [53] and that the formation of biofilms
does not provide additional protection to bacteria against phage attack [26]. The biofilm
break-down mechanism of phages is speculated to be associated with enzymatic means.
Studies have shown that phages produce enzymes that can degrade the EPS layer, the
major component of a biofilm matrix [24,36]. Hughes et al. [36] showed that bacteriophages
specific for Enterobacter agglomerans disrupted biofilm through a combination of lytic activity
against bacterial cells and degradation of EPS through phage-associated polysaccharide
depolymerase enzyme. The presence of phage-depolymerase in an O45-phage (p-9), used
in the current study, has been confirmed (data not shown), suggesting that other phages
in the cocktail tested may also produce EPS-degrading enzyme, resulting in reduction of
bacteria embedded in the biofilm matrix.

Variations in pathogen attachment and biofilm formation were observed on the food-
contact surfaces tested in the present study. Higher STEC attachment was observed on
HDPE (up to 5.6 logs CFU/cm2) compared to SS (up to 4.3 logs CFU/cm2). A similar trend
has been observed in previous studies. Higher bacterial attachment and biofilm formation
has been observed on plastic surfaces (polyethylene, polypropylene, polyvinyl chloride)
than on stainless steel or glass surfaces [48]. Variations found in polymer surfaces, such as
smoothness, charge, Zeta-potential, and active chemical groups, could influence bacterial
attachment to the surface [54]. Studies have also shown that a variety of active chemical
groups released by HDPE surfaces, such as phenols, quinones, aromatic hydrocarbons,
aldehydes, and ketones, could be utilized by bacteria as carbon sources and result in higher
bacterial attachment [55–57].

4. Conclusions

This study has shown the potential for the use of lytic bacteriophages against seven
STEC serotypes as a treatment to control biofilm formation. Future studies need to be
conducted to understand phage–bacteria interactions in biofilm using kinetic modeling.
The preliminary results from the current study show promise due to the fact that phages
within the biofilms effectively targeted and lysed STEC and were also able to disperse the
extracellular matrix forming the biofilm.
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