Optimization of Ethanolic Extraction of Phenolic Antioxidants from Lychee and Longan Seeds Using Response Surface Methodology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Seeds Preparation
2.3. Extraction of Phenolic Compounds
2.4. Response Surface Methodology
2.5. Validation of the Model
2.6. Determination of EPC
2.7. Determination of DPPH Radical Scavenging Activity
2.8. Determination of Ferric Reducing Antioxidant Powder (FRAP)
2.9. Determination of ABTS Antioxidant Activity
2.10. Statistical Analysis
3. Results and Discussion
3.1. Selection of Solid-to-Liquid Ratio
3.2. Optimization of Extraction of Phenolic Compounds Using RSM
3.3. Effect of Factors on the EPC and AAO
3.4. Experimental Validation of the Optimal Conditions
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Production Volume of Lychee and Longan in Thailand in 2022, by Region. Available online: https://www.statista.com/statistics/1319829/thailand-lychee-production-by-region/#:~:text=In%202022%2C%20the%20production%20volume,to%20around%2094%20thousand%20rai (accessed on 26 June 2023).
- He, N.; Wang, Z.; Yang, C.; Lu, Y.; Sun, D.; Wang, Y.; Shao, W.; Li, Q. Isolation and identification of polyphenolic compounds in longan pericarp. Sep. Purif. Technol. 2009, 70, 219–224. [Google Scholar] [CrossRef]
- Soong, Y.Y.; Barlow, P.J. Isolation and structure elucidation of phenolic compounds from longan (Dimocarpus lognan Lour.) seed by high-performance liquid chromatography–electrospray ionization mass spectrometry. J. Chromatogr. A 2005, 1085, 270–277. [Google Scholar] [CrossRef] [PubMed]
- Bhushan, B.; Kumar, S.; Mahawar, M.K.; Jalgaonkar, K.; Dukare, A.S.; Bibwe, B.; Meena, V.S.; Negi, N.; Narwal, R.K.; Pal, A. Nullifying phosphatidic acid effect and controlling phospholipase D associated browning in litchi pericarp through combinatorial application of hexanal and inositol. Sci. Rep. 2019, 9, 2402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhushan, B.; Pal, A.; Narwal, R.; Meena, V.S.; Sharma, P.C.; Singh, J. Combinatorial approaches for controlling pericarp browning in Litchi (Litchi chinensis) fruit. J. Food Sci. Technol. 2015, 52, 5418–5426. [Google Scholar] [CrossRef] [Green Version]
- Punia, S.; Kumar, M. Litchi (Litchi chinenis) seed: Nutritional profile, bioactivities, and its industrial applications. Trends Food Sci. Technol. 2021, 108, 58–70. [Google Scholar] [CrossRef]
- Guo, H.; Luo, H.; Yuan, H.; Xia, Y.; Shu, P.; Huang, X.; Lu, Y.; Liu, X.; Keller, E.T.; Sun, D.; et al. Litchi seed extracts diminish prostate cancer progression via induction of apoptosis and attenuation of EMT through Akt/GSK-3beta signaling. Sci. Rep. 2017, 7, 41656. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.; Wang, H.; Sun, J.; Yang, B.; Duan, X.; Jiang, Y. Pericarp and seed of litchi and longan fruits: Constituent, extraction, bioactive activity, and potential utilization. J. Zhejiang Uni. Sci. B 2019, 20, 503–512. [Google Scholar] [CrossRef]
- Wisitsak, P.; Nimkamnerd, J.; Thitipramote, N.; Saewan, N.; Chaiwut, P.; Pintathong, P. Comparison the bioactive compounds and their activities between longan and litchi seeds extracts. In Proceedings of the 1st Mae Fah Luang University International Conference, Chiang Rai, Thailand, 29 November–1 December 2012. [Google Scholar]
- Tandee, K.; Kittiwachana, S.; Mahatheeranont, S. Antioxidant activities and volatile compounds in longan (Dimocarpus longan Lour.) wine produced by incorporating longan seeds. Food Chem. 2021, 348, 128921. [Google Scholar] [CrossRef]
- Chen, J.-Y.; Xu, Y.-J.; Ge, Z.-Z.; Zhu, W.; Xu, Z.; Li, C.-M. Structural elucidation and antioxidant activity evaluation of key phenolic compounds isolated from longan (Dimocarpus longan Lour.) seeds. J. Funct. Food 2015, 17, 872–880. [Google Scholar] [CrossRef]
- Rangkadilok, N.; Worasuttayangkurn, L.; Bennett, R.N.; Satayavivad, J. Identification and quantification of polyphenolic compounds in longan (Euphoria longana Lam.) fruit. J. Agric. Food Chem. 2005, 53, 1387–1392. [Google Scholar] [CrossRef]
- Zheng, G.; Xu, L.; Wu, P.; Xie, H.; Jiang, Y.; Chen, F.; Wei, X. Polyphenols from longan seeds and their radical-scavenging activity. Food Chem. 2009, 116, 433–436. [Google Scholar] [CrossRef]
- Anwar, F.; Mahmood, T.; Mehmood, T.; Aladedunye, F. Composition of fatty acids and tocopherols in cherry and lychee seed oils. J. Adv. Biol. 2014, 1, 586–593. [Google Scholar]
- Koul, B.; Singh, J. Lychee biology and biotechnology. In The Lychee Biotechnology; Springer: Singapore, 2017; pp. 137–192. [Google Scholar]
- Matthaus, B.; Vosmann, K.; Pham, L.Q.; Aitzetmüller, K. FA and tocopherol composition of Vietnamese oilseeds. J. Am. Oil Chem. Soc. 2003, 80, 1013–1020. [Google Scholar] [CrossRef]
- Ding, G. The research progress of Litchi chinensis. Lishizhen Med. Mater Med. Res. 1999, 10, 145–146. [Google Scholar]
- Prasad, K.N.; Yang, B.A.O.; Zhao, M.; Ruenroengklin, N.; Jiang, Y.U.E.M.I.N.G. Application of ultrasonication or high-pressure extraction of flavonoids from litchi fruit pericarp. J. Food Proc. Eng. 2009, 32, 828–843. [Google Scholar] [CrossRef]
- Yang, B.; Wang, H.; Prasad, N.; Pan, Y.; Jiang, Y. Use of litchi (Litchi sinensis sonn.) seeds in health. In Nuts and Seeds in Health and Disease Prevention; Academic Press: Cambridge, MA, USA, 2011; pp. 699–703. [Google Scholar]
- Liyana-Pathirana, C.; Shahidi, F. Optimization of extraction of phenolic compounds from wheat using response surface methodology. Food Chem. 2005, 93, 47–56. [Google Scholar] [CrossRef]
- Karacabey, E.; Mazza, G. Optimisation of antioxidant activity of grape cane extracts using response surface methodology. Food Chem. 2010, 119, 343–348. [Google Scholar] [CrossRef]
- Wijngaard, H.H.; Brunton, N. The optimisation of solid–liquid extraction of antioxidants from apple pomace by response surface methodology. J. Food Process Eng. 2010, 96, 134–140. [Google Scholar] [CrossRef]
- Yang, B.; Jiang, Y.; Shi, J.; Chen, F.; Ashraf, M. Extraction and pharmacological properties of bioactive compounds from longan (Dimocarpus longan Lour.) fruit—A review. Food Res. Int. 2011, 44, 1837–1842. [Google Scholar] [CrossRef]
- Sudjaroen, Y.; Hull, W.E.; Erben, G.; Wurtele, G.; Changbumrung, S.; Ulrich, C.M.; Owen, R.W. Isolation and characterization of ellagitannins as the major polyphenolic components of Longan (Dimocarpus longan Lour) seeds. Phytochemistry 2012, 77, 226–237. [Google Scholar] [CrossRef]
- Li, X.; Huang, J.; Wang, Z.; Jiang, X.; Yu, W.; Zheng, Y.; Li, Q.; He, N. Alkaline extraction and acid precipitation of phenolic compounds from longan (Dimocarpus longan L.) seeds. Sep. Purif. Technol. 2014, 124, 201–206. [Google Scholar] [CrossRef]
- Potisate, Y.; Pintha, K. Optimum extraction condition and dehydration of lychee seeds extracted. Naresuan Phayao J. 2021, 14, 105–112. [Google Scholar]
- Paliga, M.; Novello, Z.; Dallago, R.M.; Scapinello, J.; Magro, J.D.; Di Luccio, M.; Tres, M.V.; Oliveira, J.V. Extraction, chemical characterization and antioxidant activity of Litchi chinensis Sonn. and Avena sativa L. seeds extracts obtained from pressurized n-butane. J. Food Sci. Technol. 2017, 54, 846–851. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hossain, M.A.; Hossain, M.S. Optimization of antioxidative phenolic compound extraction from freeze-dried pulp, peel, and seed of Burmese grape (Baccaurea ramifora Lour.) by response surface methodology. Biomass Convers. Biorefinery 2023, 13, 8123–8137. [Google Scholar] [CrossRef]
- Qu, W.; Pan, Z.; Ma, H. Extraction modeling and activities of antioxidants from pomegranate marc. J. Food Eng. 2010, 99, 1623. [Google Scholar] [CrossRef]
- Mashkor, I.M.A.A. Total phenol, total favonoids and antioxidant activity of pomegranate peel. Int. J. Chem. Technol. Res. 2014, 6, 4656–4661. [Google Scholar]
- Soong, Y.Y.; Barlow, P.J. Antioxidant activity and phenolic content of selected fruit seeds. Food Chem. 2004, 88, 411–417. [Google Scholar] [CrossRef]
- Eberhardt, M.V.; Lee, C.Y.; Liu, R.H. Antioxidant activity of fresh apples. Nature 2000, 405, 903–904. [Google Scholar] [CrossRef]
- Box, G.E.P.; Wilson, K.B. Experimental attainment of optimum conditions. J. R. Stat. Soc. 1951, 13, 267. [Google Scholar] [CrossRef]
- Mazumder, M.A.R.; Tolaema, A.; Chaikhemarat, P.; Rawdkuen, S. Antioxidant and anti-cytotoxicity effect of phenolic extracts from Psidium guajava Linn. leaves by novel assisted extraction techniques. Foods 2023, 12, 2336. [Google Scholar] [CrossRef]
- Rawdkuen, S.; Sai-Ut, S.; Benjakul, S. Optimizing the tyrosinase inhibitory and antioxidant activity of mango seed kernels with a response surface methodology. Food Anal. Methods 2016, 9, 3032–3043. [Google Scholar] [CrossRef]
- Swain, T.; Hillis, W.E. The phenolic constituents of Prunus domestica 1. The quantitative analysis of phenolic constituents. J. Sci. Food Agric. 1959, 10, 63–68. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of antioxidant power: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [Green Version]
- Arnao, M.B.; Cano, A.; Acosta, M. Hydrophilic and lipophilic antioxidant activity contribution to total antioxidant activity. Food Chem. 2001, 73, 239–244. [Google Scholar] [CrossRef]
- Ilaiyaraja, N.; Likhith, K.R.; Sharath Babu, G.R.; Khanum, F. Optimisation of extraction of bioactive compounds from Feronia limonia (wood apple) fruit using response surface methodology (RSM). Food Chem. 2015, 173, 348–354. [Google Scholar] [CrossRef]
- Feng, S.; Luo, Z.; Tao, B.; Chen, C. Ultrasonic-assisted extraction and purification of phenolic compounds from sugarcane (Saccharum officinarum L.) rinds. LWT-Food Sci. Technol. 2015, 60, 970–976. [Google Scholar] [CrossRef]
- Ondrejovic, M.; Benkovicva, H.; Silhar, S. Optimization of rosmarinic acid extraction from lemon balm (Melissa officinalis) Nova. Biotechnologica 2009, 9, 175. [Google Scholar]
- Daorueang, D. Phenolic content and antioxidant activity of lychee seed extract. Naresuan Phayao J. 2019, 12, 25–27. [Google Scholar]
- Prasad, K.N.; Yang, B.; Yang, S.; Chen, Y.; Zhao, M.; Ashraf, M.; Jiang, Y. Identification of phenolic compounds and appraisal of antioxidant and antityrosinase activities from litchi (Litchi sinensis Sonn.) seeds. Food Chem. 2009, 116, 1–7. [Google Scholar] [CrossRef]
- Chindaluang, Y.; Sriwattana, S. Comparison of Ultrasonic Extraction with Conventional Extraction Methods of Phenolic Compounds in Longan (Euphoria longana Lamk.) Seed. Food Appl. Biosci. 2014, 13, 439–448. [Google Scholar] [CrossRef]
- Rerk-am, U.; Runglert, K.; Eiamwat, J.; Kongsombat, B.; Sematong, T.; Tangsatirapakdee, S.; Thubthimthed, S. Anti-oxidant activities and polyphenolic compounds of Longan (Dimocarpus longan Lour) peel and seed extracts. Thai J. Pharm. Sci. 2016, 40, 120–122. [Google Scholar]
- Hong-in, P.; Neimkhum, W.; Punyoyai, C.; Sriyab, S.; Chaiyana, W. Enhancement of phenolics content and biological activities of longan (Dimocarpus longan Lour.) treated with thermal and ageing process. Sci. Rep. 2021, 11, 15977. [Google Scholar] [CrossRef] [PubMed]
- Joglekar, A.M.; May, A.T. Product excellence through design of experiments. Cereal Food World 1987, 32, 857–868. [Google Scholar]
- Jung, E.P.; Conrado Thomaz, G.F.; de Brito, M.O.; de Figueiredo, N.G.; Kunigami, C.N.; de Oliveira Ribeiro, L.; Alves Moreira, R.F. Thermal-assisted recovery of antioxidant compounds from Bauhinia forficata leaves: Effect of operational conditions. J. Appl. Res. Med. Aromat. Plants 2021, 22, 100303. [Google Scholar] [CrossRef]
- Chamali, S.; Bendaoud, H.; Bouajila, J.; Camy, S.; Saadaoui, E.; Condoret, J.S.; Romdhane, M. Optimization of accelerated solvent extraction of bioactive compounds from Eucalyptus intertexta using response surface methodology and evaluation of its phenolic composition and biological activities. J. Appl. Res. Med. Aromat. Plants 2023, 35, 100464. [Google Scholar] [CrossRef]
- Cacace, J.E.; Mazza, G. Mass transfer process during extraction of phenolic compounds from milled berries. J. Food Eng. 2003, 59, 379–389. [Google Scholar] [CrossRef]
- Pompeu, D.R.; Silva, E.M.; Rogez, H. Optimisation of the solvent extraction of phenolic antioxidants from fruits of Euterpe oleracea using Response Surface Methodology. Bioresour. Technol. 2009, 100, 6076–6082. [Google Scholar] [CrossRef]
- Chen, M.; Zhao, Y.; Yu, S. Optimisation of ultrasonic-assisted extraction of phenolic compounds, antioxidants, and anthocyanins from sugar beet molasses. Food Chem. 2015, 172, 543–550. [Google Scholar] [CrossRef]
- Ha Lai, T.N.; André, C.M.; Chirinos, R.C.; Thuy Nguyen, T.B.; Larondelle, Y.; Rogez, H. Optimisation of extraction of piceatannol from Rhodomyrtus tomentosa seeds using response surface methodology. Sep. Purif. Technol. 2014, 134, 139–146. [Google Scholar] [CrossRef]
- Chew, K.K.; Ng, S.Y.; Thoo, Y.Y.; Khoo, M.Z.; Wan Aida, W.M.; Ho, C.W. Effect of ethanol concentration, extraction time and extraction temperature on the recovery of phenolic compounds and antioxidant capacity of Centella asiatica extracts. Int. Food Res. J. 2011, 18, 571–578. [Google Scholar]
- Kossah, R.; Nsabimana, C.; Zhang, H.; Chen, W. Optimization of extraction of polyphenols from Syrian sumac (Rhus coriaria L.) and Chinese sumac (Rhus typhina L.) fruits. Res. J. Phytochem. 2010, 4, 146–153. [Google Scholar] [CrossRef] [Green Version]
- Hismath, I.; Wan Aida, W.M.; Ho, C.W. Optimization of extraction conditions for phenolic compounds from neem (Azadirachta indica) leaves. Int. Food Res. J. 2011, 18, 931–939. [Google Scholar]
- Chan, S.W.; Lee, C.Y.; Yap, C.F.; Wan Aida, W.M.; Ho, C.W. Optimisation of extraction conditions for phenolic compounds from limau purut (Citrus hystrix) peels. Int. Food Res. J. 2009, 16, 203–213. [Google Scholar]
- Silva, E.M.; Rogez, H.; Larondelle, Y. Optimization of extraction of phenolics from Inga edulis leaves using response surface methodology. Sep. Purif. Technol. 2007, 55, 381–387. [Google Scholar] [CrossRef]
- Gribova, N.Y.; Filippenko, T.A.; Nikolaevskii, A.N.; Belaya, N.I.; Tsybulenko, A.A. Optimization of conditions for the extraction of antioxidants from solid parts of medicinal plants. J. Anal. Chem. 2008, 63, 1034–1037. [Google Scholar] [CrossRef]
- Dorta, E.; Lobo, M.G.; Gonzalez, M. Reutilization of mango byproducts: Study of the effect of extraction solvent and temperature on their antioxidant properties. J. Food Sci. 2012, 77, C80–C88. [Google Scholar] [CrossRef]
- Şahin, S.; Aybastıer, Ö.; Işık, E. Optimisation of ultrasonic-assisted extraction of antioxidant compounds from Artemisia absinthium using response surface methodology. Food Chem. 2013, 141, 1361–1368. [Google Scholar] [CrossRef]
- Amadou, I.; Yong-Hui, S.; Sun, J.; Guo-Wei, L. Fermented soybean products: Some methods, antioxidants compound extraction and their scavenging activity. Asian J. Biochem. 2009, 4, 68–76. [Google Scholar] [CrossRef] [Green Version]
- Oktaya, M.; Gulcin, I.; Kufrevioglu, O.I. Determination of in Vitro Antioxidant Activity of Fennel (Foeniculum vulgare) Seed Extracts. LWT Food Sci. Technol. 2003, 36, 263–271. [Google Scholar] [CrossRef]
Independent Variables | Units | Symbols | Code Levels | ||||
---|---|---|---|---|---|---|---|
−α | −1 | 0 | +1 | +α | |||
Ethanol concentration | %, v/v | X1 | 26.36 | 40 | 60 | 80 | 93.64 |
Temperature | °C | X2 | 26.36 | 40 | 60 | 80 | 93.64 |
Time | min | X3 | 19.09 | 60 | 120 | 180 | 220.9 |
Standard Order a | Run Order b | X1 | X2 | X3 |
---|---|---|---|---|
Ethanol Concentration (%) | Temperature (°C) | Time (min) | ||
1 | 15 | 40 (−1) | 40 (−1) | 60 (−1) |
2 | 11 | 80 (+1) | 40 (−1) | 60 (−1) |
3 | 4 | 40 (−1) | 80 (+1) | 60 (−1) |
4 | 13 | 80 (+1) | 80 (+1) | 60.00(−1) |
5 | 1 | 40 (−1) | 40 (−1) | 180 (+1) |
6 | 3 | 80 (+1) | 40 (−1) | 180 (+1) |
7 | 16 | 40 (−1) | 80 (+1) | 180 (+1) |
8 | 6 | 80 (+1) | 80 (+1) | 180 (+1) |
9 | 12 | 26.36 (−α) | 60 (0) | 120 (0) |
10 | 2 | 93.64 (+α) | 60 (0) | 120 (0) |
11 | 14 | 60 (0) | 26.36 (−α) | 120 (0) |
12 | 7 | 60 (0) | 93.63 (+α) | 120 (0) |
13 | 9 | 60 (0) | 60 (0) | 19.09 (−α) |
14 | 5 | 60 (0) | 60 (0) | 220.90 (+α) |
15 | 8 | 60 (0) | 60 (0) | 120 (0) |
16 | 10 | 60 (0) | 60 (0) | 120 (0) |
17 | 17 | 60 (0) | 60 (0) | 120 (0) |
Ratio (w/v) | LS (mg/100 g Sample) | LoS (mg/100 g Sample) |
---|---|---|
1:05 | 6.52 ± 0.04 a | 8.76 ± 0.17 a |
1:10 | 9.12 ± 0.13 b | 11.04 ± 0.13 b |
1:15 | 9.34 ± 0.13 b | 11.94 ± 0.07 c |
1:20 | 9.77 ± 0.06 c | 12.39 ± 0.21 d |
1:30 | 9.81 ± 0.06 c | 13.30 ± 0.16 e |
1:40 | 9.80 ± 0.16 c | 13.87 ± 0.42 f |
Responses | Source | DF 1 (LS) | DF 1 (LoS) | SS 2 (LS) | SS 2 (LoS) | MS 3 (LS) | MS 3 (LoS) | F (LS) | F (LoS) | p-Value (LS) | p-Value (LoS) |
---|---|---|---|---|---|---|---|---|---|---|---|
Extraction yield | Lack-of-fit | 8 | 3 | 0.5453 | 5.326 | 0.0685 | 1.7755 | 37.21 | 4.23 | 0.026 | 0.046 |
Pure error | 2 | 8 | 0.0037 | 3.355 | 0.0018 | 0.4193 | |||||
Total | 16 | 16 | 9.5443 | 56.048 | |||||||
EPC | Lack-of-fit | 8 | 9 | 44,518 | 2,049,453 | 5565 | 227,717 | 247.66 | 1.99 | 0.004 | 0.380 |
Pure error | 2 | 2 | 45 | 229,404 | 22 | 114,702 | |||||
Total | 16 | 16 | 489,630 | 17,224,657 | |||||||
DPPH | Lack-of-fit | 8 | 7 | 8222 | 147,221 | 1027.7 | 21,032 | 18.78 | 5.36 | 0.052 | 0.166 |
Pure error | 2 | 2 | 109 | 7850 | 54.7 | 3925 | |||||
Total | 16 | 16 | 112,382 | 2,352,154 | |||||||
ABTS | Lack-of-fit | 8 | 7 | 43,482 | 4,209,406 | 5435 | 601,344 | 1.28 | 7.73 | 0.511 | 0.119 |
Pure error | 2 | 2 | 8511 | 155,653 | 4255 | 77,826 | |||||
Total | 16 | 16 | 686,291 | 37,479,890 | |||||||
FRAP | Lack-of-fit | 8 | 3 | 8232 | 203,411 | 1029 | 67,804 | 3.85 | 2.41 | 0.222 | 0.142 |
Pure error | 2 | 8 | 534 | 224,684 | 267 | 28,086 | |||||
Total | 16 | 16 | 105,278 | 3,914,691 |
Variables a | Yield CF (LS) | Yield CF (LoS) | EPC CF (LS) | EPC CF (LoS) | DPPH CF (LS) | DPPH CF (LoS) | ABTS CF (LS) | ABTS CF (LoS) | FRAP CF (LS) | FRAP CF (LoS) |
---|---|---|---|---|---|---|---|---|---|---|
β0 | 7.586 ***,b | 14.042 ***,b | 939.26 *** | 6015.86 *** | 394.37 *** | 2337.98 *** | 1134.67 *** | 8339.34 *** | 387.25 *** | 3567.43 *** |
β1 | −0.718 *** | −1.062 *** | −82.34 ** | −714.44 *** | −35.32 ** | −213.78 *** | −90.88 *** | −496.76 * | −27.28 *** | −181.88 ** |
β2 | 0.100 ns,c | 0.676 * | 60.85 * | 42.34 ns,c | 23.15 * | 110.56 * | 110.54 *** | −83.18 ns | 50.29 *** | −67.09 ns |
β3 | 0.147 * | 29.76 ns | 3.91 ns | 94.54 * | 18.96 ns | −207.84 ns | 11.63 ns | |||
β11 | −0.166 * | −1.270 *** | −129.05 *** | −771.02 *** | −66.64 *** | −254.23 *** | −135.22 *** | −1090.15 *** | −55.39 *** | −354.75 *** |
β22 | −0.670 * | −83.64 ** | −381.96 ** | −47.88 *** | −207.99 *** | −110.73 *** | −1002.56 *** | −31.93 *** | −343.61 *** | |
β33 | ||||||||||
β12 | 0.701 * | 112.05 * | 716.37 * | 254.89 ** | ||||||
β13 | −0.333 ** | |||||||||
β23 | −0.189 * | −75.69 * | −36.59 * | 107.24 * | −71.37 * | −598.95 * | −30.04 * | |||
R2 | 0.94 | 0.85 | 0.91 | 0.86 | 0.93 | 0.93 | 0.92 | 0.88 | 0.92 | 0.89 |
Adj-R2 | 0.91 | 0.77 | 0.85 | 0.82 | 0.88 | 0.88 | 0.88 | 0.79 | 0.87 | 0.84 |
St. Order | Response * | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Extraction Yield, % | EPC | DPPH | ABTS | FRAP | ||||||
Observed | Predicted | Observed | Predicted | Observed | Predicted | Observed | Predicted | Observed | Predicted | |
5 | 8.60 ± 0.1 | 8.62 | 841 ± 10 | 837 | 335 ± 0.7 | 333 | 971 ± 36 | 959 | 324 ± 2.5 | 327 |
10 | 5.71 ± 0.2 | 5.91 | 338 ± 29 | 434 | 134 ± 3.9 | 146 | 581 ± 33 | 599 | 132 ± 8.3 | 186 |
6 | 7.05 ± 0.4 | 6.69 | 765 ± 32 | 699 | 252 ± 0.9 | 262 | 743 ± 63 | 778 | 275 ± 3.6 | 254 |
3 | 7.83 ± 0.3 | 8.03 | 911 ± 9 | 923 | 361 ± 1.3 | 371 | 1138 ± 21 | 1143 | 387 ± 6.9 | 386 |
14 | 7.57 ± 0.1 | 7.89 | 987 ± 78 | 990 | 408 ± 3.4 | 401 | 1201 ± 35 | 1167 | 398 ± 3.0 | 403 |
8 | 6.38 ± 0.1 | 6.34 | 717 ± 31 | 695 | 218 ± 4.0 | 235 | 845 ± 59 | 856 | 330 ± 2.2 | 305 |
12 | 7.60 ± 0.1 | 7.69 | 819 ± 24 | 804 | 324 ± 2.8 | 298 | 1076 ± 11 | 1007 | 374 ± 2.7 | 383 |
15 | 7.62 ± 0.1 | 7.60 | 940 ± 18 | 937 | 406 ± 9.8 | 394 | 1097 ± 35 | 1135 | 400 ± 6.3 | 390 |
13 | 7.48 ± 0.3 | 7.39 | 829 ± 31 | 902 | 334 ± 3.8 | 388 | 995 ± 31 | 1103 | 340 ± 1.1 | 364 |
16 | 7.56 ± 0.2 | 7.60 | 938 ± 37 | 937 | 420 ± 3.7 | 394 | 1168 ± 98 | 1135 | 403 ± 7.6 | 390 |
2 | 6.59 ± 0.1 | 6.69 | 511 ± 16 | 463 | 214 ± 0.9 | 181 | 662 ± 93 | 597 | 217 ± 2.7 | 179 |
9 | 8.31 ± 0.2 | 8.33 | 743 ± 50 | 706 | 281 ± 4.6 | 265 | 942 ± 38 | 905 | 301 ± 20.5 | 278 |
4 | 7.26 ± 0.1 | 7.09 | 788 ± 18 | 737 | 314 ± 3.4 | 300 | 962 ± 38 | 961 | 373 ± 8.5 | 350 |
11 | 7.22 ± 0.1 | 7.36 | 519 ± 19 | 611 | 197 ± 0.7 | 220 | 585 ± 87 | 636 | 193 ± 10.9 | 213 |
1 | 7.39 ± 0.1 | 7.28 | 723 ± 51 | 690 | 262 ± 1.5 | 252 | 810 ± 100 | 779 | 231 ± 10.6 | 235 |
7 | 8.88 ± 0.2 | 8.62 | 749 ± 15 | 792 | 275 ± 0.5 | 306 | 926 ± 10 | 1038 | 341 ± 6.4 | 358 |
17 | 7.65 ± 0.4 | 7.60 | 947 ± 11 | 937 | 407 ± 0.7 | 394 | 1227 ± 5 | 1135 | 373 ± 17.4 | 390 |
St. Order | Response * | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Extraction Yield, % | EPC | DPPH | ABTS | FRAP | ||||||
Observed | Predicted | Observed | Predicted | Observed | Predicted | Observed | Predicted | Observed | Predicted | |
5 | 12.21 ± 0.2 | 13.19 | 5309 ± 137 | 5472 | 2052 ± 171 | 2078 | 7569 ± 570 | 7934 | 3258 ± 88 | 3369 |
10 | 8.09 ± 0.3 | 8.67 | 2606 ± 133 | 2634 | 1160 ± 62 | 1259 | 3864 ± 657 | 4420 | 1977 ± 63 | 2271 |
6 | 9.99 ± 0.5 | 9.66 | 4192 ± 63 | 4043 | 1552 ± 60 | 1427 | 5613 ± 341 | 5508 | 2799 ± 15 | 2698 |
3 | 12.97 ± 0.3 | 13.14 | 5521 ± 118 | 5683 | 1925 ± 89 | 1886 | 7140 ± 470 | 6751 | 2876 ± 22 | 2868 |
14 | 13.75 ± 0.3 | 14.04 | 5979 ± 12 | 5910 | 2340 ± 9 | 2497 | 7511 ± 285 | 7990 | 3591 ± 158 | 3574 |
8 | 12.96 ± 0.3 | 12.42 | 3457 ± 38 | 4128 | 2177 ± 84 | 2086 | 6175 ± 924 | 5576 | 3032 ± 50 | 2921 |
12 | 13.28 ± 0.2 | 13.29 | 5301 ± 210 | 5007 | 1760 ± 31 | 1936 | 5324 ± 450 | 5364 | 2370 ± 39 | 2495 |
15 | 15.49 ± 0.4 | 14.04 | 5965 ± 155 | 6016 | 2287 ± 17 | 2338 | 9173 ± 62 | 8339 | 3563 ± 78 | 3603 |
13 | 13.32 ± 0.1 | 14.04 | 5286 ± 194 | 6122 | 2127 ± 19 | 2179 | 7616 ± 904 | 8689 | 3303 ± 222 | 3474 |
16 | 14.29 ± 0.2 | 14.04 | 6325 ± 165 | 6016 | 2382 ± 73 | 2338 | 8697 ± 532 | 8339 | 3546 ± 144 | 3603 |
2 | 9.23 ± 0.3 | 9.66 | 4124 ± 66 | 4169 | 1389 ± 27 | 1452 | 5070 ± 989 | 4726 | 2433 ± 29 | 2284 |
9 | 13.63 ± 0.2 | 12.24 | 5206 ± 167 | 5037 | 1898 ± 34 | 1978 | 6626 ± 141 | 6091 | 3021 ± 54 | 2882 |
4 | 12.47 ± 0.2 | 12.42 | 4788 ± 105 | 4254 | 1798 ± 6 | 1683 | 7090 ± 578 | 7190 | 3032 ± 41 | 2811 |
11 | 11.84 ± 0.1 | 11.01 | 4711 ± 23 | 4864 | 1560 ± 7 | 1564 | 5662 ± 209 | 5644 | 2692 ± 69 | 2721 |
1 | 12.41 ± 0.4 | 13.19 | 5835 ± 16 | 5598 | 2177 ± 42 | 2104 | 7048 ± 25 | 7152 | 3358 ± 35 | 3360 |
7 | 12.25 ± 0.5 | 13.14 | 5280 ± 159 | 5556 | 2442 ± 5 | 2290 | 4329 ± 280 | 5137 | 2533 ± 125 | 2573 |
17 | 14.05 ± 0.5 | 14.04 | 6642 ± 138 | 6016 | 2405 ± 11 | 2338 | 8682 ± 98 | 8339 | 3727 ± 58 | 3603 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sai-Ut, S.; Kingwascharapong, P.; Mazumder, M.A.R.; Rawdkuen, S. Optimization of Ethanolic Extraction of Phenolic Antioxidants from Lychee and Longan Seeds Using Response Surface Methodology. Foods 2023, 12, 2827. https://doi.org/10.3390/foods12152827
Sai-Ut S, Kingwascharapong P, Mazumder MAR, Rawdkuen S. Optimization of Ethanolic Extraction of Phenolic Antioxidants from Lychee and Longan Seeds Using Response Surface Methodology. Foods. 2023; 12(15):2827. https://doi.org/10.3390/foods12152827
Chicago/Turabian StyleSai-Ut, Samart, Passakorn Kingwascharapong, Md. Anisur Rahman Mazumder, and Saroat Rawdkuen. 2023. "Optimization of Ethanolic Extraction of Phenolic Antioxidants from Lychee and Longan Seeds Using Response Surface Methodology" Foods 12, no. 15: 2827. https://doi.org/10.3390/foods12152827
APA StyleSai-Ut, S., Kingwascharapong, P., Mazumder, M. A. R., & Rawdkuen, S. (2023). Optimization of Ethanolic Extraction of Phenolic Antioxidants from Lychee and Longan Seeds Using Response Surface Methodology. Foods, 12(15), 2827. https://doi.org/10.3390/foods12152827