Evaluation of Autochthonous Coagulase—Negative Staphylococci as Starter Cultures for the Production of Pastırma
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Pastırma Production
2.3. Determination of the pH, Water Activity (aw), and Thiobarbituric Acid-Reactive Substances (TBARS) Values
2.4. Microbiological Analyses
2.5. Determination of Color Values
2.6. Determination of Fatty Acid Composition
2.7. Determination of Volatile Compounds
2.8. Statistical Analyses
3. Results and Discussion
3.1. pH and aw Values
3.2. Thiobarbituric Acid-Reactive Substances (TBARS)
3.3. Microbiological Properties
3.4. Color Values
3.5. Fatty Acid Composition
3.6. Volatile Compounds
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kaban, G. Changes in the composition of volatile compounds and in microbiological and physicochemical parameters during pastırma processing. Meat Sci. 2009, 82, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Kaban, G. Sucuk and pastırma: Microbiological changes and formation of volatile compounds. Meat Sci. 2013, 95, 912–918. [Google Scholar] [CrossRef] [PubMed]
- Kaya, M.; Kaban, G. Fermented meat products. In Food Biotechnology; Aran, N., Ed.; Nobel Publishing: Ankara, Turkey, 2016; pp. 157–190. [Google Scholar]
- Fettahoğlu, K.; Çinar, K.; Kaya, M.; Kaban, G. Biodiversity and characterization of Gram-positive catalase-positive cocci isolated from pastırma produced under different curing processes. Turk. J. Vet. Anim. Sci. 2019, 43, 63–75. [Google Scholar] [CrossRef]
- Erol, İ.; Özdemir, H.; Kısa, Ö. Identification of micrococci and staphylococci isolated from pastırma in comprasion with conventional method and APi-ID 32 Staph System. Ank. Univ. Vet. Fac. J. 1998, 45, 135–144. [Google Scholar]
- Kaban, G. Identification and characterization of catalase positive cocci isolated from pastırma. Fleischwirtschaft 2010, 90, 104–106. [Google Scholar]
- Landeta, G.; Reverón, I.; Carrascosa, A.V. Use of recA gene sequence analysis for the identification of Staphylococcus equorum strains predominant on dry cured hams. Food Microbiol. 2011, 28, 1205–1210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laranjo, M.; Elias, M.; Fraqueza, M.J. The use of starter cultures in traditional meat products. J. Food Qual. 2017, 9546026. [Google Scholar] [CrossRef] [Green Version]
- Mainar, M.S.; Stavropoulou, D.A.; Leroy, F. Exploring the metabolic heterogeneity of coagulase-negative staphylococci to improve the quality and safety of fermented meats: A review. Int. J. Food Microbiol. 2017, 247, 24–37. [Google Scholar] [CrossRef]
- Essid, I.; İsmail, H.B.; Ahmed, S.B.H. Characterization and technological properties of Staphylococcus xylosus strains from a Tunisian traditional salted meat. Meat Sci. 2007, 77, 204–212. [Google Scholar] [CrossRef]
- Casquete, R.; Benito, M.J.; Martín, A. Use of autochthonous Pediococcus acidilactici and Staphylococcus vitulinus starter cultures in the production of “Chorizo” in 2 different. J. Food Sci. 2012, 71, 70–79. [Google Scholar] [CrossRef]
- Landeta, G.; Curiel, J.A.; Carrascosa, A.V.; Muñoz, R.; De Las Rivas, B. Characterization of coagulase-negative staphylococci isolated from Spanish dry cured meat products. Meat Sci. 2013, 93, 387–396. [Google Scholar] [CrossRef] [Green Version]
- Casquete, R.; Benito, M.J.; Martín, A. Effect of autochthonous starter cultures in the production of “salchichón”, a traditional Iberian dry-fermented sausage, with different ripening processes. LWT-Food Sci. Technol. 2011, 44, 1562–1571. [Google Scholar] [CrossRef]
- Casquete, R.; Benito, M.; Martin, A. Comparison of the effects of a commercial and an autochthonous Pediococcus acidilactici and Staphylococcus vitulinus starter culture on the sensory and safety properties of a traditional Iberian dry-fermented sausage “salchichón”. Int. J. Food Sci. Technol. 2012, 47, 1011–1019. [Google Scholar] [CrossRef]
- Zeng, X.; Xia, W.; Jiang, Q. Contribution of mixed starter cultures to flavor profile of suanyu—A traditional chinese low-salt fermented whole fish. J. Food Process. Preserv. 2017, 41, e13131. [Google Scholar] [CrossRef]
- Cocconcelli, P.S. Starter cultures: Bacteria (13th Section), Part III. In Microbiology and Starter Cultures for Meat Fermentation in Handbook of Fermented Meat and Poultry; Toldrá, F., Ed.; Blackwell Publishing: Hoboken, NJ, USA, 2007; pp. 137–145. [Google Scholar]
- Jessen, B. Starter culture for meat fermentations. In Fermented Meats; Campbell-Platt, G., Cook, P.E., Eds.; Blackie Academic and Professional: London, UK, 1995; pp. 130–159. [Google Scholar]
- Bosse, R.; Müller, A.; Gibis, M. Recent advances in cured raw ham manufacture. Crit. Rev. Food Sci. Nutr. 2018, 58, 610–630. [Google Scholar] [CrossRef] [PubMed]
- Aksu, M.İ.; Kaya, M. The effect of starter culture use in pastırma production on the properties of end product. Turk. J. Vet. Anim. Sci. 2001, 25, 847–854. Available online: https://dergipark.org.tr/tr/pub/tbtkveterinary/issue/12565/152034 (accessed on 22 July 2023).
- Aksu, M.İ.; Kaya, M. Some microbiological and chemical properties of pastırma produced using potassium nitrate and starter culture. Turk. J. Vet. Anim. Sci. 2002, 26, 125–132. Available online: https://dergipark.org.tr/tr/pub/tbtkveterinary/issue/12564/152017 (accessed on 22 July 2023).
- Aksu, M.İ.; Kaya, M. Effect of commercial starter cultures on the fatty acid composition of pastırma. J. Food Sci. 2002, 67, 2342–2345. [Google Scholar] [CrossRef]
- Aktaş, N.; Aksu, M.İ.; Kaya, M. Changes in myofibrillar proteins during processing of pastirma (Turkish dry meat product) produced with commercial starter cultures. Food Chem. 2005, 90, 640–654. [Google Scholar] [CrossRef]
- Kaban, G.; Kaya, M.; Lücke, F.K. Meat starter cultures. In Encyclopedia of Biotechnology in Agriculture and Food; Taylor and Francis: New York, NY, USA, 2012; pp. 1–4. [Google Scholar]
- Yılmaz Oral, Z.F.; Kaban, G. Effects of autochthonous strains on volatile compounds and technological properties of heat-treated sucuk. Food Biosci. 2021, 43, 101140. [Google Scholar] [CrossRef]
- Fettahoğlu, K. Isolation and İdentification of Catalase Positive Cocci from Pastırma by Using Different Curing Processes and Some Properties of the Product. Master’s Thesis, Atatürk Üniversity, Erzurum, Turkey, 2014. [Google Scholar]
- Fettahoğlu, K. Characterization of Coagulase Negative Staphylococcus Strains İsolated from Pastırma and Possibilities of Their Usage as Starter Culture. Ph.D. Thesis, Department of Food Engineering, Graduate School of Natural and Applied Sciences, Atatürk University, Erzurum, Turkey, 2019. [Google Scholar]
- Bosse, R.; Gibis, M.; Schmidt, H. Nitate reductase activity of Staphylococcus carnosus affecting the color formation in cured raw ham. Food Res. Int. 2016, 85, 113–120. [Google Scholar] [CrossRef]
- Lemon, D.W. An İmproved TBA Test for Rancidity New Series Circular; Halifax-Laboratory: Halifax, NS, Canada, 1975. [Google Scholar]
- Folch, J.; Lees, M.; Stanley, G.H.S. A simple method for the ısolation and purification of total lipides from animal tissues. J. Biol. Chem. 1957, 226, 497–509. Available online: http://www.jbc.org/content/226/1/497.citation (accessed on 22 July 2023). [CrossRef]
- Metcalfe, L.; Schmitz, A.A. The rapid preparation of fatty acid esters for gas chromatographic analysis. Analytic. Chem. 1961, 33, 363–364. [Google Scholar] [CrossRef]
- Anonymous. Turkish Food Codex Meat and Meat Products Communique. Number: 28488. 2012, Ankara. Available online: https://www.resmigazete.gov.tr/eskiler/2012/12/20121205-12.htm (accessed on 22 July 2023). (In Turkish)
- Talon, R.; Walter, D.; Montel, M.C. Growth and effect of Staphylococci and lactic acid bacteria on unsaturated free fatty acids. Meat Sci. 2000, 54, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Akköse, A.; Ünal, N.; Yalınkılıç, B.; Kaya, M.; Kaban, G. Volative compounds and some physico-chemical properties of pastırma produced with different nitrate levels. Asian-Australas. J. Anim. Sci. 2017, 30, 1168–1174. [Google Scholar] [CrossRef] [Green Version]
- Mainar, M.S.; Leroy, F. Process-driven bacterial community dynamics are key to cured meat colour fornation by coagulase-negative staphylococci via nitrate reductase or nitric oxide synthase activities. Int. J. Food Microbiol. 2015, 212, 60–66. [Google Scholar] [CrossRef]
- Sørensen, B.B. Lipolysis of pork fat by the meat starter culture Staphylococcus xylosus at various enviromental conditions. Food Microbiol. 1997, 14, 153–160. [Google Scholar] [CrossRef]
- Stahnke, L.H. Aroma components from dried sausages fermented with Staphylococcus xylosus. Meat Sci. 1994, 38, 39–53. [Google Scholar] [CrossRef] [PubMed]
- Prpich, N.Z.P.; Castro, M.P.; Cayré, M.E. Indigenous starter cultures to improve quality of artisanal dry fermented sausages from Chaco. Int. J. Food Sci. 2015, 931970. [Google Scholar] [CrossRef] [Green Version]
- Çakıcı, N.; Aksu, M.İ.; Erdemir, E. A survey of the physico-chemical and microbiological quality of different pastırma types: A dry cured meat product. CyTA-J. Food 2015, 13, 196–203. [Google Scholar] [CrossRef] [Green Version]
- Gaspardo, B.; Procida, G.; Toso, B. Determination of volatile compounds in San Daniele ham using headspace GC-MS. Meat Sci. 2008, 80, 204–209. [Google Scholar] [CrossRef]
- Marušić, N.; Vidaček, S.; Janči, T. Determination of volatile compounds and quality parameters of traditional Istrian dry cured ham. Meat Sci. 2014, 96, 1409–1416. [Google Scholar] [CrossRef] [PubMed]
- Bosse, R.; Wirt, M.; Konstanz, A. Determination of volatile marker compounds in raw ham using headspace-trap gas chromatography. Food Chem. 2017, 219, 249–259. [Google Scholar] [CrossRef]
- Montel, M.C.; Reitz, J.; Talon, R. Biochemical activities of Micrococcaceae and their effects on the aromatic profiles and odours of a dry sausage model. Food Microbiol. 1996, 13, 489–499. [Google Scholar] [CrossRef]
- Søndergaard, A.K.; Stahnke, L.H. Growth and aroma production by Staphylococcus xylosus, S. carnosus and S. equorum comparative study in model systems. Int. J. Food Microbiol. 2002, 75, 99–109. [Google Scholar] [CrossRef] [PubMed]
- Sha, K.; Lang, Y.M.; Sun, B.Z. Changes in lipid oxidation, fatty acid profile and volatile compounds of traditional kazakh dry cured beef during processing and storage. J. Food Process. Preserv. 2017, 41, e13059. [Google Scholar] [CrossRef]
Properties | Strains | |||
---|---|---|---|---|
Control | S. vitulinus 75 | S. equorum 53 | S. xylosus 39 | |
pH | 5.63 ± 0.01 c | 5.63 ± 0.02 c | 5.76 ± 0.01 a | 5.66 ± 0.03 b |
aw | 0.866 ± 0.005 b | 0.878 ± 0.008 a | 0.871 ± 0.001 ab | 0.874 ± 0.003 a |
TBARS | 1.95 ± 0.19 a | 2.00 ± 0.06 a | 1.68 ± 0.11 b | 1.82 ± 0.13 ab |
L* | 34.25 ± 0.98 ab | 35.96 ± 1.31 a | 33.06 ± 2.94 b | 34.03 ± 1.16 ab |
a* | 28.70 ± 3.11 c | 33.59 ± 1.99 b | 27.86 ± 1.24 c | 35.98 ± 1.59 a |
b* | 12.85 ± 1.00 c | 16.61 ± 1.37 b | 12.48 ± 1.24 c | 18.20 ± 0.95 a |
Micrococcus/Staphylococcus | 6.94 ± 0.44 b | 7.26 ± 0.19 b | 7.85 ± 0.08 a | 7.81 ± 0.31 a |
Enterobacteriaceae | <2 | <2 | <2 | <2 |
No | Fatty Acid | Strain | |||
---|---|---|---|---|---|
Control | S. vitulinus 75 | S. equorum 53 | S. xylosus 39 | ||
1 | C14:0 | 2.41 ± 0.04 b | 6.00 ± 1.34 a | 4.10 ± 1.36 ab | 6.80 ± 2.92 a |
2 | C14:1 | 1.75 ± 1.00 b | 4.77 ± 0.95 a | 3.29 ± 0.76 ab | 5.54 ± 2.79 a |
3 | C15:0 | 0.92 ± 0.24 c | 2.79 ± 0.55 ab | 2.02 ± 0.53 b | 3.17 ± 1.06 a |
4 | C15:1 | 0.16 ± 0.07 b | 0.56 ± 0.23 a | 0.44 ± 0.26 a | 0.58 ± 0.05 a |
5 | C16:0 | 30.92 ± 1.10 a | 26.82 ± 1.10 b | 27.04 ± 2.23 b | 26.66 ± 0.94 b |
6 | C16:1 | 3.49 ± 0.39 a | 3.16 ± 0.27 ab | 3.03 ± 0.18 b | 2.86 ± 0.54 b |
7 | C18:0 | 18.92 ± 0.74 a | 16.27 ± 1.67 a | 18.85 ± 5.70 a | 15.76 ± 0.64 a |
8 | C18:1 n-9 t | 0.93 ± 0.21 a | 1.01 ± 0.04 a | 1.05 ± 0.08 a | 1.05 ± 0.12 a |
9 | C18:1 n-9 c | 31.76 ± 2.92 a | 29.74 ± 2.26 a | 29.71 ± 1.94 a | 27.87 ± 5.65 a |
10 | C18:2 n-6 t | 0.15 ± 0.04 ab | 0.20 ± 0.06 a | 0.14 ± 0.02 ab | 0.09 ± 0.03 b |
11 | C18:2 n-6 c | 6.57 ± 0.25 a | 6.12 ± 0.61 a | 6.88 ± 0.73 a | 6.69 ± 0.59 a |
12 | C20:0 | 0.12 ± 0.02 a | 0.08 ± 0.04 a | 0.08 ± 0.02 a | 0.33 ± 0.27 a |
13 | C18:3 n6 | 0.05 ± 0.03 a | 0.24 ± 0.28 a | 0.03 ± 0.02 a | 0.05 ± 0.03 a |
14 | C20:1 | 0.17 ± 0.02 a | 0.18 ± 0.07 a | 0.15 ± 0.05 a | 0.14 ± 0.02 a |
15 | C18:2 c9 t11 | 0.56 ± 0.09 a | 0.50 ± 0.10 a | 0.55 ± 0.06 a | 0.53 ± 0.05 a |
16 | C18:2 t9 t11 | 0.06 ± 0.02 a | 0.05 ± 0.00 a | 0.05 ± 0.01 a | 0.04 ± 0.01 a |
17 | C22:0 | 0.26 ± 0.04 a | 0.25 ± 0.07 a | 0.28 ± 0.09 a | 0.29 ± 0.06 a |
18 | C22:1 n9 | 0.60 ± 0.66 a | 1.12 ± 0.32 a | 1.32 ± 0.33 a | 1.34 ± 0.21 a |
19 | C22:6 n3 | 0.21 ± 0.02 a | 0.18 ± 0.02 b | 0.22 ± 0.04 a | 0.22 ± 0.02 a |
Strains | |||||||
---|---|---|---|---|---|---|---|
No * | Compounds | R | KI | Control | S. vitulinus 75 | S. equorum 53 | S. xylosus 39 |
Sulfur compounds | |||||||
5 | Allyl mercaptan | b | 574 | 7.70 ± 2.81 a | 8.00 ± 5.37 a | 5.40 ± 2.44 a | 7.97 ± 2.59 a |
8 | Allyl methyl sulfide | b | 730 | 5.89 ± 2.77 a | 8.59 ± 3.92 a | 6.73 ± 2.61 a | 4.76 ± 2.30 a |
10 | Isothiazole | c | 772 | 0.45 ± 0.39 a | 0.30 ± 0.35 a | 0.17 ± 0.26 a | 0.54 ± 0.71 a |
17 | 3,3’-thiobis-1-propene | b | 888 | 16.15 ± 6.97 a | 23.52 ± 10.08 a | 20.63 ± 9.10 a | 14.10 ± 2.98 a |
22 | Methyl 2-propenyl disulfide | b | 958 | 4.36 ± 2.62 a | 4.55 ± 2.34 a | 3.42 ± 2.29 a | 3.54 ± 1.72 a |
33 | Di-2-propenyl disulfide | b | 1157 | 29.23 ± 10.80 a | 29.15 ± 17.14 a | 31.85 ± 8.46 a | 23.65 ± 5.39 a |
Alcohols | |||||||
2 | Ethanol | a | 527 | 0.82 ± 0.33 a | 0.95 ± 0.33 a | 0.61 ± 0.37 a | 0.53 ± 0.35 a |
3 | 1-propen-2-ol | c | 539 | 3.83 ± 2.32 a | 4.26 ± 2.40 a | 2.68 ± 1.27 a | 2.19 ± 1.55 a |
Ketones | |||||||
6 | 2,3-butanedione | c | 657 | 4.66 ± 3.97 b | 7.44 ± 2.64 b | 12.54 ± 4.20 a | 3.83 ± 1.78 b |
11 | 3-hydroxy-2-butanone | a | 779 | 0.94 ± 0.70 c | 2.11 ± 0.63 b | 3.50 ± 0.99 a | 0.56 ± 0.59 c |
20 | 2-heptanone | c | 948 | 1.66 ± 1.43 a | 1.51 ± 1.66 a | 0.82 ± 0.61 a | 0.59 ± 0.58 a |
25 | 2,3-octanedione | b | 1025 | 10.3 ± 10.13 a | 13.6 ± 10.86 a | 15.51 ± 10.51 a | 8.28 ± 5.8 a |
27 | 6-methyl-5-heptene-2-one | c | 1031 | 0.66 ± 1.42 a | 1.02 ± 1.29 a | 0.73 ± 0.83 a | 0.31 ± 0.42 a |
35 | 3,5-octadiene-2-one | c | 1165 | 2.61 ± 2.88 a | 2.33 ± 2.58 a | 1.26 ± 0.46 a | 0.76 ± 0.48 a |
Aliphatic hydrocarbons | |||||||
4 | Hexane | a | 600 | 5.21 ± 2.19 a | 12.78 ± 14.37 a | 4.36 ± 1.84 a | 5.16 ± 1.91 a |
15 | Octane | a | 800 | 2.62 ± 1.54 a | 1.74 ± 2.15 a | 1.47 ± 1.65 a | 0.07 ± 0.13 a |
18 | Nonane | a | 900 | 0.60 ± 0.46 a | 0.34 ± 0.25 a | 0.32 ± 0.15 a | 0.35 ± 0.24 a |
23 | Decane | a | 1000 | 2.53 ± 2.13 a | 1.17 ± 1.61 a | 1.14 ± 0.84 a | 0.55 ± 0.16 a |
31 | Undecane | a | 1100 | 2.76 ± 2.14 a | 2.19 ± 2.34 a | 2.67 ± 2.58 a | 1.49 ± 1.44 a |
36 | Dodecane | a | 1200 | 5.73 ± 2.54 a | 5.71 ± 2.93 a | 4.36 ± 2.63 a | 3.93 ± 1.54 a |
39 | Tridecane | a | 1300 | 5.59 ± 5.24 a | 2.78 ± 2.38 a | 2.84 ± 1.74 a | 2.27 ± 1.50 a |
41 | Tetradecane | a | 1400 | 2.59 ± 2.39 a | 1.48 ± 0.97 a | 1.10 ± 0.04 a | 1.19 ± 0.70 a |
Esters | |||||||
32 | Propyl hexanoate | b | 1151 | 10.74 ± 12.17 a | 2.99 ± 1.99 a | 8.06 ± 6.73 a | 1.71 ± 2.00 a |
37 | Hexyl butanoate | b | 1221 | 6.04 ± 4.83 a | 6.39 ± 4.36 a | 6.44 ± 2.66 a | 3.76 ± 3.12 a |
Aldehydes | |||||||
1 | Acetaldehyde | a | < 500 | 31.92 ± 8.17 a | 22.72 ± 2.73 a | 22.15 ± 3.22 a | 30.46 ± 10.56 a |
9 | 3-methyl-butanal | c | 693 | 3.40 ± 1.54 a | 1.98 ± 2.28 a | 2.80 ± 3.14 a | 0.44 ± 0.28 a |
13 | 2-methyl-2-butenal | c | 788 | 3.65 ± 1.33 a | 2.97 ± 1.79 a | 2.73 ± 1.57 a | 2.43 ± 1.07 a |
16 | Hexanal | a | 849 | 37.33 ± 11.44 a | 37.19 ± 12.17 a | 27.91 ± 14.90 a | 22.6 ± 7.70 a |
21 | Heptanal | b | 955 | 6.04 ± 2.59 a | 6.83 ± 1.63 a | 4.39 ± 3.44 a | 3.04 ± 1.95 a |
26 | Benzaldehyde | a | 1026 | 6.83 ± 4.56 bc | 11.10 ± 3.30 a | 7.97 ± 1.81 b | 4.04 ± 1.95 c |
28 | Octanal | a | 1054 | 4.40 ± 2.30 a | 5.56 ± 3.44 a | 4.57 ± 2.65 a | 4.16 ± 2.11 a |
34 | Nonanal | a | 1163 | 9.61 ± 3.20 a | 11.73 ± 3.07 a | 9.95 ± 1.39 a | 9.67 ± 2.12 a |
38 | 2-nonenal | c | 1224 | 1.16 ± 0.91 a | 1.33 ± 0.21 a | 1.40 ± 0.81 a | 0.70 ± 0.55 a |
40 | 2-methyl-3-phenyl propanal | b | 1334 | 1.21 ± 0.92 b | 2.79 ± 1.23 a | 1.62 ± 0.77 b | 1.66 ± 0.48 b |
Aromatic hydrocarbons | |||||||
14 | Toluene | a | 791 | 0.99 ± 0.60 a | 0.53 ± 0.43 a | 0.88 ± 0.66 a | 0.66 ± 0.57 a |
30 | 1-methyl-2-(1-methylethyl)-benzene | c | 1062 | 1.50 ± 1.02 a | 1.26 ± 0.73 a | 1.23 ± 0.70 a | 0.91 ± 0.37 a |
Nitrogenous compound | |||||||
12 | 1-methyl-1H-pyrrole | b | 786 | 1.56 ± 0.68 a | 1.56 ± 1.33 a | 1.56 ± 0.86 a | 1.06 ± 0.63 a |
Furans | |||||||
19 | 2-butylfuran | c | 925 | 0.30 ± 0.36 a | 0.23 ± 0.23 a | 0.23 ± 0.27 a | 0.22 ± 0.23 a |
24 | 2-pentylfuran | c | 1021 | 1.86 ± 1.35 a | 2.51 ± 1.75 a | 1.81 ± 1.08 a | 0.9 ± 0.55 a |
Terpene | |||||||
29 | D-Limonene | b | 1055 | 0.85 ± 0.73 a | 1.25 ± 0.67 a | 0.89 ± 0.46 a | 0.74 ± 0.60 a |
Acid | |||||||
7 | Acetic acid | a | 717 | 1.05 ± 0.32 a | 1.11 ± 0.80 a | 0.77 ± 0.42 a | 1.02 ± 0.90 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fettahoğlu, K.; Kaya, M.; Kaban, G. Evaluation of Autochthonous Coagulase—Negative Staphylococci as Starter Cultures for the Production of Pastırma. Foods 2023, 12, 2856. https://doi.org/10.3390/foods12152856
Fettahoğlu K, Kaya M, Kaban G. Evaluation of Autochthonous Coagulase—Negative Staphylococci as Starter Cultures for the Production of Pastırma. Foods. 2023; 12(15):2856. https://doi.org/10.3390/foods12152856
Chicago/Turabian StyleFettahoğlu, Kübra, Mükerrem Kaya, and Güzin Kaban. 2023. "Evaluation of Autochthonous Coagulase—Negative Staphylococci as Starter Cultures for the Production of Pastırma" Foods 12, no. 15: 2856. https://doi.org/10.3390/foods12152856
APA StyleFettahoğlu, K., Kaya, M., & Kaban, G. (2023). Evaluation of Autochthonous Coagulase—Negative Staphylococci as Starter Cultures for the Production of Pastırma. Foods, 12(15), 2856. https://doi.org/10.3390/foods12152856