Quality Evaluation of Shiitake Blanched and Centrifuged Broths as Functional Instant Drinks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Blanched and Centrifuged Broths
2.2.1. Preparation
2.2.2. Determination of Quality Characteristics of Blanched and Centrifuged Broths
2.2.3. Determination of Proximate Compositions, Sugars, and Polyols
2.2.4. Determination of Free Amino Acids, 5′-Nucleotides, and Equivalent Umami Concentration
2.2.5. Determination of Minerals
2.2.6. Determination of Bioactive Compounds
2.3. Instant Powder and Drink
2.3.1. Preparation
2.3.2. Determination of Physical Quality Characteristics
2.3.3. Sensory Evaluation
2.4. Statistical Analysis
3. Results and Discussion
3.1. Quality Characteristics of Blanched and Centrifuged Broths
3.2. Quality Characteristics of Instant Powders
3.3. Sensory Evaluation of Instant Drink
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, W.; Li, W.; Yang, Y.; Yu, H.; Zhou, S.; Feng, J.; Li, X.; Liu, Y. Analysis and evaluation of tasty components in the pileus and stipe of Lentinula edodes at different growth stages. J. Agric. Food Chem. 2015, 63, 795–801. [Google Scholar] [CrossRef]
- Li, S.; Wang, A.; Liu, L.; Tian, G.; Wei, S.; Xu, F. Evaluation of nutritional values of shiitake mushroom (Lentinus edodes) stipes. J. Food Meas. Charact. 2018, 12, 2012–2019. [Google Scholar] [CrossRef]
- Ren, A.; Pan, S.; Li, W.; Chen, G.; Duan, X. Effect of various pretreatments on quality attributes of vacuum-fried shiitake mushroom chips. J. Food Qual. 2018, 2018, 4510126. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, I.; Arif, M.; Xu, M.; Zhang, J.; Ding, Y.; Lyu, F. Therapeutic values and nutraceutical properties of shiitake mushroom (Lentinula edodes): A review. Trends Food Sci. Technol. 2023, 134, 123–135. [Google Scholar] [CrossRef]
- Mau, J.L.; Tseng, J.; Wu, C.R.; Chen, C.H.; Lin, S.D. Chemical, nutritional, and bioactive compositions of fresh, washed, and blanched shiitake. Czech. J. Food Sci. 2021, 39, 426–434. [Google Scholar] [CrossRef]
- Wong, K.M.; Decker, E.A.; Autio, W.R.; Toong, K.; DiStefano, G.; Kinchla, A.J. Utilizing mushrooms to reduce overall sodium in taco filling using physical and sensory evaluation. J. Food Sci. 2017, 82, 10. [Google Scholar] [CrossRef] [PubMed]
- García-Segovia, P.; Urbano-Ramos, A.M.; Fiszman, S.; Martínez-Monzó, J. Effects of processing conditions on the quality of vacuum fried cassava chips (Manihot esculenta Crantz). LWT-Food Sci. Technol. 2016, 69, 515–521. [Google Scholar] [CrossRef]
- Mau, J.L.; Tseng, J.; Wu, C.R.; Chen, C.H.; Lin, S.D. Instrumental texture and sensory preference of vacuum-fried shiitake crisps as affected by isomalto-oligosaccharide pretreatment. Int. J. Food Prop. 2021, 24, 859–870. [Google Scholar] [CrossRef]
- Lin, P.H.; Huang, S.Y.; Mau, J.L.; Liou, B.K.; Fang, T.J. A novel alcoholic beverage developed from shiitake stipe extract and cane sugar with various Saccharomyces strains. LWT-Food Sci. Technol. 2010, 43, 971–976. [Google Scholar] [CrossRef]
- Qiu, L.; Zhang, M.; Chang, L. Effects of lactic acid bacteria fermentation on the phytochemicals content, taste and aroma of blended edible rose and shiitake beverage. Food Chem. 2023, 405, 134722. [Google Scholar] [CrossRef]
- Zhang, Y.; Hartung, N.M.; Fraatz, M.A.; Zorn, H. Quantification of key odor-active compounds of a novel nonalcoholic beverage produced by fermentation of wort by shiitake (Lentinula edodes) and aroma genesis studies. Food Res. Int. 2015, 70, 23–30. [Google Scholar] [CrossRef]
- Li, B.; Kimatu, B.M.; Pei, F.; Chen, S.; Feng, X.; Hu, Q.; Zhao, L. Non-volatile flavour components in Lentinus edodes after hot water blanching and microwave blanching. Int. J. Food Prop. 2017, 20, S2532–S2542. [Google Scholar] [CrossRef] [Green Version]
- Lin, S.D.; Wu, Y.T.; Lo, Y.C.; Mau, J.L. Quality characteristics of centrifuged broth from blanched Pleurotus eryngii and its application as instant drink. J. Food Process. Preserv. 2018, 42, e13356. [Google Scholar] [CrossRef]
- Wang, C.Y. A review on the potential reuse of functional polysaccharides extracted from the by-products of mushroom processing. Food Bioprocess Technol. 2020, 13, 217–228. [Google Scholar] [CrossRef]
- De Corato, U.; De Bari, I.; Viola, E.; Pugliese, M. Assessing the main opportunities of integrated biorefining from agro-bioenergy co/by-products and agroindustrial residues into high-value added products associated to some emerging markets: A review. Renew. Sust. Energy Rev. 2018, 88, 326–346. [Google Scholar] [CrossRef]
- Ohkuma, K.; Wakabayashi, S. Chapter 44: Fibersol-2: A soluble, nondigestible, starch-derived dietary fibre. In Advanced Dietary Fibre Technology; McCleary, B.V., Prosky, L., Eds.; Blackwell Science: Oxford, UK, 2001; pp. 509–523. [Google Scholar] [CrossRef]
- Tsuji, K.; Gordon, D.T. Energy value of a mixed glycosidic linked dextrin determined in rats. J. Agric. Food Chem. 1998, 46, 2253–2259. [Google Scholar] [CrossRef]
- McCleary, B.V. Measurement of dietary fiber: Which AOAC official method of analysisSM to use. J. AOAC Int. 2023, qsad051. [Google Scholar] [CrossRef]
- Wakabayashi, S.; Satouchi, M.; Ueda, Y.; Ohkuma, K. Acute toxicity and mutagenicity studies of indigestible dextrin and its effect on bowel movement of the rat. Food Hyg. Saf. Sci. (Shokuhin Eiseigaku Zasshi) 1992, 33, 557–562. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, N.; Suzuki, M.; Yamaguchi, Y.; Egashira, Y. Effects of resistant maltodextrin on bowel movements: A systematic review and meta-analysis. Clin. Exp. Gastroenterol. 2018, 11, 85–96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wakabayashi, S.; Kishimoto, Y.; Nanbu, S.; Matsuoka, A. Effects of indigestible dextrin on postprandial rise in blood glucose levels in man. J. Jpn. Assoc. Diet. Fiber Res. 1999, 3, 13–19. (In Japanese) [Google Scholar] [CrossRef]
- Kishimoto, Y.; Wakabayashi, S.; Tokunaga, K. Effects of long-term administration of indigestible dextrin on visceral fat accumulation. J. Jpn. Assoc. Diet. Fiber Res. 2000, 4, 59–65. (In Japanese) [Google Scholar] [CrossRef]
- Ye, Z.; Arumugam, V.; Haugabrooks, E.; Williamson, P.; Hendrich, S. Soluble dietary fiber (Fibersol-2) decreased hunger and increased satiety hormones in humans when ingested with a meal. Nutr. Res. 2015, 35, 393–400. [Google Scholar] [CrossRef] [PubMed]
- Włodarczyk, M.; Śliżewska, K. Efficiency of resistant starch and dextrins as prebiotics: A review of the existing evidence and clinical trials. Nutrients 2021, 13, 3808. [Google Scholar] [CrossRef] [PubMed]
- Bojarczuk, A.; Skąpska, S.; Khaneghah, A.M.; Marszałek, K. Health benefits of resistant starch: A review of the literature. J. Funct. Foods 2022, 93, 105094. [Google Scholar] [CrossRef]
- AACC International. Approved Methods of the AACC, 10th ed.; American Association of Cereal Chemists: St. Paul, MN, USA, 2000. [Google Scholar]
- Crisan, E.V.; Sands, A. Edible mushrooms: Nutritional value. In The Biology and Cultivation of Edible Mushrooms; Chang, S.T., Hayes, W.A., Eds.; Academic Press: New York, NY, USA, 1978; pp. 137–165. [Google Scholar]
- Tsai, S.Y.; Wu, T.P.; Huang, S.J.; Mau, J.L. Nonvolatile taste components of Agaricus bisporus harvested at different stages of maturity. Food Chem. 2007, 103, 1457–1464. [Google Scholar] [CrossRef]
- Hou, J.H.; Wu, P.W.; Liao, C.D.; Kao, Y.M.; Wang, D.Y.; Chen, H.F. Simultaneously determination of glucosamine, taurine, and 20 amino acids in foods and the surveillance report. Annu. Rep. Food Drug Res. 2018, 9, 1–6. Available online: https://www.fda.gov.tw/tc/includes/GetFile.ashx?id=f636812673608919855 (accessed on 20 June 2023).
- Yamaguchi, S.; Yoshikawa, T.; Ikeda, S.; Ninomiya, T. Measurement of the relative taste intensity of some α-amino acid and 5′-nucleotides. J. Food Sci. 1971, 36, 846–849. [Google Scholar] [CrossRef]
- Yamamoto, T.; Inui-Yamamoto, C. The flavor-enhancing action of glutamate and its mechanism involving the notion of kokumi. npj Sci. Food 2023, 7, 3. [Google Scholar] [CrossRef]
- CNS 12869:2018; Methods of Test for Minerals in Infant Formula -Test of Copper, Iron, Magnesium, Manganese, Potassium, Sodium and Zinc. National Standards of the Republic of China: Taiwan, China, 2018.
- Chen, S.Y.; Ho, K.J.; Hsieh, Y.J.; Wang, L.T.; Mau, J.L. Contents of lovastatin, γ-aminobutyric acid and ergothioneine in mushroom fruiting bodies and mycelia. LWT-Food Sci. Technol. 2012, 47, 274–278. [Google Scholar] [CrossRef]
- Mau, J.L.; Chen, Y.L.; Chien, R.C.; Lo, Y.C.; Lin, S.D. Taste quality of the hot water extract from Flammulina velutipes and its application in umami seasoning. Food Sci. Technol. Res. 2018, 24, 201–208. [Google Scholar] [CrossRef] [Green Version]
- Qian, H.; Sheng, M. Simultaneous determination of fat-soluble vitamins A, D and E and pro-vitamin D2 in animal feeds by one-step extraction and high-performance liquid chromatography analysis. J. Chromatogr. A 1998, 825, 127–133. [Google Scholar] [CrossRef] [PubMed]
- Mclellan, M.R.; Lind, L.R.; Kime, R.W. Hue angle determinations and statistical analysis for multiquadrant Hunter L,a,b data. J. Food Qual. 1995, 18, 235–240. [Google Scholar] [CrossRef]
- Beraldo, I.M.; Assunção Botelho, R.B.; Romão, B.; de Alencar, E.R.; Zandonadi, R.P. Dried apples replacing sugar in pound cakes: Physicochemical composition and sensory analysis. Int. J. Gastron. Food Sci. 2023, 32, 100731. [Google Scholar] [CrossRef]
- Aguiló-Aguayo, I.; Walton, J.; Viñas, I.; Tiwari, B.K. Ultrasound assisted extraction of polysaccharides from mushroom by-products. LWT-Food Sci. Technol. 2017, 77, 92–99. [Google Scholar] [CrossRef]
- Kalaras, M.D.; Richie, J.P.; Calcagnotto, A.; Beelman, R.B. Mushrooms: A rich source of the antioxidants ergothioneine and glutathione. Food Chem. 2017, 233, 429–433. [Google Scholar] [CrossRef]
- Cheung, L.M.; Cheung, P.C.K.; Ooi, V.E.C. Antioxidant activity and total phenolics of edible mushroom extracts. Food Chem. 2003, 81, 249–255. [Google Scholar] [CrossRef]
- Ginos, B.N.R.; Engberink, R.H.G.O. Estimation of sodium and potassium intake: Current limitations and future perspectives. Nutrients 2020, 12, 3275. [Google Scholar] [CrossRef] [PubMed]
- Mau, J.L. The umami taste of edible and medicinal mushrooms. Int. J. Med. Mushrooms 2005, 7, 119–126. [Google Scholar] [CrossRef]
- Weaver, C.M. Potassium and Health. Adv. Nutr. 2013, 4, 368S–377S. [Google Scholar] [CrossRef] [Green Version]
- Hossain, A.; Skalicky, M.; Brestic, M.; Maitra, S.; Sarkar, S.; Ahmad, Z.; Vemuri, H.; Garai, S.; Mondal, M.; Bhatt, R.; et al. Selenium biofortification: Roles, mechanisms, responses and prospects. Molecules 2021, 26, 881. [Google Scholar] [CrossRef]
- Song, K.Y.; O, H.; Joung, K.Y.; Shin, S.Y.; Kim, Y.S. Effects of basil (Ocimum basilicum L.) seed mucilage substituted for fat source in sponge cake: Physicochemical, structural, and retrogradation properties. Ital. J. Food Sci. 2017, 29, 681–696. [Google Scholar] [CrossRef]
- Zhao, Z.; Yan, C.; Xu, F.; Liu, J. Study on dyeing properties and color characteristics of wool fabrics dyed with Geranium caespitosum L. extract—A new natural yellow dye. Coatings 2023, 13, 1125. [Google Scholar] [CrossRef]
BB | CB | |
---|---|---|
Yield (%) 1 | 96.32 ± 0.63 3 | 40.47 ± 0.76 |
Moisture (g/100 g) | 99.20 ± 0.04 | 97.67 ± 0.01 |
Soluble solids (°Brix) | 0.90 ± 0.10 | 2.90 ± 0.10 |
pH | 6.14 ± 0.04 | 6.40 ± 0.06 |
Proximate composition (g/100 g dry matter) | ||
Crude protein | 19.21 ± 0.73 a | 16.88 ± 0.04 b |
Crude fat | 0.01 ± <0.01 b | 0.23 ± 0.01 a |
Crude ash | 13.50 ± 0.06 a | 12.89 ± 0.05 b |
Carbohydrate | 67.28 ± 0.77 b | 70.00 ± 0.45 a |
Bioactive composition (g/100 g dry matter) | ||
γ-Aminobutyric acid | nd | nd |
Crude polysaccharide | 7.45 ± 0.36 a | 4.53 ± 0.17 b |
Ergosterol | nd 4 | 0.01 ± <0.01 |
Ergothioneine | 0.19 ± <0.01 b | 0.19 ± <0.01 a |
Total phenols 2 | 0.15 ± 0.01 b | 0.36 ± 0.02 a |
Taste composition (g/100 g dry matter) | ||
Sugars and polyols | 40.56 ± 0.86 b | 45.69 ± 1.01 a |
Free amino acids | 6.58 ± 0.11 a | 6.69 ± 0.04 a |
5′-Nucleotides | 1.47 ± 0.02 a | 0.98 ± 0.02 b |
EUC (g MSG/100 g sample) | 858.06 ± 7.63 a | 309.66 ± 39.15 b |
Content (g/100 g Dry Matter) | ||
---|---|---|
BB | CB | |
Arabinose | nd 1 | nd |
Arabitol | 4.684 ± 0.306 b,2 | 7.476 ± 0.188 a |
Fructose | nd | nd |
Glucose | nd | nd |
Mannitol | 33.155 ± 0.447 b | 34.315 ± 0.804 a |
Trehalose | 2.715 ± 0.178 b | 3.888 ± 0.203 a |
Total | 40.554 ± 0.862 b | 45.679 ± 1.008 a |
Amino Acids | Content (g/100 g Dry Matter) | |
---|---|---|
BB | CB | |
Essential amino acid | ||
Histidine | 0.099 ± 0.006 a,2 | 0.109 ± 0.010 a |
Isoleucine | 0.142 ± 0.002 a | 0.134 ± 0.003 a |
Leucine | 0.241 ± 0.006 a | 0.222 ± 0.006 a |
Lysine | 0.276 ± 0.017 a | 0.279 ± 0.015 a |
Methionine | 0.294 ± 0.022 a | 0.280 ± 0.006 a |
Phenylalanine | 0.135 ± 0.002 a | 0.122 ± 0.001 b |
Threonine | 0.231 ± 0.012 a | 0.237 ± 0.023 a |
Tryptophan | 0.031 ± 0.001 a | 0.028 ± 0.003 a |
Valine | 0.305 ± 0.007 a | 0.299 ± 0.003 a |
Non-essential amino acid | ||
Alanine | 0.521 ± 0.020 a | 0.457 ± 0.008 a |
Arginine | 0.803 ± 0.040 a | 0.834 ± 0.019 a |
Asparagine | 0.198 ± 0.005 a | 0.184 ± 0.003 a |
Aspartic acid | 0.215 ± 0.004 a | 0.175 ± 0.004 b |
Cystine | nd 3 | nd |
Glutamic acid | 0.730 ± 0.017 a | 0.638 ± 0.016 b |
Glutamine | 1.676 ± 0.014 b | 2.110 ± 0.042 a |
Glycine | 0.256 ± 0.013 a | 0.190 ± 0.012 b |
Proline | 0.093 ± 0.001 a | 0.074 ± 0.001 b |
Serine | 0.232 ± 0.006 a | 0.213 ± 0.003 a |
Tyrosine | 0.105 ± 0.008 a | 0.103 ± 0.008 a |
Total amino acids (TAA) | 6.583 ± 0.112 a | 6.688 ± 0.042 a |
Essential amino acids (EAA) | 1.754 ± 0.001 a | 1.710 ± 0.034 a |
Non-essential amino acids (NEAA) | 4.829 ± 0.111 a | 4.978 ± 0.076 a |
Branched-chain amino acid (BCAA) 1 | 0.688 ± 0.014 a | 0.655 ± 0.011 a |
Taste characteristic | ||
MSG-like | 0.945 ± 0.022 a | 0.813 ± 0.020 b |
Sweet | 3.009 ± 0.040 b | 3.281 ± 0.018 a |
Bitter | 2.050 ± 0.071 a | 2.028 ± 0.023 a |
Tasteless | 0.381 ± 0.025 a | 0.382 ± 0.023 a |
Content (g/100 g Dry Matter) | ||
---|---|---|
BB | CB | |
5′-AMP 1 | 0.179 ± 0.012 a,3 | 0.128 ± 0.001 b |
5′-CMP | 0.684 ± 0.012 a | 0.486 ± 0.002 b |
5′-GMP | 0.383 ± 0.008 a | 0.151 ± 0.017 b |
5′-IMP | 0.018 ± 0.002 a | 0.007 ± 0.001 b |
5′-UMP | 0.182 ± 0.002 a | 0.190 ± 0.003 a |
5′-XMP | 0.022 ± 0.001 a | 0.019 ± 0.001 b |
Flavor 5′-Nucleotides 2 | 0.602 ± 0.006 a | 0.305 ± 0.017 b |
Total 5′-Nucleotides | 1.468 ± 0.020 a | 0.981 ± 0.022 b |
Mineral | Content (mg/100 g Dry Matter) | |
---|---|---|
BB | CB | |
Major mineral | ||
Calcium (Ca) | 56.7 ± 2.3 a,1 | 33.7 ± 1.5 b |
Magnesium (Mg) | 183.2 ± 7.7 b | 230.2 ± 3.0 a |
Phosphorus (P) | 2.0 ± 0.1 b | 16.1 ± 0.5 a |
Potassium (K) | 3387.6 ± 59.8 b | 3708.2 ± 12.3 a |
Sodium (Na) | 132.3 ± 4.9 a | 129.5 ± 4.1 b |
Trace mineral | ||
Aluminum (Al) | 0.117 ± 0.005 a | 0.080 ± <0.001 b |
Chromium (Cr) | 0.008 ± <0.001 b | 0.029 ± 0.001 a |
Iron (Fe) | 0.285 ± 0.013 a | 0.168 ± 0.005 b |
Manganese (Mn) | 0.479 ± 0.016 b | 3.260 ± 0.132 a |
Selenium (Se) | 0.474 ± 0.016 a | 0.055 ± 0.001 b |
Zinc (Zn) | 1.811 ± 0.082 b | 7.042 ± 0.342 a |
BB | CB | |||||
---|---|---|---|---|---|---|
Color | Flavor | Overall | Color | Flavor | Overall | |
SD13-1.0 1 | 7.2 ± 0.9 A,2 | 4.5 ± 0.9 E | 4.4 ± 0.6 F | 6.9 ± 0.8 E | 4.4 ± 0.9 E | 4.3 ± 0.6 F |
SD13-1.5 | 7.1 ± 0.9 A | 5.5 ± 1.1 D | 5.4 ± 0.8 E | 6.8 ± 0.7 E | 5.4 ± 1.0 D | 5.3 ± 0.8 E |
SD13-2.0 | 6.6 ± 1.0 B | 6.6 ± 0.8 C | 6.8 ± 0.8 B | 7.4 ± 0.8 ABC | 6.7 ± 0.8 C | 6.9 ± 0.7 B |
SD13-2.5 | 6.5 ± 1.0 B | 7.3 ± 0.8 A | 7.3 ± 0.8 A | 7.3 ± 0.9 ABC | 7.4 ± 0.7 A | 7.5 ± 0.9 A |
SD13-3.0 | 5.5 ± 1.1 CD | 4.3 ± 0.5 EF | 3.9 ± 0.7 G | 6.0 ± 0.8 F | 4.3 ± 0.5 EF | 3.9 ± 0.7 HI |
SD13-3.5 | 5.3 ± 1.0 CD | 3.7 ± 0.5 H | 3.3 ± 0.5 IJ | 5.9 ± 0.8 F | 3.8 ± 0.6 H | 3.4 ± 0.8 K |
SD14-1.0 | 7.1 ± 0.7 A | 4.4 ± 1.4 E | 4.4 ± 1.4 F | 7.0 ± 0.7 E | 4.1 ± 0.8 G | 4.1 ± 0.7 GH |
SD14-1.5 | 7.4 ± 1.0 A | 5.6 ± 1.0 D | 5.2 ± 0.7 E | 7.3 ± 1.0 CD | 5.7 ± 1.0 D | 5.2 ± 0.8 E |
SD14-2.0 | 6.4 ± 1.3 B | 6.7 ± 1.1 C | 6.4 ± 1.0 C | 7.4 ± 0.9 ABC | 6.9 ± 1.0 BC | 6.9 ± 1.0 C |
SD14-2.5 | 6.6 ± 1.4 B | 7.1 ± 0.9 A | 7.3 ± 1.0 A | 7.6 ± 0.7 A | 7.2 ± 0.9 AB | 7.3 ± 0.8 A |
SD14-3.0 | 5.6 ± 0.8 C | 4.0 ± 0.9 G | 3.7 ± 0.9 GH | 5.8 ± 0.7 F | 4.0 ± 1.0 G | 3.7 ± 1.0 IJ |
SD14-3.5 | 5.3 ± 0.5 CD | 3.4 ± 0.6 I | 3.2 ± 0.9 J | 5.5 ± 0.7 G | 3.4 ± 0.7 I | 3.1 ± 0.6 L |
SD15-1.0 | 7.3 ± 1.1 A | 4.2 ± 0.8 EFG | 4.4 ± 0.7 F | 7.0 ± 0.9 E | 4.1 ± 0.8 FG | 4.3 ± 0.6 FG |
SD15-1.5 | 7.3 ± 1.0 A | 5.7 ± 1.1 D | 5.6 ± 0.7 D | 7.1 ± 1.0 DE | 5.6 ± 1.1 D | 5.6 ± 0.6 D |
SD15-2.0 | 6.7 ± 1.0 B | 6.8 ± 1.2 BC | 6.6 ± 0.7 BC | 7.3 ± 0.8 BCD | 6.9 ± 1.2 BC | 6.7 ± 0.5 BC |
SD15-2.5 | 6.4 ± 1.3 B | 7.0 ± 1.1 AB | 7.1 ± 1.2 A | 7.6 ± 1.0 AB | 7.3 ± 1.2 A | 7.3 ± 1.1 A |
SD15-3.0 | 5.3 ± 0.5 CD | 4.0 ± 0.6 FG | 3.5 ± 0.9 HI | 5.4 ± 0.6 G | 4.1 ± 0.9 FG | 3.6 ± 0.9 JK |
SD15-3.5 | 5.2 ± 1.0 D | 3.2 ± 0.9 I | 2.8 ± 0.5 K | 5.3 ± 1.1 G | 3.3 ± 1.2 I | 2.9 ± 0.6 L |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, S.-Y.; Tseng, J.; Wu, C.-R.; Lin, S.-D. Quality Evaluation of Shiitake Blanched and Centrifuged Broths as Functional Instant Drinks. Foods 2023, 12, 2925. https://doi.org/10.3390/foods12152925
Chen S-Y, Tseng J, Wu C-R, Lin S-D. Quality Evaluation of Shiitake Blanched and Centrifuged Broths as Functional Instant Drinks. Foods. 2023; 12(15):2925. https://doi.org/10.3390/foods12152925
Chicago/Turabian StyleChen, Shin-Yu, Jim Tseng, Cheng-Rong Wu, and Sheng-Dun Lin. 2023. "Quality Evaluation of Shiitake Blanched and Centrifuged Broths as Functional Instant Drinks" Foods 12, no. 15: 2925. https://doi.org/10.3390/foods12152925
APA StyleChen, S. -Y., Tseng, J., Wu, C. -R., & Lin, S. -D. (2023). Quality Evaluation of Shiitake Blanched and Centrifuged Broths as Functional Instant Drinks. Foods, 12(15), 2925. https://doi.org/10.3390/foods12152925